Package ‘DLMRMYV’

July 24, 2025

Type Package
Version 1.0.0

Title Distributed Linear Regression Models with Response Missing
Variables

Depends R (>=4.1.0)

Description As a distributed imputation strategy, the Distributed full
information Multiple Imputation method is developed to impute
missing response variables in distributed linear regression.

The philosophy of the package is described in 'Guo' (2025)
<doi:10.1038/541598-025-93333-6>.

License Apache License (== 2.0)
RoxygenNote 7.3.2

Encoding UTF-8

Imports stats, MASS,glmnet
Date/Publication 2025-07-24 04:30:16 UTC
Config/testthat/edition 3
NeedsCompilation no

Author Guangbao Guo [aut, cre] (ORCID:
<https://orcid.org/0000-0002-4115-6218>),
Limin Song [aut]

Maintainer Guangbao Guo <ggh11111111@163.com>
Repository CRAN

Contents

DERLS . . . e

https://doi.org/10.1038/s41598-025-93333-6
https://orcid.org/0000-0002-4115-6218

DERLS_Woodbury e e 8
DAMI 9
DAMI_Iasso o o e e e 10
DMCEM 11
EMRE 13
ERLS . . 14
ML . . 15
FImIMI 16
GMD . . 17
IMI . 17
LS 18
MCEM 20
PMMI . . . 21
PPLS . . e 22
Index 24
AVGM Averaged Generalized Method of Moments Imputation (AVGM)
Description

This function performs multiple imputations on missing values in the response variable Y, using
AVGMMI logic with support for grouped data. It is fully self-contained.

Usage

AVGM(data, M, midx = 1)

Arguments
data A data frame where the first column is the response variable (Y), and others are
predictors (X).
M Number of multiple imputations.
midx Integer indicating which column is the response variable (default = 1).
Value

A list containing:

betahat Final averaged regression coefficient estimates.
Yhat Imputed response variable with all missing values filled in.

comm Completion flag (1 = success).

CSLMI 3

Examples

set.seed(123)

data <- data.frame(
y = c(rnorm(50), rep(NA, 10)),
x1 = rnorm(60),
X2 = rnorm(60)

)
result <- AVGM(data, M = 10)
head(result$Yhat)
CSLMI CSLMI: Consensus-based Stochastic Linear Multiple Imputation
(Simplified Version)
Description

Performs multiple imputation and parameter estimation using a consensus-based approach. The
response variable is in the first column, all other columns are predictors, missing values are auto-
matically detected, the whole dataset is treated as one block.

Usage

CSLMI(data, M)

Arguments
data Dataframe with response variable in 1st column and predictors in others
M Number of imputations

Value

A list containing:

Yhat Imputed response values.
betahat Average regression coefficients across imputations.
comm Communication cost (number of messages passed).

A list containing the following components:

Yhat Imputed response vector with missing values filled in.

betahat Final regression coefficients.

4 DAVGMMI

Examples

set.seed(123)
data <- data.frame(

y = c(rnorm(50), rep(NA, 10)),

X1 rnorm(60),

X2 = rnorm(60)
)
result <- CSLMI(data = data, M = 10)
head(result$Yhat)
print(result$betahat)
print(result$comm)

DAVGMMI Impute Missing Values in Response Variable Y Using Distributed AVG-
MMI Method (With Grouping)

Description

This function implements the Distributed Averaged Generalized Method of Moments Imputation
(DAVGMMI) to fill in missing values in the response variable Y based on observed covariates X.
Assumes a single group structure and does not require group size input (‘n°).

