Package 'GHRmodel'

November 7, 2025

Version 0.1.1

Description Supports modeling health outcomes using Bayesian hierarchical spatio-temporal models with complex covariate effects (e.g., linear, non-linear, interactions, distributed lag linear and non-linear models) in the 'INLA' framework. It is designed to help users identify key

Title Bayesian Hierarchical Modelling of Spatio-Temporal Health Data

drivers and predictors of disease risk by enabling streamlined model exploration, comparison, and visualization of complex covariate effects. See an application of the modelling framework in Lowe, Lee, O'Reilly et al. (2021)

See an application of the modelling framework in Lowe, Lee, O'Reilly et al. (2021)
<doi:10.1016/S2542-5196(20)30292-8>.

License GPL (>= 2)

URL https://gitlab.earth.bsc.es/ghr/ghrmodel,

https://bsc-es.github.io/GHRtools/docs/GHRmodel/GHRmodel

BugReports https://gitlab.earth.bsc.es/ghr/ghrmodel/-/issues

Depends R (>= 4.1.0)

Imports cowplot, dlnm, dplyr, ggplot2 (>= 3.5.0), GHRexplore, rlang, scales, tidyr, tidyselect

Suggests INLA, sf, sn, RColorBrewer, colorspace, testthat (>= 3.0.0), spdep, knitr, rmarkdown

Additional_repositories https://inla.r-inla-download.org/R/stable

Config/testthat/edition 3

Encoding UTF-8

LazyData true

VignetteBuilder knitr

RoxygenNote 7.3.3

NeedsCompilation no

Author Carles Milà [aut, cre] (ORCID: https://orcid.org/0000-0003-0470-0760), Giovenale Moirano [aut] (ORCID:

<https://orcid.org/0000-0001-8748-3321>),

Anna B. Kawiecki [aut] (ORCID: https://orcid.org/0000-0002-0499-2612), Rachel Lowe [aut] (ORCID: https://orcid.org/0000-0003-3939-7343)

2 Contents

Maintainer Carles Milà <carles.milagarcia@bsc.es>

Repository CRAN

Date/Publication 2025-11-07 15:50:25 UTC

Contents

Index

s_GHRformulas	. 3
ov_add	. 4
ov_interact	. 5
ov_multi	6
ov_nl	. 7
ov_uni	. 8
ov_varying	. 9
rossbasis_inla	10
rosspred_inla	. 12
engue_MS	. 14
engue_SP	. 15
xtract_names	. 16
t_models	. 17
et_covariates	21
ng_cov	. 22
nap_MS	. 23
nebasis_inla	. 23
lot_coef_crosspred	24
lot_coef_lin	26
lot_coef_nl	. 28
lot_coef_varying	31
lot_fit	32
lot_gof	34
lot_ppd	36
lot_re	38
ank_models	40
ample_ppd	41
tack_models	42
ubset_models	43
vrite_inla_formulas	45

48

as_GHRformulas 3

as_GHRformulas

Convert R-INLA Model Formulas into a GHRformulas Object

Description

This function converts a character vector of suitable R-INLA formulas into a structured GHRformulas object. The GHRformulas object contains the standardized information about the fixed effects, the random effects, and the outcome variable, ensuring consistency across multiple models to be fitted using the fit_models function.

Usage

```
as_GHRformulas(formulas)
```

Arguments

formulas

A character vector of model formulas formatted for R-INLA. Each formula must contain a single ~ separating the outcome variable from the predictors. Formulas generated with write_inla_formulas are compatible with this function.

Details

The as_GHRformulas() function parses each input formula to extract the outcome variable, fixed effects (covariates), and random effects. The resulting GHRformulas object is designed to be used with the fit_models function for model fitting with R-INLA.

Value

A structured list of class GHRformulas with the following components:

formulas A character vector of the original INLA-compatible model formulas.

vars A data frame where each row corresponds to a formula and each column to a covariate. Entries indicate whether a covariate is included in the formula.

re A character vector listing the random effects specified across all formulas.

outcome A character string indicating the outcome variable (must be consistent across formulas).

See Also

write_inla_formulas to generate R-INLA compatible input formulas

```
# Define formulas
formulas <- c(
"dengue_cases ~ 1 + f(month_id, model = 'rw1')",
"dengue_cases ~ 1 + f(month_id, model = 'rw1') + tmin.l1")
# Convert the formulas into a GHRformulas object</pre>
```

4 cov_add

```
formulas <- as_GHRformulas(formulas)

# Inspect the structured GHRformulas object
print(formulas)

# Visualize output: GHRformulas object
class(formulas)</pre>
```

cov_add

Add Covariates to All Combinations

Description

This function appends one or more covariate names to all elements (i.e., covariate sets) in a list of character vectors. This is useful when a covariate (like a confounder or control variable) needs to be included in every model. It also works with a single character vector input. The resulting list can be input into the covariates argument in write_inla_formulas.

Usage

```
cov_add(covariates, name, add = FALSE)
```

Arguments

covariates A character vector or a list of character vectors, where each vector represents a

set of covariates (e.g., from cov_multi).

name A character vector of covariate names to be added to each set.

add Boolean that indicates if the original combinations in the covariates argument

must be kept. Defaults to FALSE.

Value

A list of character vectors, with each vector containing the original covariates plus the additional ones specified in the name argument.

```
# Multiple combinations
cov_sets <- list(
   c("tmin", "pdsi"),
   c("tmin.l1", "pdsi"),
   c("tmin.l2", "pdsi")
)
cov_add(cov_sets, name = "urban")</pre>
```

cov_interact 5

cov_interact	Generate Interaction Terms Between Covariates	

Description

This function generates interaction terms between covariates specified in the pattern or name arguments. It requires a list of character vectors and appends interaction terms to each vector based on pairwise or three-way interactions. The resulting list can be input into the covariates argument in write_inla_formulas.

