Type: | Package |
Title: | ACSS, Corresponding ACSS, and GLP Algorithm |
Version: | 0.0.1.4 |
Date: | 2024-06-30 |
Description: | Allow user to run the Adaptive Correlated Spike and Slab (ACSS) algorithm, corresponding INdependent Spike and Slab (INSS) algorithm, and Giannone, Lenza and Primiceri (GLP) algorithm with adaptive burn-in. All of the three algorithms are used to fit high dimensional data set with either sparse structure, or dense structure with smaller contributions from all predictors. The state-of-the-art GLP algorithm is in Giannone, D., Lenza, M., & Primiceri, G. E. (2021, ISBN:978-92-899-4542-4) "Economic predictions with big data: The illusion of sparsity". The two new algorithms, ACSS algorithm and INSS algorithm, and the discussion on their performance can be seen in Yang, Z., Khare, K., & Michailidis, G. (2024, preprint) "Bayesian methodology for adaptive sparsity and shrinkage in regression". |
License: | GPL-3 |
Encoding: | UTF-8 |
Imports: | stats, HDCI (≥ 1.0-2), MASS (≥ 7.3-60), extraDistr (≥ 1.4-4) |
LinkingTo: | Rcpp (≥ 1.0.11), RcppArmadillo (≥ 0.12.6.3.0) |
RoxygenNote: | 7.3.1 |
Depends: | R (≥ 3.0.2) |
LazyData: | true |
NeedsCompilation: | yes |
Packaged: | 2024-07-03 23:35:18 UTC; yangt |
Author: | Ziqian Yang [cre, aut], Kshitij Khare [aut], George Michailidis [aut] |
Maintainer: | Ziqian Yang <zi.yang@ufl.edu> |
Repository: | CRAN |
Date/Publication: | 2024-07-04 16:40:08 UTC |
ACSS algorithm
Description
Adaptive Correlated Spike and Slab (ACSS) algorithm with/without adaptive burn-in Gibbs sampler. See paper of Yang, Z., Khare, K., & Michailidis, G. (2024) for details.
Usage
ACSS_gs(
Y,
X,
a = 1,
b = 1,
c = 1,
s,
Max_burnin = 10,
nmc = 5000,
adaptive_burn_in = TRUE
)
Arguments
Y |
A vector. |
X |
A matrix. |
a |
shape parameter for marginal of q; default=1. |
b |
shape parameter for marginal of q; default=1. |
c |
shape parameter for marginal of lambda^2; larger c introduce more shrinkage and stronger correlation. default=1. |
s |
scale (inversed) parameter for marginal of lambda^2; larger s introduce more shrinkage; default=sqrt(p). |
Max_burnin |
Maximum burn-in (in 100 steps) for adaptive burn-in Gibbs sampler. Minimum value is 10, corresponding to 1000 hard burn-insteps. Default=10. |
nmc |
Number of MCMC samples. Default=5000. |
adaptive_burn_in |
Logical. If TRUE, use adaptive burn-in Gibbs sampler; If false, use fixed burn-in with burn-in = Max_burnin. Default=TRUE. |
Value
A list with betahat: predicted beta hat from majority voting, and Gibbs_res: 5000 samples of beta, q and lambda^2 from Gibbs sampler.