Usage
DAVGMMI (data, R, M)

Arguments
data A data frame or matrix where the first column is the response variable Y (may
contain NA), and remaining columns are covariates X.
R Number of simulations for stable Beta estimation.
M Number of multiple imputations.
Value

A list containing:

Yhat The vector of Y with missing values imputed.
betahat Final averaged regression coefficient estimates used for imputation.
Examples

set.seed(123)

data <- data.frame(
y = c(rnorm(50), rep(NA, 10)),
x1 = rnorm(60),
X2 = rnorm(60)

)

DCSLMI 5

result <- DAVGMMI(data, R = 50, M = 10)

head(result$Yhat)
DCSLMI Distributed and Consensus-Based Stochastic Linear Multiple Imputa-
tion (DCSLMI)
Description

Performs multiple imputation for missing response variables in linear regression models. This
method iteratively updates parameter estimates using ordinary least squares (OLS) and generates M
complete datasets by imputing missing values with different parameter draws.

Usage

DCSLMI(data, R = 1000, M = 20)

Arguments
data A data frame or matrix. The first column contains the response variable ‘y*
(which may include NA values), and the remaining columns are predictors ‘X‘.
R Number of internal iterations for parameter estimation per imputation.
M Number of multiple imputations to generate.
Value

A list containing:

Yhat A matrix of size n x M, where each column is a completed response vector.

betahat A matrix of size (p+1) X M, where each column contains the estimated regression coeffi-
cients.

missing_count The number of missing values in the original response variable.

Examples

Simulate data with missing responses
set.seed(123)
data <- data.frame(
y = c(rnorm(50), rep(NA, 10)),
x1 = rnorm(60),
X2 = rnorm(60)
)

Perform multiple imputation
result <- DCSLMI(data, R = 500, M = 10)

View imputed response values

6 DERLS

head(result$Yhat)

View coefficient estimates
apply(result$betahat, 1, mean) # average estimates

apply(result$betahat, 1, sd) # uncertainty across imputations
DERLS Distributed Exponentially Weighted Recursive Least Squares (DERLS)
Description

Impute missing values in the response variable Y using distributed ERLS method. Multiple inde-
pendent runs are performed to stabilize coefficient estimates. Missing values are imputed recur-
sively and refined over multiple iterations.

Usage
DERLS(data, rho, lambda, R, nb)

Arguments
data A data frame where:
First column: Response Y (with possible NAs)
Remaining columns: Predictors X
rho Regularization parameter.
lambda Forgetting factor.
R Number of independent runs to stabilize estimates.
nb Number of iterations per run.
Details

This function implements the Distributed Exponentially Weighted Recursive Least Squares (DERLS)
method for imputing missing values in the response variable Y. The key steps include:

1. Initial imputation of missing values.
2. Recursive updates of the regression coefficients using the ERLS algorithm.
3. Multiple independent runs to stabilize the coefficient estimates.

4. Final prediction of missing values using the averaged coefficients.

The ERLS algorithm is particularly useful for online learning and adaptive filtering.

Value
A list containing:

Yhat Imputed response vector.
betahat Estimated coefficient vector.

DERLS InfoFilter 7

Examples

set.seed(123)
n <- 60
data <- data.frame(
Y = c(rnorm(n - 10), rep(NA, 10)), # 50 observed + 10 missing
X1 = rnorm(n),
X2 = rnorm(n)
)
result <- DERLS(data, rho = 0.01, lambda = 0.95, R = 3, nb = 50)
head(result$Yhat) # inspect imputed Y
result$betahat # inspect estimated coefficients

DERLS_InfoFilter Distributed Exponentially Weighted Recursive Least Squares (DERLS)
using Information Filter

Description

Impute missing values in the response variable Y using a distributed Exponentially Weighted Re-
cursive Least Squares (DERLS) method that employs an Information Filter. Multiple independent
runs are performed to stabilize coefficient estimates, and missing values are imputed recursively
and refined over multiple iterations.

