Package 'GBOP2'

July 21, 2025

Type Package

Title Generalized Bayesian Optimal Phase II Design (G-BOP2)

Version 0.1.3

Depends R (>= 4.1.0)

Maintainer Wanni Lei <wanni.lei17@gmail.com>

Description Provides functions for implementing the Generalized Bayesian Optimal Phase II (G-

BOP2) design using various Particle Swarm Optimization (PSO) algorithms, including:

- PSO-Default, based on Kennedy and Eber-

hart (1995) <doi:10.1109/ICNN.1995.488968>, ``Particle Swarm Optimization"; - PSO-

Quantum, based on Sun, Xu, and Feng (2004) <doi:10.1109/ICCIS.2004.1460396>, ``A Global Search Strategy of Quantum-Behaved Particle Swarm Optimization";

- PSO-Dexp, based on Stehlík et al. (2024) <doi:10.1016/j.asoc.2024.111913>, ``A Double Ex-

ponential Particle Swarm Optimization with Non-Uniform Variates as Stochastic Tun-

ing and Guaranteed Convergence to a Global Optimum with Sample Applications to Finding Op-

timal Exact Designs in Biostatistics";

- and PSO-GO.

Imports tidyr, R6, Rcpp, doParallel, foreach, dplyr, stats, globpso, parallel, utils, RcppArmadillo

Suggests knitr, rmarkdown, roxygen2, testthat (>= 3.0.0), R.rsp

LinkingTo Rcpp, RcppArmadillo, RcppEigen

Config/parallel false

Config/testthat/edition 3

VignetteBuilder R.rsp

License GPL-2

Encoding UTF-8

RoxygenNote 7.3.2

NeedsCompilation yes

Author Xinying Fang [aut], Wanni Lei [aut, cre], Shouhao Zhou [aut] Repository CRAN Date/Publication 2025-04-22 15:50:07 UTC

Contents

GBOP2_maxP_dualE	2
GBOP2_maxP_singleE	3
GBOP2_maxP_TE	5
GBOP2_minSS_dualE	7
GBOP2_minSS_singleE	9
GBOP2_minSS_TE	10
get_cluster	13
init_cluster	13
stop_cluster	14
summary.gbop2	14
	16

Index

GBOP2_maxP_dualE PSOGO: Power maximizing design with dual boundaries

Description

This function implements PSOGO to find a power maximizing design with dual boundaries.

design	fixed as "optimal", which can not be modified by user
nlooks	number of interim looks
p0	Null hypothesis response rate
p1	Alternative hypothesis response rate
err1	Type I error rate
nParallel	number of pso ensemble
minPower	power
totalPatients	total patients
Nmin_cohort1	minimum number of first cohort
Nmin_increase	minimum number of increase in each cohort
pso_method	"all" for using three distinct pso, otherwise indicate single pso method
seed	seed for pso
nSwarm	nSwarm for pso
maxIter	maxIter for pso

Parallel computing is only used when the user explicitly sets nCore > 1. No more than 2 cores should be used unless the user is aware and permits it. The function defaults to sequential execution. If multiple analyses are planned, consider using init_cluster(nCore) and stop_cluster() manually to control the backend.

Value

A list on design parameters and operating characteristics

Examples

```
# init_cluster(2)
# GBOP2_maxP_dualE(
   nlooks = 1,
#
#
   p0 = 0.2,
   p1 = 0.4,
#
   err1 = 0.05,
#
   minPower = 0.8,
#
   totalPatients = 26,
#
   Nmin_cohort1 = 10,
#
#
   Nmin_increase = 5,
   pso_method = "default",
#
   nParallel = 3,
#
#
   seed = 1024,
   nSwarm = 64,
#
   maxIter = 200
#
#)
# stop_cluster() # Only if init_cluster() was used
#
message("Run GBOP2_minSS_singleE() manually for real optimization.")
```

GBOP2_maxP_singleE PSOGO: Power maximizing design with single boundary for futility

Description

This function implements PSOGO to find a power maximizing design with single boundary for futility.

