Reinforcement Learning Tools for Two-Alternative Forced Choice Tasks


[Up] [Top]

Documentation for package ‘binaryRL’ version 0.9.7

Help Pages

fit_p Step 3: Optimizing parameters to fit real data
func_epsilon Function: Epsilon Related
func_eta Function: Learning Rate
func_gamma Function: Utility Function
func_logl Function: Loss Function
func_pi Function: Upper-Confidence-Bound
func_tau Function: Soft-Max Function
Mason_2024_G1 Group 1 from Mason et al. (2024)
Mason_2024_G2 Group 2 from Mason et al. (2024)
optimize_para Process: Optimizing Parameters
rcv_d Step 2: Generating fake data for parameter and model recovery
recovery_data Process: Recovering Fake Data
rpl_e Step 4: Replaying the experiment with optimal parameters
RSTD Model: RSTD
run_m Step 1: Building reinforcement learning model
simulate_list Process: Simulating Fake Data
summary.binaryRL S3method summary
TD Model: TD
Utility Model: Utility