Type: | Package |
Title: | Diallel Analysis with R |
Version: | 0.6.0 |
Maintainer: | Muhammad Yaseen <myaseen208@gmail.com> |
Description: | Performs Diallel Analysis with R using Griffing's and Hayman's approaches. Four different Methods (1: Method-I (Parents + F1's + reciprocals); 2: Method-II (Parents and one set of F1's); 3: Method-III (One set of F1's and reciprocals); 4: Method-IV (One set of F1's only)) and two Models (1: Fixed Effects Model; 2: Random Effects Model) can be applied using Griffing's approach. |
Depends: | R (≥ 4.1) |
Copyright: | 2019-2020, UAF |
License: | GPL-2 | GPL-3 |
Encoding: | UTF-8 |
LazyData: | true |
RoxygenNote: | 7.3.2 |
URL: | https://myaseen208.com/DiallelAnalysisR/ https://CRAN.R-project.org/package=DiallelAnalysisR |
BugReports: | https://github.com/myaseen208/DiallelAnalysisR/issues |
Imports: | ggplot2, stats |
Suggests: | knitr, rmarkdown, testthat |
Note: | 1. Asian Development Bank (ADB), Islamabad, Pakistan. 2. Benazir Income Support Programme (BISP), Islamabad, Pakistan. 3. Department of Mathematics and Statistics, University of Agriculture Faisalabad, Faisalabad-Pakistan. |
NeedsCompilation: | no |
Packaged: | 2024-09-13 20:50:13 UTC; myaseen208 |
Author: | Muhammad Yaseen |
Repository: | CRAN |
Date/Publication: | 2024-09-13 21:00:02 UTC |
Diallel Analysis using Griffing Approach
Description
Griffing
is used for performing Diallel Analysis using Griffing's Approach.
Usage
Griffing(y, Rep, Cross1, Cross2, data, Method, Model)
Arguments
y |
Numeric Response Vector |
Rep |
Replicate as factor |
Cross1 |
Cross 1 as factor |
Cross2 |
Cross 2 as factor |
data |
A |
Method |
Method for Diallel Analysis using Griffing's approach. It can take 1, 2, 3, or 4 as argument depending on the method being used.
|
Model |
Model for Diallel Analysis using Griffing's approach. It can take 1 or 2 as arguments depending on the model being used.
|
Details
Diallel Analysis using Griffing's approach.
Value
Means Means
ANOVA Analysis of Variance (ANOVA) table
Genetic.Components Genetic Components
Effects Effects of Crosses
StdErr Standard Errors of Crosses
Author(s)
Muhammad Yaseen (myaseen208@gmail.com)
References
Griffing, B. (1956) Concept of General and Specific Combining Ability in relation to Diallel Crossing Systems. Australian Journal of Biological Sciences, 9(4), 463–493.
Singh, R. K. and Chaudhary, B. D. (2004) Biometrical Methods in Quantitative Genetic Analysis. New Delhi: Kalyani.
See Also
Hayman
, GriffingData1
, GriffingData2
, GriffingData3
, GriffingData4
Examples
#-------------------------------------------------------------
## Diallel Analysis with Griffing's Aproach Method 1 & Model 1
#-------------------------------------------------------------
Griffing1Data1 <-
Griffing(
y = Yield
, Rep = Rep
, Cross1 = Cross1
, Cross2 = Cross2
, data = GriffingData1
, Method = 1
, Model = 1
)
names(Griffing1Data1)
Griffing1Data1
Griffing1Data1Means <- Griffing1Data1$Means
Griffing1Data1ANOVA <- Griffing1Data1$ANOVA
Griffing1Data1Genetic.Components <- Griffing1Data1$Genetic.Components
Griffing1Data1Effects <- Griffing1Data1$Effects
Griffing1Data1StdErr <- as.matrix(Griffing1Data1$StdErr)
#--------------------------------------------------------------
## Diallel Analysis with Griffing's Aproach Method 1 & Model 2
#--------------------------------------------------------------
Griffing2Data1 <-
Griffing(
y = Yield
, Rep = Rep
, Cross1 = Cross1
, Cross2 = Cross2
, data = GriffingData1
, Method = 1
, Model = 2
)
names(Griffing2Data1)
Griffing2Data1
Griffing2Data1Means <- Griffing2Data1$Means
Griffing2Data1ANOVA <- Griffing2Data1$ANOVA
Griffing2Data1Genetic.Components <- Griffing2Data1$Genetic.Components