Usage

DERLS_InfoFilter(data, rho, lambda, R, nb)

Arguments
data A data frame whose first column is the response variable Y (which may contain
NAs), and the remaining columns are predictor variables X.
rho Regularization parameter.
lambda Forgetting factor.
R Number of independent runs to stabilize estimates.
nb Number of iterations per run.
Value

A list with two components:
Yhat A numeric vector of length n equal to the number of rows in data. Missing
values in the original Y have been imputed.

betahat Numeric vector of final averaged regression coefficient estimates (length p, where
p is the number of predictors).

8 DERLS_Woodbury

Examples

set.seed(123)
n <- 60
data <- data.frame(
Y = c(rnorm(n - 10), rep(NA, 10)),
X1 = rnorm(n),
X2 = rnorm(n)
)
result <- DERLS_InfoFilter(data, rho = .01, lambda = @.95, R = 3, nb = 50)
head(result$Yhat) # inspect imputed Y
result$betahat # inspect estimated coefficients

DERLS_Woodbury Distributed Exponentially Weighted Recursive Least Squares (DERLS)
using Woodbury Identity

Description

Impute missing values in the response variable Y using the distributed ERLS method with the
Woodbury Identity. Multiple independent runs are performed to stabilize coefficient estimates.
Missing values are imputed recursively and refined over multiple iterations.

Usage
DERLS_Woodbury(data, rho, lambda, R, nb)

Arguments
data A data frame where:
First column: Response Y (with possible NAs)
Remaining columns: Predictors X
rho Regularization parameter.
lambda Forgetting factor.
R Number of independent runs to stabilize estimates.
nb Number of iterations per run.
Details

This function implements the Distributed Exponentially Weighted Recursive Least Squares (DERLS)
method using the Woodbury Identity for efficient updates of the covariance matrix. The key steps
include:

1. Initial imputation of missing values.

2. Recursive updates of the regression coefficients using the ERLS algorithm with the Woodbury
Identity.

3. Multiple independent runs to stabilize the coefficient estimates.

DfiMI 9

4. Final prediction of missing values using the averaged coefficients.

The Woodbury Identity is used to efficiently update the covariance matrix Pstar during each itera-
tion, making the algorithm computationally efficient and suitable for large datasets.

Value

A list containing:

Yhat Imputed response vector.

betahat Estimated coefficient vector.

Examples

set.seed(123)
n <- 60
data <- data.frame(
Y = c(rnorm(n - 10), rep(NA, 10)), # 50 observed+10 missing
X1 rnorm(n),
X2 = rnorm(n)
)
result <- DERLS_Woodbury(data, rho = 0.01, lambda = ©.95, R = 3, nb = 50)
head(result$Yhat) # inspect imputed Y

result$betahat # inspect estimated coefficients
DfiMI Distributed Full-information Multiple Imputation (DfiMI)
Description

Perform multiple imputation of the response variable Y via R independent runs and M stochas-

tic imputations per run. Missing values in Y are imputed by means of (intercept-adjusted) OLS
regression on the complete predictors.

Usage

DfiMI(data, R, M)

Arguments
data A data frame whose first column contains the response variable Y (possibly with
NAs) and whose remaining columns contain numeric predictors.
R Positive integer — number of simulation runs used to stabilise the coefficient

estimates.

M Positive integer — number of multiple imputations drawn within each run.

10 DfiMI _lasso

Details

This function implements a distributed full-information multiple imputation (DfiMI) approach. It
iteratively imputes missing values in the response variable Y using OLS regression on the complete
predictors. The process is repeated R times to stabilise the coefficient estimates, and within each
run, M imputations are performed to account for the uncertainty in the imputation process.

Value
A named list with components:

Yhat Numeric vector — the original Y with missing values replaced by their imputed counterparts.

betahat Numeric vector — final regression coefficients (including intercept).

Examples

set.seed(123)

n <- 60

data <- data.frame(
Y = c(rnorm(n - 10), rep(NA, 10)), # 50 observed + 10 missing
X1 = rnorm(n),
X2 = rnorm(n)

)

res <- DfiMI(data, R = 3, M = 5)
head(res$Yhat) # inspect imputed Y

res$betahat # inspect coefficients
DfiMI_lasso Distributed Full-information Multiple Imputation (DfiMI) using
LASSO
Description

Performs multiple imputation of the response variable Y via R independent runs and M stochastic
imputations per run. Missing Y values are imputed using LASSO regression on predictors.