Usage

```
cov_interact(covariates = NULL, pattern = NULL, name = NULL, add = FALSE)
```

Arguments

covariates	A list of character vectors, each vector containing variable names. Typically an output of cov_multi or cov_uni.
pattern	A character vector of length 2 or 3 specifying prefixes of variables to interact (e.g., "tmin" matches "tmin", "tmin.11", etc.).
name	A character vector specifying the exact variable names to be included in the interactions.
add	Logical; if TRUE, appends the newly created formulas to the original list. Default is FALSE.

Details

- If two variables are matched, their pairwise interaction is added (var1:var2).
- If three variables are matched, two-way and three-way interactions are generated.
- Only variables that are expressed as linear terms can be used in interactions.
- Use either pattern, name, or both to identify variables for interaction.

Value

A list of character vectors, where each vector includes covariates and their corresponding interaction terms. This object can be passed to the covariates argument in write_inla_formulas.

```
# Example dataset
data <- data.frame(tmin.l1 = rnorm(10), pdsi.l1 = rnorm(10), urban = rnorm(10))
# Extract names
covs <- extract_names(data, pattern = c("tmin", "pdsi", "urban"))
# Create combinations</pre>
```

6 cov_multi

```
combos <- cov_multi(covariates = covs, pattern = c("tmin", "pdsi"))

# Add interaction terms
cov_interact(covariates = combos, pattern = c("tmin", "pdsi"))

# Output can be passed to write_inla_formulas()
new_covs <- cov_interact(combos, pattern = c("tmin", "pdsi"))
formulas <- write_inla_formulas(outcome = "cases", covariates = new_covs)</pre>
```

cov_multi

Create Covariate Combinations Across Groups

Description

This function generates all possible combinations of covariates by selecting one variable from each user-defined group. Groups can be defined either by a regular expression pattern (pattern) or by exact variable names (name). The resulting list can be input into the covariates argument in write_inla_formulas to generate multivariable model formulas where all combinations of covariates are needed.

Usage

```
cov_multi(covariates, pattern = NULL, name = NULL, add = FALSE)
```

Arguments

covariates	A character vector or a list of single-element character vectors. Typically obtained from extract_names or cov_uni or cov_nl.
pattern	A character vector of regular expression patterns (e.g., "tmin" matches "tmin", "tmin.l1", etc.). Each pattern defines a group to draw covariates from.
name	A character vector of exact variable names to include as an additional group.
add	Logical; if TRUE, appends the generated combinations to the original covariates object. Default is FALSE.

Value

A list of character vectors. Each element is a unique combination of covariates, where one variable is drawn from each specified group. The resulting list is suitable as input in the covariates argument in write_inla_formulas.

cov_nl 7

```
# Combine "tmin" and "pdsi" into all possible pairings
cov_multi(covariates = covs, pattern = c("tmin", "pdsi"))

# Combine "tmin" and "urban", treating "urban" as an exact match
cov_multi(covariates = covs, pattern = "tmin", name = "urban")

# Use output as input to write_inla_formulas()
combined_covs <- cov_multi(covariates = covs, pattern = c("tmin", "pdsi"))
formulas <- write_inla_formulas(outcome = "cases", covariates = combined_covs)</pre>
```

cov_nl

Create Non-Linear Effects for INLA

Description

This function transforms selected covariates identified by pattern or name into non-linear terms using INLA's f() syntax. It supports random walk models (rw1, rw2) and allows discretization by quantiles or equal intervals. Transformed covariates are returned as character vectors inside a list ready to be passed to the write_inla_formulas function.

Usage

```
cov_nl(
  covariates,
  pattern = NULL,
  name = NULL,
  model = "rw2",
  method = "quantile",
  n = 10,
  replicate = NULL,
  add = FALSE
)
```

Arguments

covariates	A character vector or list of character vectors. Usually from cov_multi or cov_uni.
pattern	Character vector of patterns to match covariates for transformation (e.g., "tmin" matches "tmin", "tmin.11", etc.).
name	Character vector of exact covariate names to transform.
model	Character; either "rw1" or "rw2" to specify the non-linear INLA model.
method	Character; either "cut" or "quantile" for discretization. Default is "quantile".
n	Integer; number of intervals or quantile bins. Must be >= 2. Default is 10.
replicate	Optional character string indicating a replicate structure for non-linear effects.
add	Logical; if TRUE, adds the transformed covariates to the original ones. Default is

8 cov_uni

Details

- Use pattern or name (or both) to specify which variables to transform.
- The method and n arguments discretize the covariate into evenly populated bins.
- The function supports discretization with either equal-width (cut) or quantile-based (quantile) bins.
- The model argument imposes smoothness on the grouped effect, capturing non-linear trends.
- Non-linear effects are created using .single_non_linear_eff_inla() (internal helper).

Value

A list of character vectors. This object can be passed to the covariates argument in write_inla_formulas.

See Also

See Bayesian inference with INLA: Smoothing for more information on smoothing and non-linear effects in R-INLA models.

Examples

```
data <- data.frame(tmin.l1 = rnorm(10), pdsi.l1 = rnorm(10))

covs <- extract_names(data, pattern = c("tmin", "pdsi"))

covlist <- cov_multi(covs, pattern = c("tmin", "pdsi"))

# Apply non-linear transformation to tmin variables

cov_nl(covlist, pattern = "tmin", model = "rw2")

# Include original variables along with transformed ones

cov_nl(covlist, pattern = "tmin", model = "rw2", add = TRUE)</pre>
```

cov_uni

Build Univariable Covariate Sets

Description

This function returns a list where each element contains a single covariate, based on covariates specified in the pattern or name arguments. This structure is suitable for generating separate univariable model formulas using write_inla_formulas.