#--------------------------------------------------------------
## Diallel Analysis with Griffing's Aproach Method 2 & Model 1
#--------------------------------------------------------------
Griffing1Data2 <-
Griffing(
y = Yield
, Rep = Rep
, Cross1 = Cross1
, Cross2 = Cross2
, data = GriffingData2
, Method = 2
, Model = 1
)
names(Griffing1Data2)
Griffing1Data2
Griffing1Data2Means <- Griffing1Data2$Means
Griffing1Data2ANOVA <- Griffing1Data2$ANOVA
Griffing1Data2Genetic.Components <- Griffing1Data2$Genetic.Components
Griffing1Data2Effects <- Griffing1Data2$Effects
Griffing1Data2StdErr <- as.matrix(Griffing1Data2$StdErr)
#--------------------------------------------------------------
## Diallel Analysis with Griffing's Aproach Method 2 & Model 2
#--------------------------------------------------------------
Griffing2Data2 <-
Griffing(
y = Yield
, Rep = Rep
, Cross1 = Cross1
, Cross2 = Cross2
, data = GriffingData2
, Method = 2
, Model = 2
)
names(Griffing2Data2)
Griffing2Data2
Griffing2Data2Means <- Griffing2Data2$Means
Griffing2Data2ANOVA <- Griffing2Data2$ANOVA
Griffing2Data2Genetic.Components <- Griffing2Data2$Genetic.Components
#--------------------------------------------------------------
## Diallel Analysis with Griffing's Aproach Method 3 & Model 1
#--------------------------------------------------------------
Griffing1Data3 <-
Griffing(
y = Yield
, Rep = Rep
, Cross1 = Cross1
, Cross2 = Cross2
, data = GriffingData3
, Method = 3
, Model = 1
)
names(Griffing1Data3)
Griffing1Data3
Griffing1Data3Means <- Griffing1Data3$Means
Griffing1Data3ANOVA <- Griffing1Data3$ANOVA
Griffing1Data3Genetic.Components <- Griffing1Data3$Genetic.Components
Griffing1Data3Effects <- Griffing1Data3$Effects
Griffing1Data3StdErr <- as.matrix(Griffing1Data3$StdErr)
#--------------------------------------------------------------
## Diallel Analysis with Griffing's Aproach Method 3 & Model 2
#--------------------------------------------------------------
Griffing2Data3 <-
Griffing(
y = Yield
, Rep = Rep
, Cross1 = Cross1
, Cross2 = Cross2
, data = GriffingData3
, Method = 3
, Model = 2
)
names(Griffing2Data3)
Griffing2Data3
Griffing2Data3Means <- Griffing2Data3$Means
Griffing2Data3ANOVA <- Griffing2Data3$ANOVA
Griffing2Data3Genetic.Components <- Griffing2Data3$Genetic.Components
#--------------------------------------------------------------
## Diallel Analysis with Griffing's Aproach Method 4 & Model 1
#--------------------------------------------------------------
Griffing1Data4 <-
Griffing(
y = Yield
, Rep = Rep
, Cross1 = Cross1
, Cross2 = Cross2
, data = GriffingData4
, Method = 4
, Model = 1
)
names(Griffing1Data4)
Griffing1Data4
Griffing1Data4Means <- Griffing1Data4$Means
Griffing1Data4ANOVA <- Griffing1Data4$ANOVA
Griffing1Data4Genetic.Components <- Griffing1Data4$Genetic.Components
Griffing1Data4Effects <- Griffing1Data4$Effects
Griffing1Data4StdErr <- as.matrix(Griffing1Data4$StdErr)
#--------------------------------------------------------------
## Diallel Analysis with Griffing's Aproach Method 4 & Model 2
#--------------------------------------------------------------
Griffing2Data4 <-
Griffing(
y = Yield
, Rep = Rep
, Cross1 = Cross1
, Cross2 = Cross2
, data = GriffingData4
, Method = 4
, Model = 2
)
names(Griffing2Data4)
Griffing2Data4
Griffing2Data4Means <- Griffing2Data4$Means
Griffing2Data4ANOVA <- Griffing2Data4$ANOVA
Griffing2Data4Genetic.Components <- Griffing2Data4$Genetic.Components
Data for Diallel Analysis using Griffing Approach Method 1
Description
Griffing
is used for performing Diallel Analysis using Griffing's Approach.
Usage
data(GriffingData1)
Format
A data.frame
with 256 rows and 4 variables.