Usage

DfiMI_lasso(data, R, M)

Arguments
data A data.frame where:
First column: Response Y (may contain NA)
Remaining columns: Numeric predictors
R Positive integer — number of simulation runs for stable coefficient estimation.

M Positive integer — number of multiple imputations per run.

DMCEM 11

Details

This function extends the Distributed Full-information Multiple Imputation (DfiMI) approach by
using LASSO regression for imputing missing values in the response variable Y. LASSO regression
is particularly useful for high-dimensional predictor spaces and can handle multicollinearity among
predictors. The function performs the following steps:

1. Initialize missing values in Y.

2. Fit LASSO regression models on complete cases.

3. Average coefficients across multiple imputations and runs.

4. Predict missing values using the final averaged coefficients.

The function requires the glmnet package for LASSO regression.

Value
A named list containing:

Yhat Numeric vector — original Y values with missing values replaced by imputations.

betahat Numeric vector — final regression coefficients.

Examples

set.seed(123)
data <- data.frame(
Y = c(rnorm(50), rep(NA, 10)), # 50 observed + 10 missing

X1 = rnorm(60),
X2 = rnorm(60)

)

res <- DfiMI_lasso(data, R = 3, M = 5)

head(res$Yhat)

DMCEM Distributed Monte Carlo Expectation-Maximization (DMCEM) Algo-
rithm
Description

Implements a distributed version of the Monte Carlo EM algorithm for handling missing response
variables in linear regression models. By running multiple simulations and averaging the results, it
provides more stable parameter estimates compared to standard EM.

Usage

DMCEM(data, R = 50, tol = 0.01, nb = 50)

12 DMCEM

Arguments
data A data frame where the first column is the response variable (with missing val-
ues) and subsequent columns are predictors.
R Integer specifying the number of Monte Carlo simulations. Larger values im-
prove stability but increase computation time (default = 50).
tol Numeric value indicating the convergence tolerance. The algorithm stops when
the change in coefficients between iterations is below this threshold (default =
0.01).
nb Integer specifying the maximum number of iterations per simulation. Prevents
infinite loops if convergence is not achieved (default = 50).
Details

The DMCEM algorithm works by:

1. Splitting data into observed and missing response subsets.
2. Running multiple MCEM simulations with random imputations.
3. Averaging results across simulations to reduce variance.

4. Using robust matrix inversion to handle near-singular designs.

This approach is particularly useful for datasets with a large proportion of missing responses or high
variability in the data.

Value
A list containing:

Yhat A vector of imputed response values with missing data filled in.
betahat A vector of final regression coefficients, averaged across simulations.

Examples

Generate data with 20% missing responses
set.seed(123)
data <- data.frame(
Y = c(rnorm(80@), rep(NA, 20)),
X1 = rnorm(100),
X2 = runif(100)
)

Run DMCEM with 50 simulations
result <- DMCEM(data, R = 50, tol = 0.001, nb = 100)

View imputed values and coefficients
head(result$Yhat)
result$betahat

Check convergence and variance
result$converged_ratio
result$sigma2

EMRE

13

EMRE

EM Algorithm for Linear Regression with Missing Data

Description

EM Algorithm for Linear Regression with Missing Data

Usage

EMRE(data, d =

Arguments

data
d
tol
nb

niter

Value

List containing:

Yhat

betahat

Examples

1, tol = 1e-06, nb = 100, niter = 1)

Dataframe with first column as response (Y) and others as predictors (X)
Initial convergence threshold (default=1)

Termination tolerance (default=1e-6)

Maximum iterations (default=100)

Starting iteration counter (default=1)