Usage

```
cov_uni(covariates = NULL, pattern = NULL, name = NULL)
```

cov_varying 9

Arguments

covariates A character vector of covariate names. Typically the output from extract_names.

A character vector specifying the prefix pattern(s) to match (e.g., "tmin" matches "tmin", "tmin.ll", etc.).

name A character vector specifying exact variable name(s) to extract.

Value

A list of character vectors, each of length 1, containing the matched covariate name. The resulting list is suitable for use as the covariates argument in write_inla_formulas.

Examples

```
data <- data.frame(tmin = rnorm(10), tmin.l1 = rnorm(10), urban = rnorm(10))
covs <- extract_names(data, pattern = "tmin", name = "urban")
cov_uni(covs, pattern = "tmin")
cov_uni(covs, name = "urban")</pre>
```

cov_varying

Create Spatially or Temporally Varying Effects for INLA

Description

This function transforms covariates identified by pattern or name into varying effect terms of the form:f(unit, covariate, model = 'iid'), which allows covariates to have varying slopes across spatial or temporal units. The output can be used directly in the covariates argument of write_inla_formulas.

Usage

```
cov_varying(
  covariates,
  unit,
  pattern = NULL,
  name = NULL,
  model = "iid",
  constr = FALSE,
  add = FALSE
```

Arguments

covariates A character vector or a list of character vectors of covariate names. Typically output from cov_multi, cov_uni, or extract_names.

Unit Character string specifying the unit of variation (e.g., "spat_id", "year").

10 crossbasis_inla

pattern	A character vector specifying the prefix pattern(s) to match (e.g., "tmin" matches "tmin", "tmin.l1", etc.) for transformation.
name	Character vector of exact variable names to be transformed.
model	Character string specifying the INLA model for the varying effect. Currently, only "iid" is supported.
constr	Logical. If TRUE it will impose a sum-to-zero constraint to the random effect. Default is FALSE.
add	Logical; if TRUE, appends the transformed covariates to the original ones. Default is FALSE.

Details

- Use pattern or name (or both) to specify which covariates to transform.
- The resulting terms use INLA's f() syntax: f(unit, covariate, model = "iid").
- Currently only supports "iid" models for varying effects.

Value

A list of character vectors, each including covariates with varying effects. The output is suitable as input for write_inla_formulas.

Examples

```
data <- data.frame(tmin.l1 = rnorm(10), pdsi.l1 = rnorm(10))

covs <- extract_names(data, pattern = c("tmin", "pdsi"))

covlist <- cov_multi(covs, pattern = c("tmin", "pdsi"))

# Apply varying effect to tmin
cov_varying(covlist, pattern = "tmin", unit = "spat_id")

# Keep original and add varying effect terms
cov_varying(covlist, pattern = "tmin", unit = "spat_id", add = TRUE)</pre>
```

crossbasis_inla

Create a Two-Dimensional INLA-compatible Cross-basis Matrix

Description

This function is a wrapper around dlnm::crossbasis to generate cross-basis matrices that capture nonlinear effects of a predictor across both exposure and lag dimensions. The input covariate is passed as a numeric matrix of lagged values, and the resulting columns can be renamed via basis_name for easier reference in model formulas.

crossbasis_inla 11

Usage

```
crossbasis_inla(
  covariate,
  basis_name,
  lag,
  argvar = list(),
  arglag = list(),
  ...
)
```

Arguments

covariate	A numeric matrix of covariate values. Typically this will be a matrix of lagged covariate values (which can be generated using lag_cov).
basis_name	A character string specifying the prefix for the spline columns in the resulting basis matrix (replacing the default "v").
lag	A numeric vector with min and max lag of the matrix (as in crossbasis).
argvar	A list specifying the shape of the exposure-response function (as in crossbasis).
arglag	A list specifying the shape of the lag-response function (as in crossbasis).
•••	Additional arguments passed to dlnm::crossbasis, such as df, degree, knots, etc.

Value

An object of class "crossbasis_inla" (also inheriting class "crossbasis"), as returned by dlnm: crossbasis() but with customized column names.

```
# Build cross-basis with a custom prefix for columns
# Import example data set
data("dengue_MS")
lag_mat <- lag_cov(data = dengue_MS,</pre>
 name = c("tmin"),
 time = "date",
 lag = c(1:6),
 group = "micro_code",
 add = FALSE) # add = FALSE return only the lagged matrix
cb_inla <- crossbasis_inla(</pre>
 covariate = lag_mat,
 basis_name = "tempLag",
 lag = c(1,6),
 argvar = list(fun = "bs", df = 3),
 arglag = list(fun = "poly", degree = 2)
)
```

12 crosspred_inla

```
# Check class of the cross-basis object
class(cb_inla)

# View resulting cross-basis matrix
head(colnames(cb_inla))
```

crosspred_inla

Generate DLNM Predictions from GHRmodels Objects

Description

This function takes an object of class GHRmodels, extracts the relevant coefficients and variance-covariance matrix, and then calls dlnm::crosspred to compute predictions over a range of covariate values (or at specified points).