Examples
## A toy example is given below to save time. The full example can be run to get better results
## by using X instead of X[, 1:30] and let nmc=5000 (default).
n = 30;
p = 2 * n;
beta1 = rep(0.1, p);
beta2 = c(rep(0.2, p / 2), rep(0, p / 2));
beta3 = c(rep(0.15, 3 * p / 4), rep(0, ceiling(p / 4)));
beta4 = c(rep(1, p / 4), rep(0, ceiling(3 * p / 4)));
beta5 = c(rep(3, ceiling(p / 20)), rep(0 , 19 * p / 20));
betas = list(beta1, beta3, beta2, beta4, beta5);
set.seed(123);
X = matrix(rnorm(n * p), n, p);
Y = c(X %*% betas[[1]] + rnorm(n));
## A toy example with p=30, total Gibbs steps=1100, takes ~0.6s
system.time({mod = ACSS_gs(Y, X[, 1:30], 1, 1, 1, sqrt(p), nmc = 100);})
mod$beta; ## estimated beta after the Majority voting
hist(mod$Gibbs_res$betamat[1,]); ## histogram of the beta_1
hist(mod$Gibbs_res$q); ## histogram of the q
hist(log(mod$Gibbs_res$lambdasq)); ## histogram of the log(lambda^2)
plot(mod$Gibbs_res$q); ## trace plot of the q
## joint posterior of model density and shrinkage
plot(log(mod$Gibbs_res$q / (1 - mod$Gibbs_res$q)), -log(mod$Gibbs_res$lambdasq),
xlab = "logit(q)", ylab = "-log(lambda^2)",
main = "Joint Posterior of Model Density and Shrinkage");
Economic data from the GLP paper
Description
A list contains the five data set used in the paper of Giannone, Lenza, and Primiceri (2021). Contains the following data sets: Macro1, Macro2, Micro1, Micro2, and Finance1
Usage
Econ_data
Format
## 'Econ_data' A list contains the five lists, as the 5 data sets
- Macro1
A list with a vector and a data frame, 'Y' and 'X'. 'Y' is the response vector, with 659 observations in it. 'X' is the data frame contains all predictors, with n=659, p=130. It have the structure of time series data.
- Macro2
A list with a vector and a data frame, 'Y' and 'X'. 'Y' is the response vector, with 90 observations in it. 'X' is the data frame contains all predictors, with n=90, p=69. It have the structure of sectional data.
- Micro1
A list with a vector and a data frame, 'Y' and 'X'. 'Y' is the response vector, with 576 observations in it. 'X' is the data frame contains all predictors, with n=576, p=285. It have the structure of panel data with 48 units on 12 time points.
- Micro2
A list with a vector and a data frame, 'Y' and 'X'. 'Y' is the response vector, with 312 observations in it. 'X' is the data frame contains all predictors, with n=312, p=138. It have the structure of panel data with 12 units on 26 time points.
- Finance1
A list with a vector and a data frame, 'Y' and 'X'. 'Y' is the response vector, with 68 observations in it. 'X' is the data frame contains all predictors, with n=68, p=16. It have the structure of time series data.
Source
<https://www.econometricsociety.org/publications/econometrica/2021/09/01/economic-predictions-big-data-illusion-sparsity/supp/17842_Data_and_Programs.zip>
<https://research.stlouisfed.org/econ/mccracken/fred-databases/>
GLP algorithm
Description
Giannone, Lenza and Primiceri (GLP) algorithm with/without adaptive burn-in Gibbs sampler. See paper Giannone, D., Lenza, M., & Primiceri, G. E. (2021) and Yang, Z., Khare, K., & Michailidis, G. (2024) for details.
Most of the codes are from https://github.com/bfava/IllusionOfIllusion with our modification to make it have adaptive burn-in Gibbs sampler, and some debugs.
Usage
GLP_gs(
Y,
X,
a = 1,
b = 1,
A = 1,
B = 1,
Max_burnin = 10,
nmc = 5000,
adaptive_burn_in = TRUE
)
Arguments
Y |
A vector. |
X |
A matrix. |
a |
shape parameter for marginal of q; default=1. |
b |
shape parameter for marginal of q; default=1. |
A |
shape parameter for marginal of R^2; default=1. |
B |
shape parameter for marginal of R^2; default=1. |
Max_burnin |
Maximum burn-in (in 100 steps) for adaptive burn-in Gibbs sampler. Minimum value is 10, corresponding to 1000 hard burn-insteps. Default=10. |
nmc |
Number of MCMC samples. Default=5000. |
adaptive_burn_in |
Logical. If TRUE, use adaptive burn-in Gibbs sampler; If false, use fixed burn-in with burn-in = Max_burnin. Default=TRUE. |
Value
A list with betahat: predicted beta hat from majority voting, and Gibbs_res: 5000 samples of beta, q and lambda^2 from Gibbs sampler.