Details
Cross1 Cross 1
Cross2 Cross 2
Rep Replicate
Yield Yield Response
Author(s)
Muhammad Yaseen (myaseen208@gmail.com)
References
Griffing, B. (1956) Concept of General and Specific Combining Ability in relation to Diallel Crossing Systems. Australian Journal of Biological Sciences, 9(4), 463–493.
Singh, R. K. and Chaudhary, B. D. (2004) Biometrical Methods in Quantitative Genetic Analysis. New Delhi: Kalyani.
See Also
Griffing
, GriffingData2
, GriffingData3
, GriffingData4
Examples
data(GriffingData1)
Data for Diallel Analysis using Griffing Approach Method 2
Description
Griffing
is used for performing Diallel Analysis using Griffing's Approach.
Usage
data(GriffingData2)
Format
A data.frame
with 144 rows and 4 variables.
Details
Cross1 Cross 1
Cross2 Cross 2
Rep Replicate
Yield Yield Response
Author(s)
Muhammad Yaseen (myaseen208@gmail.com)
References
Griffing, B. (1956) Concept of General and Specific Combining Ability in relation to Diallel Crossing Systems. Australian Journal of Biological Sciences, 9(4), 463–493.
Singh, R. K. and Chaudhary, B. D. (2004) Biometrical Methods in Quantitative Genetic Analysis. New Delhi: Kalyani.
See Also
Griffing
, GriffingData1
, GriffingData3
, GriffingData4
Examples
data(GriffingData2)
Data for Diallel Analysis using Griffing Approach Method 3
Description
Griffing
is used for performing Diallel Analysis using Griffing's Approach.
Usage
data(GriffingData3)
Format
A data.frame
with 224 rows and 4 variables.
Details
Cross1 Cross 1
Cross2 Cross 2
Rep Replicate
Yield Yield Response
Author(s)
Muhammad Yaseen (myaseen208@gmail.com)
References
Griffing, B. (1956) Concept of General and Specific Combining Ability in relation to Diallel Crossing Systems. Australian Journal of Biological Sciences, 9(4), 463–493.
Singh, R. K. and Chaudhary, B. D. (2004) Biometrical Methods in Quantitative Genetic Analysis. New Delhi: Kalyani.
See Also
Griffing
, GriffingData1
, GriffingData2
, GriffingData4
Examples
data(GriffingData3)
Data for Diallel Analysis using Griffing Approach Method 4
Description
Griffing
is used for performing Diallel Analysis using Griffing's Approach.
Usage
data(GriffingData4)
Format
A data.frame
with 112 rows and 4 variables.
Details
Cross1 Cross 1
Cross2 Cross 2
Rep Replicate
Yield Yield Response
Author(s)
Muhammad Yaseen (myaseen208@gmail.com)
References
Griffing, B. (1956) Concept of General and Specific Combining Ability in relation to Diallel Crossing Systems. Australian Journal of Biological Sciences, 9(4), 463–493.
Singh, R. K. and Chaudhary, B. D. (2004) Biometrical Methods in Quantitative Genetic Analysis. New Delhi: Kalyani.
See Also
Griffing
, GriffingData1
, GriffingData2
, GriffingData3
Examples
data(GriffingData4)
Diallel Analysis using Hayman Approach
Description
Hayman
is used for performing Diallel Analysis using Hayman's Approach.
Usage
Hayman(y, Rep, Cross1, Cross2, data)
Arguments
y |
Numeric Response Vector |
Rep |
Replicate as factor |
Cross1 |
Cross 1 as factor |
Cross2 |
Cross 2 as factor |
data |
A |
Details
Diallel Analysis using Haymans's approach.
Value
Means Means
ANOVA Analysis of Variance (ANOVA) table
Genetic.Components Genetic Components
Effects Effects of Crosses
StdErr Standard Errors of Crosses
Author(s)
Muhammad Yaseen (myaseen208@gmail.com)
References
Hayman, B. I. (1954 a) The Theory and Analysis of Diallel Crosses. Genetics, 39, 789–809.
Hayman, B. I. (1954 b) The Analysis of Variance of Diallel Tables. Biometrics, 10, 235–244.
Hayman, B. I. (1957) Interaction, Heterosis and Diallel Crosses. Genetics, 42, 336–355.
Singh, R. K. and Chaudhary, B. D. (2004) Biometrical Methods in Quantitative Genetic Analysis. New Delhi: Kalyani.