Usage

```
GBOP2_maxP_singleE(
    nlooks = 1,
    p0 = 0.2,
    p1 = 0.4,
```

```
err1 = 0.05,
minPower = 0.8,
totalPatients = 5,
Nmin_cohort1 = 1,
Nmin_increase = 1,
pso_method = "default",
nParallel = 3,
seed = 1024,
nSwarm = 64,
maxIter = 200
)
```

Arguments

nlooks	number of interim looks
p0	Null hypothesis response rate
p1	Alternative hypothesis response rate
err1	Type I error rate
minPower	power
totalPatients	total number of patients
Nmin_cohort1	minimum number of first cohort
Nmin_increase	minimum number of increase in each cohort
pso_method	"all" for using three distinct pso, otherwise indicate single pso method
nParallel	number of pso ensemble
seed	Random seed for reproducibility
nSwarm	nSwarm for pso
maxIter	maxIter for pso

Details

Parallel computing is only used when the user explicitly sets nCore > 1. No more than 2 cores should be used unless the user is aware and permits it. The function defaults to sequential execution. If multiple analyses are planned, consider using init_cluster(nCore) and stop_cluster() manually to control the backend.

Value

A list on design parameters and operating characteristics

Examples

```
# init_cluster(2)
# GBOP2_maxP_singleE(
# nlooks = 1,
# p0 = 0.2,
# p1 = 0.4,
```

4

```
err1 = 0.05,
#
#
   minPower = 0.8,
#
   totalPatients = 26,
# Nmin_cohort1 = 10,
# Nmin_increase = 5,
  pso_method = "default",
#
#
  nParallel = 3,
   seed = 1024,
#
#
   nSwarm = 64,
   maxIter = 200
#
#)
# stop_cluster() # Only if init_cluster() was used
#
message("Run GBOP2_minSS_singleE() manually for real optimization.")
```

GBOP2_maxP_TE	PSOGO: Power maximizing design with efficacy and toxicity bound-
	aries

Description

This function implements PSOGO to find a power maximizing design with efficacy and toxicity boundaries.

design	fixed as "optimal", cannot be modified by user
pso_method	method for single PSO, choose from "default", "quantum" or "dexp"
nlooks	number of interim looks
<pre>skip_efficacy</pre>	default is NULL, indicate skip efficacy as 1 and not skip as 0 in a vector
<pre>skip_toxicity</pre>	default is NULL, indicate skip toxicity as 1 and not skip as 0 in a vector
totalPatients	number of total patients
Nmin_cohort1	maximum number of patients
Nmin_increase	minimum number of first cohort
p01	H0 for efficacy
p02	H0 for toxicity
p03	H0 for Eff and Tox
p11	H1 for efficacy
p12	H1 for toxicity
p13	H1 for Eff and Tox
err_eff	Type I error rate: Efficacious but toxic

Type I error rate: Safe but futile
Type I error rate: Futile and toxic
power: Efficacious but toxic
power: Safe but futile
power: Futile and toxic
nSwarm in PSO
maxIter in PSO
number of PSO ensemble
Random seed for reproducibility

Parallel computing is only used when the user explicitly sets nCore > 1. No more than 2 cores should be used unless the user is aware and permits it. The function defaults to sequential execution. If multiple analyses are planned, consider using init_cluster(nCore) and stop_cluster() manually to control the backend.

Value

A list on design parameters and operating characteristics

```
# init_cluster(2)
# GBOP2_maxP_TE(
# design = "optimal",
\# nlooks = 1,
# skip_efficacy = NULL,
# skip_toxicity = NULL,
# totalPatients = 50,
# Nmin_cohort1 = 10,
# Nmin_increase = 5,
# p01 = 0.15,
\# p02 = 0.16,
# p03 = 0.024,
# p11 = 0.4,
\# p12 = 0.08,
\# p13 = 0.032,
# err_eff = 1,
# err_tox = 1,
# err_all = 0.1,
# power_eff = 0.8,
# power_tox = 0.8,
# power_all = 0.8,
# nParallel = 3,
# seed = 5321,
# pso_method = "default",
\# nSwarm = 32,
# maxIter = 100)
```

```
# stop_cluster() # Only if init_cluster() was used
#
message("Run GBOP2_minSS_singleE() manually for real optimization.")
```

GBOP2_minSS_dualE PSOGO: Optimal/Minimax design with dual boundaries

Description

This function implements PSOGO to find an optimal or minimax design with dual boundaries.

