NAME
I i barchi ve-f or mat s — archive formats supported by the libarehilibrary

DESCRIPTION
Thel i bar chi ve(3) library reads and writes anety of streaming arche formats. Generallgpeaking,
all of these archie formats consist of a series of “entries”. Each entry stores a single file system object, such
as a file, directoryor symbolic link.

The following praides a brief description of each format supported by libeechiith some information
about recognized extensions or limitations of the current library supidote that just because a format is
supported by libarckie does not imply that a program that uses libarehiill support that format.Applica-
tions that use libarche specify which formats the wish to support, though mgnprograms do use
libarchive crnvenience functions to enable all supported formats.

Tar Formats
The | i bar chi ve(3) library can read most tar arees. It can write POSIX-standard “ustar” and “pax
interchange” formats and a subset of tlgadg GNU tar format.

All tar formats store each entry in one or more 512-byte records. The first record is used for file metadata,
including filename, timestamp, and mode information, and the file data is stored in subsequentlatards.
variants hae exended this by either appropriating undefined areas of the header record, extending the header
to multiple records, or by storing special entries that modify the interpretation of subsequent entries.

gnutar Thel i barchi ve(3) library can read most GNU-format tar akasi. It currently supports the
most popular GNUdensions, including modern long filename and linkname support, as well as
atime and ctime data. The libaregilibrary does not support multelume archies, nor the old
GNU long filename format. It can read GNU sparse file entries, including th&@&1X-based
formats.

Thel i bar chi ve(3) library can write GNU tar format, including long filename and linkname
support, as well as atime and ctime data.

pax The | i bar chi ve(3) library can read and write POSIX-compliant pax interchange format ar
chives. Rax interchange format arcles ae an &tension of the older ustar format that adds a sep-
arate entry with additional attributes stored ag\kalue pairs immediately before eaclyukar
entry The presence of these additional entries is the orfigrelifce between pax interchange for
mat and the older ustar format. The extended attributes are of unlimited length and are stored as
UTF-8 Unicode strings.Keywords defined in the standard are in all lowercase; vendors are
allowed to define customeks by preceding them with theendor name in all uppercas@&/hen
writing pax archies, libarchive uises mawn of the SCHILY keys defined by Joer Schilling’s “star”
archiver and a fev LIBARCHIVE keys. Thelibarchive library can read most of the SCHlkeys
and most of the GNUeys introduced by GNU tarlt silently ignores ap keywords that it does
not understand.

The pax interchange format a@nts filenames to Unicode and stores them using the UTF-8
encoding. Prioto libarchive 30, libarchve eroneously assumed that the system wide-character
routines natiely supported UnicodeThis caused it to mis-handle non-ASCII filenames on sys-
tems that did not satisfy this assumption.

restricted pax
The libarchve library can also write pax arsies in which it attempts to suppress theended
attributes entry whener possible. Theresult will be identical to a ustar arehi wnless the
extended attributes entry is required to store a long file name, long linkname, extended ACL, file
flags, or if ay of the standard ustar data (user name, group name, UID, GID, etc) cannot be fully
represented in the ustar headhbr dl cases, the result can be deavelliby any program that can
read POSIX-compliant pax interchange format amehi Programshat correctly read ustar format
(see belw) will also be able to read this format;yaextended attributes will be extracted as sepa-
rate files stored iPaxHeader directories.

BSD March18, 2012 1

LIBARCHIVE-FORMATS (5) BSD File Formats Manual LIBARCHIVE-FORMPS (5)

ustar The libarchve library can both read and write this format. This format has the following limita-

tions:
¢ Device major and minor numbers are limited to 21 bits. Nodes with larger numbers will not be
added to the arche.

¢ Pah names in the aroke ae limited to 255 bytes(Shorter if there is no / character ixaetly
the right place.)

¢ Symbolic links and hard links are stored in the atehiith the name of the referenced file.
This name is limited to 100 bytes.

¢ Extended attributes, file flags, and other extended security information cannot be stored.

e Archive entries are limited to 8 gigabytes in size.

Note that the pax interchange format has none of these restriclibesustar format is old and

widely supported. Itis recommended when compatibility is the primary concern.

The libarchve library also reads aaviety of commonly-used extensions to the basic tar format. These e
sions are recognized automatically wheanehey appear.

Numeric extensions.
The POSIX standards require fixed-length numeric fields to be written with some character posi-
tion reserved for terminatord.ibarchive dlows these fields to be written without terminator ehar
acters. Thiextends the allwable range; in particulaustar archres with this extension can sup-
port entries up to 64 gigabytes in sizkibarchive dso recognizes base-256 values in most
numeric fields. This essentially remes dl limitations on file size, modification time, andvitse
numbers.