Examples
## A toy example is given below to save your time, which will still take ~10s.
## The full example can be run to get BETTER results, which will take more than 80s,
## by using X instead of X[, 1:30] and let nmc=5000 (default).
n = 30;
p = 2 * n;
beta1 = rep(0.1, p);
beta2 = c(rep(0.2, p / 2), rep(0, p / 2));
beta3 = c(rep(0.15, 3 * p / 4), rep(0, ceiling(p / 4)));
beta4 = c(rep(1, p / 4), rep(0, ceiling(3 * p / 4)));
beta5 = c(rep(3, ceiling(p / 20)), rep(0 , 19 * p / 20));
betas = list(beta1, beta3, beta2, beta4, beta5);
set.seed(123);
X = matrix(rnorm(n * p), n, p);
Y = c(X %*% betas[[1]] + rnorm(n));
## A toy example with p=30, total Gibbs steps=1100
system.time({mod = GLP_gs(Y, X[, 1:30], 1, 1, 1, 1, nmc = 100);})
mod$beta; ## estimated beta after the Majority voting
hist(mod$Gibbs_res$betamat[1,]); ## histogram of the beta_1
hist(mod$Gibbs_res$q); ## histogram of the q
hist(log(mod$Gibbs_res$lambdasq)); ## histogram of the log(lambda^2)
plot(mod$Gibbs_res$q); ## trace plot of the q
## joint posterior of model density and shrinkage
plot(log(mod$Gibbs_res$q / (1 - mod$Gibbs_res$q)), -log(mod$Gibbs_res$lambdasq),
xlab = "logit(q)", ylab = "-log(lambda^2)",
main = "Joint Posterior of Model Density and Shrinkage");
INSS algorithm
Description
INdependent Spike and Slab (INSS) algorithm with/without adaptive burn-in Gibbs sampler. See paper of Yang, Z., Khare, K., & Michailidis, G. (2024) for details.
Usage
INSS_gs(
Y,
X,
a = 1,
b = 1,
c = 1,
s,
Max_burnin = 10,
nmc = 5000,
adaptive_burn_in = TRUE
)
Arguments
Y |
A vector. |
X |
A matrix. |
a |
shape parameter for marginal of q; default=1. |
b |
shape parameter for marginal of q; default=1. |
c |
shape parameter for marginal of lambda^2; larger c introduce more shrinkage and stronger correlation. default=1. |
s |
scale (inversed) parameter for marginal of lambda^2; larger s introduce more shrinkage; default=sqrt(p). |
Max_burnin |
Maximum burn-in (in 100 steps) for adaptive burn-in Gibbs sampler. Minimum value is 10, corresponding to 1000 hard burn-insteps. Default=10. |
nmc |
Number of MCMC samples. Default=5000. |
adaptive_burn_in |
Logical. If TRUE, use adaptive burn-in Gibbs sampler; If false, use fixed burn-in with burn-in = Max_burnin. Default=TRUE. |
Value
A list with betahat: predicted beta hat from majority voting, and Gibbs_res: 5000 samples of beta, q and lambda^2 from Gibbs sampler.
Examples
## A toy example is given below to save time. The full example can be run to get better results
## by using X instead of X[, 1:30] and let nmc=5000 (default).
n = 30;
p = 2 * n;
beta1 = rep(0.1, p);
beta2 = c(rep(0.2, p / 2), rep(0, p / 2));
beta3 = c(rep(0.15, 3 * p / 4), rep(0, ceiling(p / 4)));
beta4 = c(rep(1, p / 4), rep(0, ceiling(3 * p / 4)));
beta5 = c(rep(3, ceiling(p / 20)), rep(0 , 19 * p / 20));
betas = list(beta1, beta3, beta2, beta4, beta5);
set.seed(123);
X = matrix(rnorm(n * p), n, p);
Y = c(X %*% betas[[1]] + rnorm(n));
## A toy example with p=30, total Gibbs steps=1100, takes ~0.6s
system.time({mod = INSS_gs(Y, X[, 1:30], 1, 1, 1, sqrt(p), nmc = 100);})
mod$beta; ## estimated beta after the Majority voting
hist(mod$Gibbs_res$betamat[1,]); ## histogram of the beta_1
hist(mod$Gibbs_res$q); ## histogram of the q
hist(log(mod$Gibbs_res$lambdasq)); ## histogram of the log(lambda^2)
plot(mod$Gibbs_res$q); ## trace plot of the q
## joint posterior of model density and shrinkage
plot(log(mod$Gibbs_res$q / (1 - mod$Gibbs_res$q)), -log(mod$Gibbs_res$lambdasq),
xlab = "logit(q)", ylab = "-log(lambda^2)",
main = "Joint Posterior of Model Density and Shrinkage");