Usage

```
GBOP2_minSS_dualE(
  design = "optimal",
  unified.u = unified.u,
 weight = 1,
  nlooks = 1,
  p0 = 0.2,
  p1 = 0.4,
  err1 = 0.05,
 minPower = 0.8,
 maxPatients = 5,
 Nmin_cohort1 = 1,
 Nmin_increase = 1,
  pso_method = "default",
 nParallel = 3,
  seed = 123,
 nSwarm = 64,
 maxIter = 200
)
```

design	choose from "optimal", "minimax", or "unified"
unified.u	specify when design = "unified", u in zero to one
weight	weight of sample size under null
nlooks	number of interim looks
p0	Null hypothesis response rate
p1	Alternative hypothesis response rate
err1	Type I error rate
minPower	power

maxPatients	maximum number of patients
Nmin_cohort1	minimum number of first cohort
Nmin_increase	minimum number of increase in each cohort
pso_method	"all" for using three distinct pso, otherwise indicate single pso method
nParallel	number of pso ensemble
seed	seed for pso
nSwarm	nSwarm for pso
maxIter	maxIter for pso

Parallel computing is only used when the user explicitly sets nCore > 1. No more than 2 cores should be used unless the user is aware and permits it. The function defaults to sequential execution. If multiple analyses are planned, consider using init_cluster(nCore) and stop_cluster() manually to control the backend.

Value

A list on design parameters and operating characteristics

```
# init_cluster(2)
# GBOP2_minSS_dualE(
    design = "optimal",
#
#
    unified.u = unified.u,
#
    nlooks = 1,
#
    p0 = 0.2,
    p1 = 0.4,
#
    err1 = 0.05,
#
    minPower = 0.8,
#
    weight = 1,
#
#
    maxPatients = 25,
#
    Nmin_cohort1 = 10,
#
    Nmin_increase = 5,
    pso_method = "default",
#
    nParallel = 3,
#
    seed = 123,
#
#
    nSwarm = 64,
#
    maxIter = 200
# )
# stop_cluster() # Only if init_cluster() was used
#
message("Run GBOP2_minSS_dualE() manually for real optimization.")
```

GBOP2_minSS_singleE PSOGO: Optimal/Minimax design with single boundary for futility

Description

This function implements PSOGO to find an optimal or minimax design with single boundary for futility.

Usage

```
GBOP2_minSS_singleE(
 design = "optimal",
  unified.u = 1,
 weight = 1,
 nlooks = 2,
 p0 = 0.2,
  p1 = 0.4,
  err1 = 0.05,
 minPower = 0.8,
 maxPatients = 5,
 Nmin_cohort1 = 1,
 Nmin_increase = 1,
 pso_method = "default",
 nParallel = 3,
  seed = 456,
 nSwarm = 64,
 maxIter = 200
)
```

design	choose from "optimal", "minimax", or "unified"
unified.u	specify when design = "unified", u in zero to one
weight	weight of sample size under null
nlooks	number of interim looks
p0	Null hypothesis response rate
р1	Alternative hypothesis response rate
err1	Type I error rate
minPower	power
maxPatients	maximum number of patients
Nmin_cohort1	minimum number of first cohort
Nmin_increase	minimum number of increase in each cohort
pso_method	"all" for using three distinct pso, otherwise indicate single pso method

nParallel	number of pso ensemble
seed	Random seed for reproducibility
nSwarm	nSwarm for pso
maxIter	maxIter for pso

Parallel computing is only used when the user explicitly sets nCore > 1. No more than 2 cores should be used unless the user is aware and permits it. The function defaults to sequential execution. If multiple analyses are planned, consider using init_cluster(nCore) and stop_cluster() manually to control the backend.

Value

A list on design parameters and operating characteristics

Examples

```
# init_cluster(2)
# GBOP2_minSS_singleE(
   design = "optimal",
#
#
    unified.u = 1,
    nlooks = 1,
#
#
    p0 = 0.2,
#
    p1 = 0.4,
    err1 = 0.05,
#
    minPower = 0.8,
#
    weight = 1,
#
    maxPatients = 25,
#
    Nmin_cohort1 = 10,
#
#
    Nmin_increase = 5,
    pso_method = "default",
#
    nParallel = 3,
#
#
    seed = 1024,
#
    nSwarm = 64,
#
    maxIter = 200
# )
# stop_cluster() # Only if init_cluster() was used
#
message("Run GBOP2_minSS_singleE() manually for real optimization.")
```

GBOP2_minSS_TE

Description

This function implements PSOGO to find an optimal or minimax design with efficacy and toxicity boundaries.

