Version: | 0.2 |
Date: | 2018-07-27 |
Title: | All-Resolution Inference |
Author: | Livio Finos, Jelle Goeman, Wouter Weeda, Jonathan Rosenblatt, Aldo Solari |
Maintainer: | Livio Finos <livio.finos@unipd.it> |
Description: | It performs All-Resolutions Inference (ARI) on functional Magnetic Resonance Image (fMRI) data. As a main feature, it estimates lower bounds for the proportion of active voxels in a set of clusters as, for example, given by a cluster-wise analysis. The method is described in Rosenblatt, Finos, Weeda, Solari, Goeman (2018) <doi:10.1016/j.neuroimage.2018.07.060>. |
License: | GPL-2 | GPL-3 [expanded from: GPL (≥ 2)] |
RoxygenNote: | 6.0.1 |
Suggests: | knitr, rmarkdown |
Imports: | hommel, RNifti, plyr |
VignetteBuilder: | knitr |
NeedsCompilation: | no |
Packaged: | 2018-08-01 11:27:29 UTC; livio |
Repository: | CRAN |
Date/Publication: | 2018-08-01 12:20:02 UTC |
All-Resolutions Inference
Description
It performs All-Resolutions Inference on fMRI data. As a main feature, it estimates lower bounds for the proportion of active voxels in a set of clusters as, for example, given by a cluster-wise analysis.
Author(s)
all of us
Examples
pvalue_name <- system.file("extdata", "pvalue.nii.gz", package="ARIbrain")
cluster_name <- system.file("extdata", "cluster_th_3.2.nii.gz", package="ARIbrain")
zstat_name <- system.file("extdata", "zstat.nii.gz", package="ARIbrain")
mask_name <- system.file("extdata", "mask.nii.gz", package="ARIbrain")
ARI(Pmap = pvalue_name, clusters= cluster_name,
mask=mask_name, Statmap = zstat_name)
Valid Circular Inference (ARI) for Brain Imaging
Description
Valid Circular Inference (ARI) for Brain Imaging
Usage
ARI(Pmap, clusters, mask = NULL, alpha = 0.05, Statmap = function(ix)
-qnorm(Pmap[ix]), summary_stat = c("max", "center-of-mass"),
silent = FALSE)
Arguments
Pmap |
3D array of p-values or a (character) nifti file name. |
clusters |
3D array of cluster ids (0 when voxel does not belong to any cluster) or a (character) nifti file name. |
mask |
3D array of locicals (i.e. |
alpha |
Significance level. |
Statmap |
Statistics (usually t-values) on which the summaries are based. Can be either
a 3D array, a (character) nifti file name or a function with argument |
summary_stat |
Choose among |
silent |
|
Value
A matrix
reporting Size, FalseNull, TrueNull, ActiveProp and other statistics for each cluster.
Examples
pvalue_name <- system.file("extdata", "pvalue.nii.gz", package="ARIbrain")
cluster_name <- system.file("extdata", "cluster_th_3.2.nii.gz", package="ARIbrain")
zstat_name <- system.file("extdata", "zstat.nii.gz", package="ARIbrain")
mask_name <- system.file("extdata", "mask.nii.gz", package="ARIbrain")
print(mask_name)
print(pvalue_name)
print(cluster_name)
print(zstat_name)
ARI(Pmap = pvalue_name, clusters= cluster_name,
mask=mask_name, Statmap = zstat_name)
cluster_threshold
Description
Get spatially-connected clusters starting from a 3D map of logical values
Usage
cluster_threshold(map, max_dist = sqrt(3))
Arguments
map |
3D map of logical values. |
max_dist |
maximum distance allowed to in the same cluster. By default:
|
Value
a 3D map (same size of map
) with integer values identifying the cluster and 0 elsewhere.
Examples
## Not run:
Tmap = RNifti::readNifti(system.file("extdata", "zstat.nii.gz", package="ARIbrain"))
clstr=cluster_threshold(Tmap>3.2)
table(clstr)
## End(Not run)