Usage

```
crosspred_inla(
  models,
  basis,
  mod_id,
  at = NULL,
  from = NULL,
  to = NULL,
  by = NULL,
  lag,
  bylag = 1,
  cen = NULL,
  ci.level = 0.95,
  cumul = FALSE,
  ...
)
```

Arguments

models	An object of class GHRmodels, containing fitted model output (e.g., \$fixed and \$vcov lists).
basis	A cross-basis or one-basis object, typically created by crossbasis_inla or onebasis_inla.
mod_id	An integer or character string specifying which model within the input GHRmodels object to use (e.g., if model\$fixed and model\$vcov both have multiple entries).
at	A numeric vector of values at which to compute predictions (e.g.,seq($10,25$, by= 0.2))
from, to	Numeric values specifying the range of the prediction sequence if at is not specified (e.g., from = 10 and to = 25).

crosspred_inla 13

by	Numeric increment for the sequence if at is not specified (e.g., by = 0.2).
lag	A vector of two elements with min and max lag as declared in the crossbasis_inla function.
bylag	Numeric increment for lag steps (default is 1).
cen	A centering value (e.g., a reference exposure level).
ci.level	The credible interval level (default 0.95).
cumul	Logical; if TRUE, cumulative predictions are computed (default FALSE).
	Additional arguments passed on to crosspred, such as bound, ci.arg, etc.

Details

The function identifies which coefficients in model\$fixed[mod_id] and which rows/columns in model\$vcov[mod_id] correspond to the one-basis or cross-basis terms (i.e., matching the column names in basis). Then it passes these slices to dlnm::crosspred to generate predictions. The centering value (cen), if specified, indicates the reference exposure (e.g., a mean temperature) at which to center the effect estimates (e.g., the effect a given temperature value on the outcome will be compared to the effect of the centering value on the outcome, in this case the mean temperature).

Value

An object of class "GHRcrosspred", inheriting from "crosspred", with fields for the predicted values, credible intervals, and optionally cumulative predictions, as determined by crosspred.

See Also

dlnm::crosspred for details on how predictions are computed.

```
# Load example GHRmodels object from the package
model_dlnm_file <- system.file("examples", "model_dlnm.rds", package = "GHRmodel")</pre>
model_dlnm <- readRDS(model_dlnm_file)</pre>
# Load example cross-basis matrix from the package: 2-dimensional cross-basis matrix of the
# non-linear effect of dengue risk across tmin values and lags:
cb_tmin_file <- system.file("examples","cb_tmin.rds", package = "GHRmodel")</pre>
cb_tmin <- readRDS(cb_tmin_file) # loads cross-basis matrix into the environment
# Generate predictions
pred_result <- crosspred_inla(</pre>
 models
          = model_dlnm,
 basis
         = cb_tmin,
 mod_id = "mod3",
           = seq(17, 24, by = 1), # e.g., temperature sequence
 lag
           = 2,
           = 20.
 cen
 ci.level = 0.95
)
```

14 dengue_MS

```
# Inspect predictions
pred_result$predvar # the sequence of 'at' values
pred_result$allfit # fitted values
pred_result$alllow # lower CI
pred_result$allhigh # upper CI
```

dengue_MS

Dengue cases from the "Mato Grosso do Sul" state of Brazil

Description

The dengue_MS example data set contains monthly counts of notified dengue cases by microregion, along with a range of spatial and spatiotemporal covariates (e.g., environmental, socio-economic and meteo-climatic factors). This data set represents a subset of a larger national data set that covers the entire territory of Brazil. The subset focuses on a specific region, *Mato Grosso do Sul*, for the purposes of illustration and computational efficiency. See @source for access to the complete data set.

Usage

dengue_MS

Format

```
A data frame with 2.600 rows and 27 columns:
micro_code Unique ID number to each micro region (11 units)
micro_name Name of each micro region
micro_name_ibge Name of each micro region following IBGE
meso_code Unique ID number to each meso region (4 units)
meso_name Name of each meso region
state_code Unique ID number to each state (1 unit)
state_name Name of each state
region_code Unique ID number given to each Brazilian Region, In this data frame all observations
    come from the "Southeast Region"
region_name Name of each Brazilian Region, In this data frame all observations come from the
     "Southeast Region"
biome_code Biome code
biome_name Biome name
ecozone_code Ecozone code
ecozone_name Ecozone name
main_climate Most prevalent climate regime in the microregion. Based on Koppen Geiger climate
month Calendar month index, 1 = January, 12 = December
```

dengue_SP 15

year Year 2000 - 2019

time Time index starting at 1 for January 2000

dengue_cases Number of notified dengue cases registered in the notifiable diseases system in Brazil (SINAN) in the microregion of reference, at the month of first symptoms

population Estimated population, based on projections calculated using the 2000 and 2010 censuses, and counts taken in 2007 and 2017

pop_density Population density (number of people per km2)

tmax Monthly average daily maximum temperature; gridded values (at a 0.5 deg resolution) averaged across each microregion

tmin Monthly average daily minimum temperature; gridded values (at a 0.5 deg resolution) averaged across each microregion

pdsi Self-calibrated Palmer drought severity index for each microregion. It measures how wet or dry a region is relative to usual conditions. Negative values represent periods of drought, positive values represent wetter periods. Calculated by taking the mean value within each microregion

urban Percentage of inhabitants living in urban areas (2010 census)

water_network Percentage of inhabitants with access to the piped water network according to the 2010 census

water_shortage Frequency of reported water shortages per microregion between 2000 - 2016 date First day of the Month, in date format ("%d-%m-%Y")

Source

source code on GitHub; source code on Zenodo;

dengue_SP

Dengue cases from the "São Paulo" state of Brazil

Description

The dengue_SP example data set reports the weekly number of notified dengue cases in the municipality of São Paulo together with climatic covariates. Data was sourced from Infodengue (see @source).

Usage

dengue_SP

16 extract_names

Format

```
A data frame with 678 rows and 8 columns:
date First day of the week, in date format ("%d-%m-%Y")
geocode Unique ID code for São Paulo microregion
cases Number of notified dengue cases
year Year 2000 - 2022
temp_med Weekly average daily mean temperature
precip_tot Weekly cumulative precipitation
enso El Niño-Southern Oscillation Index
pop Number of inhabitants
```

Source

Infodengue API

extract_names

Extract Covariate Names

Description

This function allows the user to select variables from a data set by prefix (using the pattern argument) or by exact name matching. The return object is a character vector with the selected covariate names that can be used as input for cov_add, cov_uni, cov_multi, cov_interact, cov_nl, and cov_varying functions.