Imputed response vector

Estimated coefficients

Generate data with 20% missing Y values

set.seed(123)

data <- data.frame(Y=c(rnorm(80),rep(NA,20)), X1=rnorm(100), X2=rnorm(100))

Run EM algorithm
result <- EMRE(data, d=1, tol=1e-5, nb=50)
print(result$betahat) # View coefficients

14 ERLS

ERLS Exponentially Weighted Recursive Least Squares with Missing Value
Imputation

Description

Exponentially Weighted Recursive Least Squares with Missing Value Imputation

Usage

ERLS(data, rho = 0.01, lambda = 0.95, nb = 100, niter = 1)

Arguments
data Linear regression dataset (1st column as Y, others as X)
rho Regularization parameter
lambda Forgetting factor
nb Maximum iterations
niter Initial iteration count (typically 1)
Value

List containing:

Yhat Imputed response vector
betahat Estimated coefficients
Examples

set.seed(123)
data <- data.frame(
y = c(rnorm(50), rep(NA, 10)),
x1 = rnorm(60),
X2 rnorm(60)
)
result <- ERLS(data, rho = 0.01, lambda = 0.95, nb = 100, niter = 1)
head(result$Yhat)

fiMI 15

fiMI fiMI: Predict Missing Response Variables using Multiple Imputation

Description

This function predicts missing response variables in a linear regression dataset using multiple impu-
tation. It leverages the FimIMI function to perform multiple runs of improved multiple imputation
and averages the regression coefficients to predict the missing response values.

Usage
fiMI(data, R, n, M)

Arguments
data data.frame containing the linear regression model dataset with missing re-
sponse variables.
R Number of runs for multiple imputation.
Number of rows in the dataset.
Number of multiple imputations per run.
Details

This function assumes that the first column of data is the response variable and the remaining
columns are the independent variables. The function uses the FimIMI function to perform multiple
runs of improved multiple imputation and averages the regression coefficients to predict the missing
response values.

Value
A list containing:

Yhat Predicted response values with missing values imputed.

Examples

Example data

set.seed(123)

n <- 1000 # Number of rows

p <- 5 # Number of independent variables

data <- data.frame(Y = rnorm(n), X1 = rnorm(n), X2 = rnorm(n))
data[sample(n, 100), 1] <- NA # Introduce missing response values

Call fiMI function
result <- fiMI(data, R = 10, n =n, M = 20)

View results
print(result$Yhat) # Predicted response values

16 FimIMI

FimIMI FimIMI: Multiple Runs of Improved Multiple Imputation (IMI)

Description

This function performs multiple runs of the Improved Multiple Imputation (IMI) estimation and
collects the results. It is designed to facilitate batch processing and repeated runs of IMIL.

Usage
FimIMI(d, R, n, M, batch = 0)

Arguments
d The data structure.
R Number of runs to perform.
n Vector of sample sizes for each group.
M Number of multiple imputations per run.
batch Batch number (default is 0). This can be used to distinguish different batches of
runs.
Details

This function assumes that the data structure d is properly defined and contains the necessary infor-
mation. The function repeatedly calls the IMI function and collects the regression coefficients and
indicator variables.

Value

A list containing:

R Vector of run numbers.

Beta Matrix of regression coefficients for each run.

comm Vector of indicator variables for each run.
Examples

Example data

set.seed(123)

n <- c(300, 300, 400) # Sample sizes for each group

p <- 5 # Number of independent variables

d <- list(p = p, Y = rnorm(sum(n)), X0 = matrix(rnorm(sum(n) * p), ncol = p))

Call FimIMI function
result <- FimIMI(d = d, R =10, n =n, M = 20, batch = 1)

View results

GMD 17

print(result$Beta) # Regression coefficients for each run

GMD Generate Missing Data function

Description
This function generates missing data in a specified column of a data frame according to a given
missing ratio.

