Title: The Extended Laplace Distribution
Version: 0.1.6
Description: Provides computational tools for working with the Extended Laplace distribution, including the probability density function, cumulative distribution function, quantile function, random variate generation based on convolution with Uniform noise and the quantile-quantile plot. Useful for modeling contaminated Laplace data and other applications in robust statistics. See Saah and Kozubowski (2025) <doi:10.1016/j.cam.2025.116588>.
License: MIT + file LICENSE
Encoding: UTF-8
RoxygenNote: 7.3.2
Suggests: knitr, rmarkdown, testthat (≥ 3.0.0)
Config/testthat/edition: 3
VignetteBuilder: knitr
URL: https://doi.org/10.1016/j.cam.2025.116588
BugReports: https://github.com/saahdavid/ExtendedLaplace/issues
Imports: stats, VGAM
NeedsCompilation: no
Packaged: 2025-05-23 19:27:17 UTC; davidsaah
Author: David Saah ORCID iD [aut, cre], Tomasz Kozubowski [aut]
Maintainer: David Saah <saahdavidkofi@gmail.com>
Repository: CRAN
Date/Publication: 2025-05-27 09:00:09 UTC

Density function of the Extended Laplace Distribution

Description

Density function of the Extended Laplace Distribution

Usage

dEL(y, mu, sigma, delta)

Arguments

y

Vector of values where the density is to be evaluated

mu

Location parameter

sigma

Scale parameter (must be > 0)

delta

Uniform noise parameter (must be > 0)

Value

Vector of density values

References

Saah, D. K., & Kozubowski, T. J. (2025). A new class of extended Laplace distributions with applications to modeling contaminated Laplace data. Journal of Computational and Applied Mathematics. doi:10.1016/j.cam.2025.116588


Cumulative Distribution Function of the Extended Laplace Distribution

Description

Cumulative Distribution Function of the Extended Laplace Distribution

Usage

pEL(y, mu, sigma, delta)

Arguments

y

Vector of values where the density is to be evaluated

mu

Location parameter

sigma

Scale parameter (must be > 0)

delta

Uniform noise parameter (must be > 0)

Value

Vector of distribution values

References

Saah, D. K., & Kozubowski, T. J. (2025). A new class of extended Laplace distributions with applications to modeling contaminated Laplace data. Journal of Computational and Applied Mathematics. doi:10.1016/j.cam.2025.116588


Inverse Cumulative Distribution Function or Quantile Function of the Extended Laplace Distribution

Description

Inverse Cumulative Distribution Function or Quantile Function of the Extended Laplace Distribution

Usage

qEL(u, mu, sigma, delta)

Arguments

u

A numeric vector of probabilities.

mu

Location parameter

sigma

Scale parameter (must be > 0)

delta

Uniform noise parameter (must be > 0)

Value

Vector of quantiles values

References

Saah, D. K., & Kozubowski, T. J. (2025). A new class of extended Laplace distributions with applications to modeling contaminated Laplace data. Journal of Computational and Applied Mathematics. doi:10.1016/j.cam.2025.116588


Quantile-Quantile Plot for the Extended Laplace Distribution

Description

Quantile-Quantile Plot for the Extended Laplace Distribution

Usage

qqplotEL(sample_data, mu, sigma, delta)

Arguments

sample_data

A numeric vector of sample data

mu

Location parameter

sigma

Scale parameter (must be > 0)

delta

Uniform noise parameter (must be > 0)

Value

A Q-Q plot comparing sample data to the theoretical Extended Laplace distribution

Examples

sample <- rEL(1000, mu = 0, sigma = 1, delta = 1)
qqplotEL(sample, mu = 0, sigma = 1, delta = 1)

Random Sample Generation of the Extended Laplace Distribution

Description

Generates random samples from the Extended Laplace distribution using the convolution representation: Y = X + U, where X \sim \text{Laplace}(\mu, \sigma) and U \sim \text{Uniform}(-\delta, \delta).

Usage

rEL(n, mu, sigma, delta)

Arguments

n

Integer. Sample size.

mu

Numeric. Location parameter.

sigma

Numeric. Scale parameter (must be > 0).

delta

Numeric. Uniform noise parameter (must be > 0).

Value

A numeric vector of random samples from the Extended Laplace distribution.

References

Saah, D. K., & Kozubowski, T. J. (2025). A new class of extended Laplace distributions with applications to modeling contaminated Laplace data. Journal of Computational and Applied Mathematics. doi:10.1016/j.cam.2025.116588

Examples

rEL(10, mu = 0, sigma = 1, delta = 0.5)