Usage

```
extract_names(data = NULL, pattern = NULL, name = NULL)
```

Arguments

data A data. frame containing the variables.

pattern A character vector specifying prefix(es) to match (e.g., "tmin" matches "tmin",

"tmin.11", etc.).

name A character vector of exact variable name(s) to extract.

Value

A character vector of matched covariate names.

```
data <- data.frame(tmin = 1:10, tmin.l1 = 1:10, urban = 1:10)
extract_names(data, pattern = "tmin")
extract_names(data, name = "urban")
extract_names(data, pattern = "tmin", name = "urban")</pre>
```

fit_models 17

fit_models

Fit Multiple INLA Models

Description

This function fits a set of INLA model formulas, provided in a GHRformulas object, to a specified dataset. For each fitted model, it extracts a range of outputs, including goodness-of-fit (GoF) metrics and other model outputs (fitted values, fixed effects, random effects). Results are extracted and stored in a GHRmodels object.

Usage

```
fit_models(
  formulas,
  data,
  family,
  name,
  offset = NULL,
  control_compute = list(config = FALSE, vcov = FALSE),
  nthreads = 8,
  pb = FALSE
)
```

Arguments

formulas A GHRformulas object containing multiple INLA model formulas.

data A data frame containing the variables used in the model formulas.

family A character string specifying the likelihood family (e.g., "poisson", "nbinomial",

etc.).

name A character string to label each fitted model (e.g., "mod").

offset A character string specifying the name of the offset variable in data. If NULL, no

offset is applied. Default is NULL. Internally, log(offset_values) is applied.

control_compute

A named list controlling additional computation options:

config Logical; if TRUE, stores the Gaussian Markov Random Field (GMRF) and enables the computation of posterior predictive distribution $(1,000 \ draws)$.

Defaults to FALSE.

vcov Logical if TRUE, returns the variance-covariance (correlation) matrix of

fixed effects. Defaults to FALSE.

nthreads An integer specifying the number of threads for parallel computation. Default is

8.

pb Logical; if TRUE, displays a progress bar while fitting models. Default is FALSE.

Details

This function iterates over each formula in the GHRformulas object and fits the corresponding INLA model using the internal function .fit_single_model(). For each fitted model, it extracts the fitted values, fixed effects, and random effects summaries. Then, it calculates a series of model evaluation metrics using the .gof_single_model() internal function.

The goodness-of-fit (GoF) metrics are organized into two categories:

A) Model-Specific Goodness-of-Fit Metrics

These are computed separately for each model:

1. Deviance Information Criterion (DIC)

$$DIC = \bar{D} + p_D$$

where D is the posterior mean deviance and p_D is the effective number of parameters. Lower DIC values indicate a better model fit, balancing goodness-of-fit and model complexity.

2. Watanabe-Akaike Information Criterion (WAIC)

$$WAIC = -2 (lppd - p_{WAIC})$$

WAIC evaluates predictive accuracy and penalizes model complexity through the log pointwise predictive density (lppd). Lower values imply better generalization.

3. Log Mean Score (LMS)

$$LMS = \frac{1}{n} \sum_{i=1}^{n} \left(-\log(\text{CPO}_i) \right)$$

LMS assesses the average negative log-predictive density using Conditional Predictive Ordinates (CPO). Lower LMS values indicate stronger predictive performance by penalizing models that assign low probability to observed outcomes.

4. Mean Absolute Error (MAE)

$$MAE = \frac{1}{n} \sum_{i=1}^{n} |y_i - \hat{y}_i|$$

Measures the average absolute deviation between observed values y_i and predicted values \hat{y}_i . Lower MAE values indicate improved fit. If config = TRUE, MAE is computed using the full posterior predictive distribution (PPD); otherwise, it uses point estimates from INLA's summary.fitted.values.

5. Root Mean Squared Error (RMSE)

$$RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2}$$

Captures average squared deviation between observed and predicted values. RMSE penalizes larger errors more heavily. Lower values reflect better model fit. If config = TRUE, RMSE uses the PPD; otherwise, it uses point estimates.

fit_models 19

6. Continuous Ranked Probability Score (CRPS)

$$CRPS(F, y) = \int_{-\infty}^{\infty} [F(t) - \mathbf{1}\{y \le t\}]^2 dt$$

CRPS assesses how well the predictive cumulative distribution aligns with the observed outcome. Lower scores suggest better calibrated predictive distributions. Only available when config = TRUE.

B) Model Comparison Metrics (relative to the first model)

The first model in the list is treated as the baseline for model comparisons. All other models are evaluated against it using the following metrics:

- 1. **Difference in DIC and WAIC** Stored as dic_vs_first and waic_vs_first. These represent how much higher (or lower) each model's DIC/WAIC is compared to the first model. Additionally, 95% credible intervals for these differences are stored as *_vs_first_lci and *_vs_first_uci.
- 2. **Difference in MAE and RMSE** Stored as mae_vs_first and rmse_vs_first. These reflect the absolute difference in prediction error compared to the first model. No credible intervals are computed for these metrics.
- 3. Continuous Ranked Probability Score Skill Score (CRPSS)

$$CRPSS = 1 - \frac{CRPS_{model}}{CRPS_{baseline}}$$

Indicates how much better the predictive distribution of the current model is relative to the baseline model. Values closer to 1 indicate improvement; negative values imply worse performance. Available only when config = TRUE.

4. Pseudo R-squared based on deviance

$$R^{2} = 1 - \exp\left(\frac{-2}{n} \left(\frac{dev_{\text{model}}}{-2} - \frac{dev_{\text{base}}}{-2}\right)\right)$$

Captures relative deviance reduction compared to the baseline model. Values range from 0 (no improvement) to 1 (strong improvement).