Solaris extensions
Libarchive recognizes ACL and extended attitie records written by Solaris taCurrently,
libarchive aly has support for old-style ACLs; the newer NFSv4 ACLs are recogniedis
carded.

The first tar program appeared inv&gh Edition Unix in 1979. The first fifial standard for the tar file for
mat was the “ustar” (Unix Standard Tar) format defined by POSIX in 1888SIX.1-2001 extended the
ustar format to create the “pax interchange” format.

Cpio Formats

BSD

The libarchie library can read a number of common cpésiants and can write “odc” and “newc” format
archives. A cpio archve gores each entry as a fixed-size headervabb by a variable-length filename and
variable-length dataUnlike the tar format, the cpio format does only minimal padding of the header or file
data. Therare sgeral cpio variants, which differ primarily in hothey store the initial header: some store
the values as octal or hexadecimal numbers in ASCII, others as binary valuayiof oyte order and
length.

bi nary The libarchve library transparently reads both big-endian and little-endigiants of the original
binary cpio format. This format used 32-bit binarglues for file size and mtime, and 16-bit
binary values for the other fields.

odc The libarchie library can both read and write this POSIX-standard format, whichfigady
known as the “cpio interchange format” or the “octet-oriented cpioedbrmat” and sometimes
unoficially referred to as the “old character formafThis format stores the header contents as
octal values in ASCILIt is standard, portable, and immune from byte-order confusion. File sizes
and mtime are limited to 33 bits (8GB file size), other fields are limited to 18 bits.

SVR4 The libarchve library can read both CRC and non-CRgiants of this format. The SVR4 format
uses eight-digit hexadecimal values for all header fi€ldiss limits file size to 4GB, and also lim-
its the mtime and other fields to 32 bits. The SVR4 format can optionally include a CRC of the file
contents, although libarcré does not currently verify this CRC.

March18, 2012 2

LIBARCHIVE-FORMATS (5) BSD File Formats Manual LIBARCHIVE-FORMPS (5)

Cpio first appeared in PWB/UNIX 1.0, whichaw/ released within AT&T in 1977. PWB/UNIX 1.0 formed

the basis of System Il Unix, released outside of AT&T in 1981. This makes cpio older thdthtargh

cpio was not included in Version 7 AT&T UniAs a result, the tar command became much better known in
universities and research groups that used Version 7. The combinationfafideandcpi o utilities pro-

vided very precise controlver file selection. Unfortunately the format has manlimitations that ma it
unsuitable for widespread use. Only the POSIX format permits filesAGB, and its 18-bit limit for most

other fields makes it unsuitable for modern systems. In addition, cpio formats only store numeric UID/GID
vaues (not usernames and group names), which cam ihalery difficult to correctly transfer arohés

across systems with dissimilar user numbering.

Shar Formats

A “shell archi€’ is a shell script that, whenxecuted on a POSIX-compliant system, will recreate a collec-
tion of file system objects. The libarghilibrary can write tw different kinds of shar archés:

shar The traditional shar format uses a limited set of POSIX commands, incleday1), nkdi r (1),
andsed(1). Itis suitable for portably arcving small collections of plain text filesdowever, it is
not generally well-suited for large arebs (mary implementations afh(1) have limits on the size
of a script) nor should it be used with non-text files.

shar dunp
This format is similar to sharub encodes files usinguencode(1) so that the result will be a
plain text file rgardless of the file contentslt also includes additional shell commands that
attempt to reproduce as nyafile attributes as possible, includingreer, mode, and flags.The
additional commands used to restore file attributesensairdump archies less portable than
plain shar archves.

1ISO9660 brmat

Libarchive @an read and extract from files containing ISO9660-compliant CDROM images. incases,

this can remee the need to burn a physical CDROM just in order to read the files contained in an 1ISO9660
image. Italso aoids security and compléy issues that come with virtual mounts and loopbackces.
Libarchive supports the most common Rockridgdensions and has partial support for Joli¢ersions. |If

both extensions are present, the Joliet extensions will be used and the Rockdadgm®es will be ignored.

In particular this can create problems with hardlinks and symlinks, which are supported by Rockiidge b
not by Joliet.

Libarchive reads 1SO9660 images using a streaming sglyatéhis allows it to read compressed images
directly (decompressing on the fly) and allows it to read images directly from netwoktssqukes, and

other non-seekable data sources. This strategy works well for optimized ISO9660 images creatgd by man
popular programs. Such programs collect all directory information at the beginning of the 1ISO9660 image so
it can be read from a physical disk with a minimum of seekldgwever, not all ISO9660 images can be

read in this fashion.