Usage

GMD(data, ratio)

Arguments

data A data frame containing the linear regression model dataset

ratio The missing ratio (e.g., 0.5 means 1/2 of data will be made missing)
Value

data@ A modified version of ‘data‘ with missing values inserted.
Examples

set.seed(123) # for reproducibility

data <- data.frame(x = 1:10, y = rnorm(10))
modified_data <- GMD(data, ratio = 0.5)
summary (modified_data)

IMI Improved Multiple Imputation (IMI) Estimation

Description

This function performs Improved Multiple Imputation (IMI) estimation for grouped data with miss-
ing values. It iteratively imputes missing values using the LS function and estimates regression
coefficients using the PPLS function. The final regression coefficients are averaged across multiple
imputations.

Usage
IMI(d, M, midx, n)

18 LS

Arguments
d data.frame containing the dependent variable (Y) and independent variables
(X).
M Number of multiple imputations to perform.
midx Column indices of the missing variables in d.
n Vector of sample sizes for each group.
Details

The function assumes the data is grouped and contains missing values in specified columns (midx).
It uses the LS function to impute missing values and the PPLS function to estimate regression coef-
ficients. The process is repeated M times, and the final regression coefficients are averaged.

Value

A list containing the following elements:

betahat Average regression coefficients across all imputations.
comm Indicator variable (0 for single group, 1 for multiple groups).
Examples

Example data

set.seed(123)

n <- c(300, 300, 400) # Sample sizes for each group

p <- 5 # Number of independent variables

Y <- rnorm(sum(n)) # Dependent variable

X0 <- matrix(rnorm(sum(n) * p), ncol = p) # Independent variables matrix
d <- list(p=p, Y=Y, X0 = X0) # Data list

d$all <- cbind(Y, X0)

Indices of missing variables (assuming some variables are missing)

midx <- c(2, 3) # For example, the second and third variables are missing
Call IMI function

result <- IMI(d, M = 5, midx = midx, n = n)

View results

print(result$betahat) # Average regression coefficients

LS Least Squares Estimation for Grouped Data with Ridge Regularization

Description

This function implements the least squares estimation for grouped data, supporting ridge regression
regularization. It can handle missing data and returns regression coefficients and the sum of squared
residuals for each group.

LS

Usage

LS(d, yidx, Xidx, n, lam = 0.005)

Arguments
d A data frame containing dependent and independent variables.
yidx The column index of the dependent variable.
Xidx The column indices of the independent variables.
n A vector of starting indices for the groups.
lam Regularization parameter for ridge regression, default is 0.005.
Value

A list containing the following elements:

beta A matrix of regression coefficients for each group.

SSE The sum of squared residuals for each group.

df The sample size for each group.

gram The Gram matrix for each group.

cgram The Cholesky decomposition result for each group.

comm An unused variable (reserved for future expansion).
Examples

Example data

set.seed(123)

n <- 1000

p<-5

d <- list(all = cbind(rnorm(n), matrix(rnorm(n*p), ncol=p)))

Call the LS function
result <- LS(d, yidx = 1, Xidx = 2:(p + 1), n = c(1, 300, 600, 1000))

View the results
print(result$beta) # Regression coefficients
print(result$SSE) # Sum of squared residuals

20 MCEM

MCEM MCEM Algorithm for Missing Response Variables

Description

Implements the Monte Carlo EM algorithm for handling missing response data in linear regression
models.

Usage
MCEM(data, d = 5, tol = 0.01, nb = 50)

Arguments
data A data frame with the response variable in the first column and predictors in the
remaining columns.
d Initial convergence threshold. Defaults to 5.
tol Termination tolerance. Defaults to 0.01.
nb Maximum number of iterations. Defaults to 50.
Details

This function implements the Monte Carlo Expectation-Maximization (MCEM) algorithm to handle
missing response variables in linear regression models. The algorithm iteratively imputes missing
responses and updates regression coefficients until convergence.