See Also
Examples
#------------------------------------------
## Diallel Analysis with Haymans's Aproach
#------------------------------------------
Hayman1Data <-
Hayman(
y = Yield
, Rep = Rep
, Cross1 = Cross1
, Cross2 = Cross2
, data = HaymanData
)
Hayman1Data
names(Hayman1Data)
Hayman1DataMeans <- Hayman1Data$Means
Hayman1DataANOVA <- Hayman1Data$ANOVA
Hayman1DataWr.Vr.Table <- Hayman1Data$Wr.Vr.Table
Hayman1DataComponents.of.Variation <- Hayman1Data$Components.of.Variation
Hayman1DataOther.Parameters <- Hayman1Data$Other.Parameters
Hayman1DataFr <- Hayman1Data$Fr
#----------------
# Wr-Vr Graph
#----------------
VOLO <- Hayman1Data$VOLO
In.Value <- Hayman1Data$In.Value
a <- Hayman1Data$a
b <- Hayman1Data$b
Wr.Vr <- Hayman1Data$Wr.Vr.Table
library(ggplot2)
ggplot(data=data.frame(x=c(0, max(In.Value, Wr.Vr$Vr, Wr.Vr$Wr, Wr.Vr$Wrei))), aes(x)) +
stat_function(fun=function(x) {sqrt(x*VOLO)}, color="blue") +
geom_hline(yintercept = 0) +
geom_vline(xintercept = 0) +
geom_abline(intercept = a, slope = b) +
geom_abline(intercept = mean(Wr.Vr$Wr)-mean(Wr.Vr$Vr), slope = 1) +
geom_segment(aes(
x = mean(Wr.Vr$Vr)
, y = min(0, mean(Wr.Vr$Wr))
, xend = mean(Wr.Vr$Vr)
, yend = max(0, mean(Wr.Vr$Wr))
)
, color = "green"
) +
geom_segment(aes(
x = min(0, mean(Wr.Vr$Vr))
, y = mean(Wr.Vr$Wr)
, xend = max(0, mean(Wr.Vr$Vr))
, yend = mean(Wr.Vr$Wr)
)
, color = "green"
) +
lims(x=c(min(0, Wr.Vr$Vr, Wr.Vr$Wrei), max(Wr.Vr$Vr, Wr.Vr$Wrei)),
y=c(min(0, Wr.Vr$Wr, Wr.Vr$Wrei), max(Wr.Vr$Wr, Wr.Vr$Wri))
) +
labs(
x = expression(V[r])
, y = expression(W[r])
, title = expression(paste(W[r]-V[r] , " Graph"))
) +
theme_bw()
Data for Diallel Analysis using Hayman's Approach
Description
Griffing
is used for performing Diallel Analysis using Hayman's Approach.
Usage
data(HaymanData)
Format
A data.frame
with 256 rows and 4 variables.
Details
Cross1 Cross 1
Cross2 Cross 2
Rep Replicate
Yield Yield Response
Author(s)
Muhammad Yaseen (myaseen208@gmail.com)
References
Griffing, B. (1956) Concept of General and Specific Combining Ability in relation to Diallel Crossing Systems. Australian Journal of Biological Sciences, 9(4), 463–493.
Test
Examples
data(HaymanData)
Analysis for Partial Diallel
Description
Analysis of Partial Diallel
Usage
PartialDiallel(y, Rep, Cross1, Cross2, data)
Arguments
y |
Numeric Response Vector |
Rep |
Replicate as factor |
Cross1 |
Cross 1 as factor |
Cross2 |
Cross 2 as factor |
data |
A |
Value
Means Means
ANOVA Analysis of Variance (ANOVA) table
Genetic.Components Genetic Components
General General
Specific Specific
Author(s)
Pedro A. M. Barbosa (pedro.barbosa@usp.br)
Muhammad Yaseen (myaseen208@gmail.com)
See Also
PartialDiallelData
, Griffing
, Hayman
, GriffingData1
, GriffingData2
, GriffingData3
, GriffingData4
Examples
data(PartialDiallelData)
fm1 <-
PartialDiallel(
y = y
, Rep = Rep
, Cross1 = Cross1
, Cross2 = Cross2
, data = PartialDiallelData
)
fm1
Data for Partial Diallel Analysis
Description
Data for Partial Diallel Analysis
Usage
data(PartialDiallelData)
Details
Cross1 Cross 1
Cross2 Cross 2
Rep Replicate
Yield Yield Response
See Also
PartialDiallel
, Griffing
, Hayman
, GriffingData1
, GriffingData2
, GriffingData3
, GriffingData4
Examples
data(PartialDiallelData)