Libarchive an also write ISO9660 images. Such images are fully optimized with the directory information
preceding all file dataThis is done by storing all file data to a temporary file while collecting directory
information in memory When the image is finished, libarehiwrites out the directory structure followed by
the file data. The location used for the temporary file can be changed by the usual environment variables.

Zip format

BSD

Libarchive can read and write zip format arees that hae uncompressed entries and entries compressed
with the “deflate” algorithm. Other zip compression algorithms are not supported. It can extract yasarchi
archives that use Zip64 extensions and self-extracting zip egshiLibarchve an use either of tavdifferent
stratgjies for reading Zip archés: a streaming strategy which is fast and can handtereely large ar
chives, and a seeking strategy which can correctly process self-extracting Zipesratd archves with
deleted members or other in-place modifications.

March18, 2012 3

LIBARCHIVE-FORMATS (5) BSD File Formats Manual LIBARCHIVE-FORMPS (5)

The streaming reader processes Zip &eshas hey are read. It can read areles o arbitrary size from tape

or network sockets, and can decode Zip amshthat hae keen separately compressed or encodeolwv-
eve, <lf-extracting Zip archies and archves with certain types of modifications cannot be correctly han-
dled. Sucharchives require that the reader first process the Central Dirgakdrigh is ordinarily located at
the end of a Zip arché and is thus inaccessible to the streaming realdehe program using libaroké has
enabled seek support, then libavehwill use this to processes the central directory first.

In particular the seeking reader must be used to correctly handlexsedfting archies. Sucharchives con-

sist of a program follwed by a regular Zip arché. The streaming reader cannot parse the initial program
portion, but the seeking reader starts by reading the Central Directory from the end of tlee &hatiliarly,

Zip archves that hae keen modified in-place canvecdkeleted entries or other garbage data that can only be
accurately detected by first reading the Central Directory.

Archive (ibrary) file f ormat

The Unix archie format (commonly created by tle (1) archver) is a general-purpose format which is
used almost>elusively for object files to be read by the link edifod(1). Thear format has nex been
standardised. Thergre two common variants: the GNU format desil from SVR4, and the BSD format,
which first appeared in 4.4BSD. Theadffer primarily in their handling of filenames longer than 15 €har
acters: the GNU/SVR4 variant writes a filename table at thimmieg of the arclve; the BSD format stores
each long filename in axtension area adjacent to the entkybarchive an read both extensions, including
archives that may include both types of long filenames. Programs using likarcm write GNU/SVR4
format if they provide a filename table to be written into the arehiefore ay of the entries.Any entries
whose names are not in the filename table will be written using BSD-style long filenBhie€an cause
problems for programs such as GNU Id that do not support the BSD-style long filenames.

mtree

Libarchive can read and write files mt r ee(5) format. This format is not a true arctd format, but rather a

textual description of a file hierarghin which each line specifies the name of a file and provides specific
metadata about that fileLibarchive an read all of the dywords supported by both the NetBSD and
FreeBSD versions ofit r ee(l), although man of the keywords cannot currently be stored in an
archive_entry object. Whenwriting, libarchve supports use of tharchi ve_wite_set opti ons(3)

interface to specify whichdswords should be included in the output. If libakehivas compiled with access

to suitable cryptographic libraries (such as the OpenSSL libraries), it can compute hash entries such as
sha512 or nd5 from file data being written to the mtree writer.

When reading an mtree file, libareiwill locate the corresponding files on disk using thant ent s

keyword if present or the regular filenami.it can locate and open the file on disk, it will use that to fill in

ary metadata that is missing from the mtree file and will read the file contents and return those to the pro-
gram using libarckie. If it cannot locate and open the file on disk, libarehaill return an error for an

attempt to read the entry body.

LHA

XXX Information about libarchie’'s LHA support XXX

CAB

XXX Information about libarchie’'s CAB support XXX

XAR

BSD

XXX Information about libarchie’'s XAR support XXX

March18, 2012 4

LIBARCHIVE-FORMATS (5) BSD File Formats Manual LIBARCHIVE-FORMPS (5)

RAR
Libarchive has limited support for reading RAR format akasi. Currentlylibarchive an read RARV3 for
mat archives which hare been either created uncompressed, or compressed usiraf Hre compression
methods supported by the RARv3 format. Libavelhian also read self-extracting RAR anas.

SEE ALSO
ar (1), cpi o(1), nki sof s(1),shar (1),t ar (1), zi p(1),zl i b(3),cpi o(5),nt ree(5),t ar (5)

BSD March18, 2012 5