5. Random Effect Variance

$$Var_{re} = \frac{1}{precision}$$

Quantifies residual variance due to group- or cluster-level effects. Computed only when random effects are defined in the model formula.

6. Proportional Change in Random Effect Variance

$$\frac{\operatorname{Var}_{re}}{\operatorname{Var}_{re}^{(1)}} - 1$$

Represents the relative change in group-level variance compared to the baseline model. Helps assess how much variance is explained by added covariates.

20 fit_models

Value

An object of class GHRmodels containing:

\$mod_gof A data frame of model-specific goodness-of-fit metrics.

\$fitted A list of fitted values (one element per model). If config = TRUE, these are derived from the posterior predictive distribution (PPD); otherwise, they are extracted from INLA's summary.fitted.values.

\$fixed A list of summary tables for fixed effects (one element per model).

\$random A list of summary tables for random effects (one element per model).

\$formulas A character vector of the original model formulas used.

\$re A character vector specifying any random effects defined in formulas.

\$outcome A character string indicating the outcome variable used.

\$data The original data frame passed to the function.

See Also

as_GHRformulas converts a set of R-INLA-compatible formulas into a GHRformulas object.

```
# Load example dataset
data(dengueMS)
# Declare formulas
formulas <- c(</pre>
  "dengue_cases ~ tmin + f(year, model='rw1')",
  "dengue_cases ~ pdsi + f(year, model='rw1')"
)
# Tranform formulas into a 'GHRformulas' object
ghr_formulas <- as_GHRformulas(formulas)</pre>
# Fit multiple models
results <- fit_models(</pre>
 formulas = ghr_formulas,
 data = dengue_MS,
 family = "nbinomial"
 name
           = "TestModel"
 offset = "population",
 nthreads = 2,
 control_compute = list(config = FALSE),
           = TRUE
 pb
)
# Inspect goodness-of-fit metrics
results$mod_gof
```

get_covariates 21

get_covariates	Retrieve Covariates from a GHRmodels Object as a List of Character Vectors

Description

Extracts covariates from a GHRmodels object and returns them as a list of character vectors. If unique = TRUE, the output contains unique covariates across models. If unique = FALSE, the output preserves the original combinations of covariates as specified in the GHRmodels object.

Usage

```
get_covariates(model, unique = TRUE)
```

Arguments

model A GHRmodels object containing fitted models.

unique Logical; if TRUE, returns unique covariates across models. If FALSE, returns

vectors of covariate combinations as declared in the GHRmodels object.

Value

A list of character vectors.

```
# Load example dataset
data(dengueMS)
# Declare formulas
formulas <- c(</pre>
  "dengue_cases ~ tmin + f(year, model='rw1')",
  "dengue_cases ~ pdsi + f(year, model='rw1')"
)
# Tranform formulas into a 'GHRformulas' object
ghr_formulas <- as_GHRformulas(formulas)</pre>
# Fit multiple models
results <- fit_models(</pre>
 formulas = ghr_formulas,
 data
           = dengue_MS,
         = "nbinomial"
 family
           = "TestModel"
 name
 offset
          = "population",
 nthreads = 2,
 control_compute = list(config = FALSE),
           = TRUE
)
```

22 lag_cov

```
# Extract the list of covariates from the models
get_covariates(results)
```

lag_cov

Generate lagged variables for one or more lags

Description

This function creates lagged versions of one or more numeric or categorical variables in an equally spaced time-series data set. A single call can create multiple lags for each selected variable and, optionally, for each spatial/grouping unit.

Usage

```
lag_cov(data, name, time, lag, group = NULL, add = TRUE)
```

Arguments

data	A data.frame containing equally spaced observations.
name	A character vector: name of the variable (or variables) to lag.
time	A single character string: name of the time-index variable (e.g., "date").
lag	A numeric vector of one or more positive integers. Each value is interpreted as a 'lag' (i.e. shift the series backward by k observations).
group	Optional character vector naming column(s) that define independent time-series (e.g. regions). If NULL, the whole data set is treated as one series.
add	Logical. If TRUE (default) the lagged columns are appended to data; if FALSE the function returns only the lagged columns as a matrix.

Value

Either a data frame (when add = TRUE) containing the original data plus the new lagged columns, or a numeric matrix of lagged values (when add = FALSE).

```
## Daily series for two micro-regions
d <- data.frame(
   date = as.Date("2023-01-01") + 0:9,
   micro_code = rep(c("A", "B"), each = 5),
   tmin = rnorm(10, 10, 2),
   pdsi = rnorm(10)
)

## Create lags 1 to 3 for tmin and pdsi
lagged <- lag_cov(</pre>
```

map_MS 23

```
data = d,
name = c("tmin", "pdsi"),
time = "date",
group = "micro_code",
lag = c(1:3)
)

## Only lagged columns (matrix),
lag_only <- lag_cov(
   data = d, name = "tmin", time = "date",
   lag = c(1:3), add = FALSE
)</pre>
```

map_MS

Administrative Map for Municipalities in the Mato Grosso do Sul

Description

A simple feature (sf) multipolygon object representing a map of *Mato Grosso do Sul*, Brazil, including 11 municipalities. See @source for access to the complete data set.

Usage

 map_MS

Format

A simple feature (sf) object including 11 rows and 2 columns:

\$code Unique ID number for each micro region (11 units)

\$geometry geometries of the sf multipolygon

Source

source code on GitHub; source code on Zenodo;

onebasis_inla

Create a One-Dimensional Basis for INLA

Description

This function is a wrapper around onebasis to create a one-dimensional basis for spline modeling. This wrapper enhances the original function by allowing users to specify a custom prefix for the column names using the basis_name argument, such that each set of basis variables can be easily identified in the model formula by the **INLA** framework.