Value

A list containing the following components:

Yhat Imputed response vector with missing values filled in.
betahat Final regression coefficients.
iterations Number of iterations performed.

Examples

Create dataset with 20% missing responses
set.seed(123)
data <- data.frame(

Y = c(rnorm(80@), rep(NA, 20)),

X1 = rnorm(100),

X2 = runif(100)
)
result <- MCEM(data, d = 5, tol = 9.001, nb = 100)
print(result$Yhat) # Imputed response vector
print(result$betahat) # Final regression coefficients
print(result$iterations) # Number of iterations performed

PMMI 21

PMMI Predictive Mean Matching with Multiple Imputation

Description

Implements PMM algorithm for handling missing data in linear regression models. Uses chained
equations approach to generate multiple imputed datasets and pools results using Rubin’s rules.

Usage

PMMI (data, k = 5, m = 5)

Arguments
data Dataframe with response variable in 1st column and predictors in others
k Number of nearest neighbors for matching (default=5)
m Number of imputations (default=5)

Value

List containing:

Y Original response vector with NAs
Yhat Final imputed response vector (averaged across imputations)
betahat Pooled regression coefficients
imputations List of m completed datasets
m Number of imputations performed
k Number of neighbors used
Examples

Create dataset with 30% missing values
data <- data.frame(Y=c(rnorm(70),rep(NA,30)), X1=rnorm(100))
results <- PMMI(data, k=5, m=5)

22 PPLS

PPLS Penalized Partial Least Squares (PPLS) Estimation

Description

This function performs Penalized Partial Least Squares (PPLS) estimation for grouped data. It sup-
ports ridge regression regularization and handles missing data by excluding incomplete cases. The
function returns regression coefficients, residual sum of squares, and other diagnostic information.

Usage
PPLS(d, yidx, Xidx, n, lam = 0.005)

Arguments

d Containing the dependent and independent variables.

yidx Column index of the dependent variable in d.

Xidx Column indices of the independent variables in d.

n Vector of sample sizes for each group.

lam Regularization parameter for ridge regression (default is 0.005).
Details

This function assumes that the data is grouped and that the sample sizes for each group are provided.
It excludes cases with missing values in the dependent or independent variables. The function uses
Cholesky decomposition to solve the regularized least squares problem.

Value

A list containing the following elements:

beta Regression coefficients.

SSE Residual sum of squares.

df Number of complete cases used in the estimation.

gram Gram matrix (X7 X +).

cgram Cholesky decomposition of the Gram matrix.

comm Indicator variable (0 for single group, 1 for multiple groups).
Examples

Example data

set.seed(123)

n_total <- 1000

p<-5

n_groups <- c(300, 300, 400)

d <- list(all = cbind(rnorm(n_total), matrix(rnorm(n_total*p), ncol=p)),p = p)

PPLS

Call PPLS function
result <- PPLS(d, yidx=1, Xidx=2:(p+1), n=n_groups)

View results
print(result$beta) # Regression coefficients
print(result$SSE) # Residual sum of squares

23

Index

AVGM, 2
CSLMI, 3

DAVGMMI, 4

DCSLMI, 5

DERLS, 6
DERLS_InfoFilter, 7
DERLS_Woodbury, 8
DfiMI, 9
DfiMI_lasso, 10
DMCEM, 11

EMRE, 13
ERLS, 14

fiMI, 15
FimIMI, 16

GMD, 17
IMI, 17
LS, 18
MCEM, 20

PMMI, 21
PPLS, 22

24

	AVGM
	CSLMI
	DAVGMMI
	DCSLMI
	DERLS
	DERLS_InfoFilter
	DERLS_Woodbury
	DfiMI
	DfiMI_lasso
	DMCEM
	EMRE
	ERLS
	fiMI
	FimIMI
	GMD
	IMI
	LS
	MCEM
	PMMI
	PPLS
	Index

