
NAME
libarchive — functions for reading and writing streaming archives

OVERVIEW
Thelibarchive library provides a flexible interface for reading and writing archives in various formats
such as tar and cpio.libarchive also supports reading and writing archives compressed using various
compression filters such as gzip and bzip2.The library is inherently stream-oriented; readers serially iterate
through the archive, writers serially add things to the archive. In particular, note that there is currently no
built-in support for random access nor for in-place modification.

When reading an archive, the library automatically detects the format and the compression. The library cur-
rently has read support for:
• old-style tar archives,
• most variants of the POSIX “ustar” format,
• the POSIX “pax interchange” format,
• GNU-format tar archives,
• most common cpio archive formats,
• ISO9660 CD images (including RockRidge and Joliet extensions),
• Zip archives,
• ar archives (including GNU/SysV and BSD extensions),
• Microsoft CAB archives,
• LHA archives,
• mtree file tree descriptions,
• RAR archives,
• XAR archives.
The library automatically detects archives compressed withgzip(1), bzip2(1), xz(1), lzip(1), or
compress(1) and decompresses them transparently. It can similarly detect and decode archives processed
with uuencode(1) or which have an rpm(1) header.

When writing an archive, you can specify the compression to be used and the format to use. The library can
write
• POSIX-standard “ustar” archives,
• POSIX “pax interchange format” archives,
• POSIX octet-oriented cpio archives,
• Zip archive,
• two different variants of shar archives,
• ISO9660 CD images,
• 7-Zip archives,
• ar archives,
• mtree file tree descriptions,
• XAR archives.
Pax interchange format is an extension of the tar archive format that eliminates essentially all of the limita-
tions of historic tar formats in a standard fashion that is supported by POSIX-compliantpax(1) implementa-
tions on many systems as well as several newer implementations oftar(1). Notethat the default write for-
mat will suppress the pax extended attributes for most entries; explicitly requesting pax format will enable
those attributes for all entries.

The read and write APIs are accessed through thearchive_read_XXX() functions and the
archive_write_XXX() functions, respectively, and either can be used independently of the other.

The rest of this manual page provides an overview of the library operation. More detailed information can be
found in the individual manual pages for each API or utility function.

READING AN ARCHIVE
Seelibarchive_read(3).

BSD March18, 2012 1



LIBARCHIVE (3) BSD Library Functions Manual LIBARCHIVE (3)

WRITING AN ARCHIVE
Seelibarchive_write(3).

WRITING ENTRIES T O DISK
Thearchive_write_disk(3) API allows you to writearchive_entry(3) objects to disk using the
same API used byarchive_write(3). The archive_write_disk(3) API is used internally by
archive_read_extract(); using it directly can provide greater control over how entries get written to
disk. ThisAPI also makes it possible to share code between archive-to-archive copy and archive-to-disk
extraction operations.

READING ENTRIES FROM DISK
Thearchive_read_disk(3) supports for populatingarchive_entry(3) objects from information in
the filesystem. This includes the information accessible from thestat(2) system call as well as ACLs,
extended attributes, and other metadata.The archive_read_disk(3) API also supports iterating over
directory trees, which allows directories of files to be read using an API compatible with the
archive_read(3) API.

DESCRIPTION
Detailed descriptions of each function are provided by the corresponding manual pages.

All of the functions utilize an opaquestruct archive datatype that provides access to the archive contents.

Thestruct archive_entrystructure contains a complete description of a single archive entry. It uses an opaque
interface that is fully documented inarchive_entry(3).

Users familiar with historic formats should be aware that the newer variants have eliminated most restrictions
on the length of textual fields. Clients should not assume that filenames, link names, user names, or group
names are limited in length. In particular, pax interchange format can easily accommodate pathnames in
arbitrary character sets that exceedPA TH_MAX.

RETURN VALUES
Most functions returnARCHIVE_OK (zero) on success, non-zero on error. The return value indicates the
general severity of the error, ranging fromARCHIVE_WARN, which indicates a minor problem that should
probably be reported to the user, to ARCHIVE_FATAL, which indicates a serious problem that will prevent
any further operations on this archive. On error, thearchive_errno() function can be used to retrieve a
numeric error code (seeerrno(2)). Thearchive_error_string() returns a textual error message
suitable for display.

archive_read_new() andarchive_write_new() return pointers to an allocated and initializedstruct
archive object.

archive_read_data() andarchive_write_data() return a count of the number of bytes actually
read or written.A value of zero indicates the end of the data for this entry. A negative value indicates an
error, in which case thearchive_errno() andarchive_error_string() functions can be used to
obtain more information.

ENVIRONMENT
There are character set conversions within thearchive_entry(3) functions that are impacted by the cur-
rently-selected locale.

SEE ALSO
tar(1),archive_entry(3),archive_read(3),archive_util(3),archive_write(3),tar(5)

BSD March18, 2012 2



LIBARCHIVE (3) BSD Library Functions Manual LIBARCHIVE (3)

HISTORY
Thelibarchive library first appeared inFreeBSD5.3.

AUTHORS
Thelibarchive library was originally written by Tim Kientzle〈kientzle@acm.org〉.

BUGS
Some archive formats support information that is not supported bystruct archive_entry. Such information can-
not be fully archived or restored using this library. This includes, for example, comments, character sets, or
the arbitrary key/value pairs that can appear in pax interchange format archives.

Conversely, of course, not all of the information that can be stored in anstruct archive_entryis supported by all
formats. For example, cpio formats do not support nanosecond timestamps; old tar formats do not support
large device numbers.

The ISO9660 reader cannot yet read all ISO9660 images; it should learn how to seek.

The AR writer requires the client program to use two passes, unlike all other libarchive writers.

BSD March18, 2012 3