24 plot_coef_crosspred

Usage

```
onebasis_inla(covariate, fun, basis_name, ...)
```

Arguments

covariate A numeric vector representing the covariate

fun A character string specifying the shape function to be used by onebasis.

basis_name A character string giving a base name for the columns in the resulting basis matrix. The default prefix (usually "b") is replaced by this string.

Additional arguments passed to onebasis, such as degree, df, knots, etc.

Value

An object of class "onebasis", as returned by onebasis, with column names modified according to basis_name.

Examples

```
# Import example data set
data("dengue_MS")

# Build a one-dimensional spline basis with a custom name
ob_inla <- onebasis_inla(
    covariate = dengue_MS$tmin,
    fun = "bs",
    basis_name = "tempBasis",
    degree = 2
)

# Check class of the one-basis object
class(ob_inla)

# View first rows of the one-basis matrix
head(ob_inla)</pre>
```

Description

Generate plots from a "crosspred" object. Three plot types are available:

- type = "overall": Shows the overall exposure—response relationship, aggregated across all lags.
- type = "slices": Produces line plots with credible interval ribbons, either across lags (for a fixed var) or across values of var (for a fixed lag).
- type = "heatmap": Displays a two-dimensional heatmap of effects across both var and lag. Not applicable for one-basis models.

plot_coef_crosspred 25

Usage

```
plot_coef_crosspred(
  crosspred,
  type = c("heatmap", "slices", "overall"),
  var = NULL,
 lag = NULL,
  exp = FALSE,
  palette = "-RdBu",
  n_{ag}=0 = 50,
  line_color = "black",
 line_size = 0.7,
 ribbon_color = NULL,
 ribbon_alpha = 0.2,
  title = "",
 ylab = NULL,
 xlab = NULL,
)
```

Arguments

crosspred	An object of class "crosspred" or "GHR_crosspred", produced by crosspred or crosspred_inla.
type	Character string. Options: "overall", "slices", or "heatmap".
var	Optional numeric vector of exposure values (used when type = "slices" to plot across lags).
lag	Optional numeric vector of lag values (used when type = "slices" to plot across variables).
exp	Logical. If TRUE, exponentiates the results (e.g., for log or logit links).
palette	Character string for heatmap palette when type = "heatmap". Options: GHR, RColorBrewer or colorspace palette (e.g. "Purp").
n_lag_smooth	Integer, number of interpolation points along lag for heatmap smoothing (default = 50).
line_color	Character string. Line color when type = "slices" or type = "overall". Default is "black".
line_size	Numeric. Line width (default = 0.7).
ribbon_color	Character string. Color for credible interval ribbons. Defaults to line_color.
ribbon_alpha	Numeric. Alpha transparency for ribbons (default = 0.2).
title	Character string. Plot title.
ylab	Character string. Label for y-axis.
xlab	Character string. Label for x-axis.
	Additional arguments passed to ggplot2 functions.

26 plot_coef_lin

Value

A ggplot object for the specified plot type.

See Also

```
crosspred
```

```
# Load example GHRmodels object from the package
model_dlnm_file <- system.file("examples", "model_dlnm.rds", package = "GHRmodel")</pre>
model_dlnm <- readRDS(model_dlnm_file)</pre>
# Load example cross-basis matrix from the package: 2-dimensional cross-basis matrix of the
# non-linear effect of dengue risk across tmin values and lags:
cb_tmin_file <- system.file("examples","cb_tmin.rds", package = "GHRmodel")</pre>
cb_tmin <- readRDS(cb_tmin_file) # loads cross-basis matrix into the environment
# Generate predictions
pred_result <- crosspred_inla(</pre>
 models
          = model_dlnm,
 basis
         = cb_tmin,
 mod_id = "mod3"
          = seq(17, 24, by = 1), # e.g., temperature sequence
 at
          = 2,
 lag
          = 20,
 cen
 ci.level = 0.95
# Plot DLNM predictions
plot_coef_crosspred(
crosspred = pred_result,  # Crosspred object with model predictions
type = "slices", # Plot temperature-specific slices of exposure-response curves
exp = TRUE,
                         # Exponentiate the coefficients (to relative risk scale)
var = c(22:24),
                         # Display results for temperature 22°C to 24°C
line_color = "red",
                         # Red color for the lines representing effect estimates
line_size = 0.8,
                         # Line thickness set to 0.8 for better visibility
ribbon_color = "red",
                        # Red shading for credible interval ribbons
ribbon_alpha = 0.3,
                           # Set ribbon transparency to 30%
title = "Effect of minimum temperatures 22°C to 23°C on dengue relative risk by lag",
xlab = "Lag",
                           # Label for the x-axis (exposure variable)
ylab = "Relative Risk (RR)" # Label for the y-axis (effect estimate scale)
)
```

plot_coef_lin 27

Description

This function extracts fixed-effect coefficients from a specified model in models, filters them by name or interaction pattern, and produces a forest plot (point estimates with error bars).

- If name = NULL, all fixed-effect terms (excluding the intercept) are shown.
- If name is a character vector, only the matching terms are included.