Usage

```
GBOP2_minSS_TE(
  design = "optimal",
  unified.u = 1,
 nlooks = 1,
  skip_efficacy = NULL,
  skip_toxicity = NULL,
 maxPatients = 26,
 Nmin_cohort1 = 13,
 Nmin_increase = 13,
 p01 = 0.3,
 p02 = 0.4,
 p03 = 0.2,
 p11 = 0.6,
 p12 = 0.2,
 p13 = 0.15,
 err_eff = 0.1,
 err_tox = 0.1,
 err_all = 0.05,
 power_eff = 0.8,
 power_tox = 0.8,
 power_all = 0.8,
 pso_method = "all",
 nParallel = 3,
  seed = 1324,
 nSwarm = 32,
 maxIter = 100
)
```

design	choose from "optimal", "minimax", or "unified"
unified.u	specify when design = "unified", u in zero to one
nlooks	number of interim looks
<pre>skip_efficacy</pre>	default is NULL, indicate skip efficacy as 1 and not skip as 0 in a vector
<pre>skip_toxicity</pre>	default is NULL, indicate skip toxicity as 1 and not skip as 0 in a vector
maxPatients	maximum number of patients
Nmin_cohort1	minimum number of first cohort
Nmin_increase	minimum number of increase in each cohort
p01	H0 for efficacy
p02	H0 for toxicity

p03	H0 for Eff and Tox
p11	H1 for efficacy
p12	H1 for toxicity
p13	H1 for Eff and Tox
err_eff	Type I error rate: Efficacious but toxic
err_tox	Type I error rate: Safe but futile
err_all	Type I error rate: Futile and toxic
power_eff	power: Efficacious but toxic
power_tox	power: Safe but futile
power_all	power: Futile and toxic
pso_method	"all" for using three distinct pso, otherwise indicate single pso method
nParallel	number of pso ensemble
seed	Random seed for reproducibility
nSwarm	nSwarm in PSO
maxIter	maxIter in PSO

Parallel computing is only used when the user explicitly sets nCore > 1. No more than 2 cores should be used unless the user is aware and permits it. The function defaults to sequential execution. If multiple analyses are planned, consider using init_cluster(nCore) and stop_cluster() manually to control the backend.

Value

A list on design parameters and operating characteristics

```
# init_cluster(2)
# GBOP2_minSS_TE(
#
   design = "optimal",
#
    unified.u = 1,
    nlooks = 1,
#
#
    skip_efficacy = NULL,
    skip_toxicity = NULL,
#
    maxPatients = 25,
#
    Nmin_cohort1 = 10,
#
    Nmin_increase = 5,
#
    p01 = 0.3,
#
    p02 = 0.4,
#
#
    p03 = 0.2,
#
    p11 = 0.6,
    p12 = 0.2,
#
#
    p13 = 0.15,
#
    err_eff = 0.1,
```

get_cluster

```
#
    err_tox = 0.1,
#
    err_all = 0.05,
#
    power_eff = 0.8,
#
    power_tox = 0.8,
#
    power_all = 0.8,
#
    pso_method = "default",
    nParallel = 3,
#
#
    seed = 5321,
    nSwarm = 64,
#
    maxIter = 100
#
# )
# stop_cluster() # Only if init_cluster() was used
#
message("Run GBOP2_minSS_singleE() manually for real optimization.")
```

get_cluster

Get current cluster

Description

Returns the current parallel cluster object, if initialized.

Usage

get_cluster()

Value

A cluster object or NULL.

init_cluster Initialize parallel cluster

Description

Creates and registers a parallel backend using the specified number of cores. Falls back to sequential execution if nCore ≤ 1 .

Usage

init_cluster(nCore = 2)

Arguments

nCore Number of cores to use (default is 2).

stop_cluster

Description

Stops the currently running parallel cluster and reverts to sequential execution.

Usage

stop_cluster()

summary.gbop2 Summary function Summary function for gbop2 objects

Description

Summary function Summary function for gbop2 objects

Usage

S3 method for class 'gbop2'
summary(object, ...)

Arguments

object	GBOP2_maxP_dualE GBOP2_maxP_singleE GBOP2_maxP_TE GBOP2_minSS_dualE
	GBOP2_minSS_singleE GBOP2_minSS_TE
	ignored arguments

Value

A summary table

```
design <- GBOP2_minSS_singleE(
    design = "optimal",
    unified.u = 1,
    nlooks = 1,
    p0 = 0.2,
    p1 = 0.4,
    err1 = 0.05,
    minPower = 0.8,
    weight = 1,
    maxPatients = 25,
    Nmin_cohort1 = 10,</pre>
```

summary.gbop2

```
Nmin_increase = 5,
pso_method = "default",
nParallel = 1,
seed = 1024,
nSwarm = 64,
maxIter = 200
)
```

summary(design)

Index

GBOP2_maxP_dualE, 2 GBOP2_maxP_singleE, 3 GBOP2_maxP_TE, 5 GBOP2_minSS_dualE, 7 GBOP2_minSS_singleE, 9 GBOP2_minSS_TE, 10 get_cluster, 13

 $\texttt{init_cluster}, 13$

stop_cluster, 14
summary.gbop2, 14