Usage

```
plot_coef_lin(
  models,
  mod_id = NULL,
  name = NULL,
  pattern = NULL,
  title = NULL,
  mod_label = NULL,
  var_label = NULL,
  palette = "IDE2",
  exp = FALSE,
  legend = "Model"
)
```

Arguments

models	An object of class GHRmodels containing fitted model output.
mod_id	Character vector of model identifiers (must match entries in model\$mod_gof\$model_id). If NULL (the default), all models are considered.
name	A character vector specifying exact linear covariates names to be plotted. If both pattern and name are NULL (the default), all terms (except (Intercept)) are plotted.
pattern	A character vector specifying prefix(es) to match (e.g., "tmin" matches "tmin", "tmin.11", etc.) Covariates matching these patterns (case-insensitive search) will be plotted. If both pattern and name are NULL (the default), all terms (except (Intercept)) are plotted.
title	An optional string specifying an overall plot title.
mod_label	An optional named character vector mapping model names to custom labels, e.g. c("mod1" = "Model 1"). Any model not found in the vector names retains its original label.
var_label	An optional named character vector mapping variable (or interaction) names to custom labels. Interaction matching is order-insensitive: "A:B" matches "B:A". Any term not found in the vector names retains its original label.
palette	GHR, RColorBrewer or colorspace palette (e.g. "Purp") colour palette to use for the different models. See all available options by running GHR_palettes(), RColorBrewer::display.brewer.all() and colorspace::hcl_palettes(plot=TRUE). Single R colors in colors() or hex codes can also be used.
exp	Logical, if TRUE the coefficients are exponentiated, Default is if FALSE.
legend	Legend title for the replicate color scale. Default is "Model".

28 plot_coef_nl

Details

Intercept By default, (Intercept) is excluded unless explicitly included in name.

Individual terms e.g., "temp".

Interaction Terms e.g. "temp:precip". Split by :, sorted, and compared setwise; for example, "temp:precip" matches "precip:temp".

Labels If var_label is supplied, any matched covariate or interaction string is replaced by its custom label on the y-axis.

Value

A **ggplot2** forest plot object (class ggplot).

See Also

geom_pointrange for the plotting environment.

Examples

plot_coef_nl

Plot Nonlinear Effects from a GHRmodels Object

Description

Generates plots of nonlinear effects from one or more fitted models contained within a GHRmodels object. The function supports two main display modes:

- Grid (when collapse = FALSE): one plot per covariate and model, with effects by column and models by row.
 - If multiple models are specified, the user must provide either name or pattern to select which nonlinear effects to plot.
 - If only one model is selected and both name and pattern are NULL, all nonlinear effects in the model will be plotted.

plot_coef_nl 29

• Collapsed (when collapse = TRUE): one non-linear effect combined across models into a single panel.

- The user must explicitly specify the exact variable name using name. It only accepts one covariate name.
- Collapse mode can only be used when the selected effect is not replicated (that is, does not have the format f(covariate, model = ..., replicate = group)) If replication is detected, an error will be thrown.

Usage

```
plot_coef_nl(
 models,
 mod_id,
 mod_label = NULL,
  name = NULL,
  pattern = NULL,
  title = NULL,
  var_label = NULL,
  palette = "IDE2",
  xlim = NULL,
 ylab = NULL,
  xlab = NULL,
  histogram = FALSE,
  legend = NULL,
  hist_fill = "grey",
  rug = FALSE,
  collapse = FALSE,
  exp = FALSE
)
```

Arguments

models	A GHRmodels object containing fitted model outputs.
mod_id	Integer vector specifying which model(s) to plot (as indexed in model\$models).
mod_label	An optional named character vector mapping model names to custom labels, e.g. c("mod1" = "Model 1"). Any model not found in the vector names retains its original label.
name	Optional character vector of variable names (as used in inla.group()) to select specific nonlinear effects. Required for collapse mode.
pattern	Optional regular expression pattern to match effect names. Used to select non-linear effects when name is not provided.
title	Optional overall title for the plot.
var_label	Optional named character vector providing custom labels for each nonlinear variable. Names must match the variable names (e.g., used in $inla.group(x)$), not full effect names.
palette	Name of the color palette to use (passed to GHR_palette). Default is "IDE2".

plot_coef_nl

xlim	Optional named list specifying x-axis limits for each effect. Each element should be a numeric vector of length 2: $list(var1 = c(min, max), var2 = c(min, max))$. Variable names must match those used in inla.group().
ylab	Optional y-axis label. If NULL, defaults to "Effect size".
xlab	Optional x-axis label. If NULL, defaults to " <variable> values". If explicitly set to NULL, no x-axis label will be shown.</variable>
histogram	Logical; if TRUE (default), includes a histogram below each partial-effect plot.
legend	Legend title for the replicate color scale (if multi-replicate effects are present). Default is "Replicate".
hist_fill	Fill color for histogram bars. Default is "grey".
rug	Include a rug plot in the x-axis. Default is FALSE.
collapse	Logical; if TRUE, attempts to collapse plots across models to show one plot per variable. This requires that selected nonlinear effect is not replicated (i.e. the covariate is not in the format f(covariate, model =, replicate = group))
exp	Logical, if TRUE the coefficients are exponentiated, Default is if FALSE.

Value

A ggplot or cowplot object, depending on the plotting mode.

plot_coef_varying 31

from a GHRmodels object.	plot_coef_varying	Produce a Forest Plot for a Spatially or Temporally Varying Effects from a GHRmodels object.
--------------------------	-------------------	--

Description

Generates a forest plot for a specified spatially or temporally varying coefficient (i.e. a random slope) from a fitted GHRmodels object. The plot displays the effect estimates (x-axis) for each spatial/temporal unit (y-axis).

Usage

```
plot_coef_varying(
  models,
  mod_id,
  name,
  unit_label = NULL,
  palette = "IDE2",
  title = NULL,
  xlab = "Effect size",
  ylab = NULL,
  exp = FALSE
)
```

Arguments

models	A GHRmodels object containing fitted model output.
mod_id	A character specifying which model to be plotted (as in models\$mod_gof\$model_id).
name	A character string naming the spatially or temporally varying coefficient to plot. This should match a random effect name in models\$random[[mod_id]].
unit_label	Optional named character vector providing custom labels for each spatial/temporal unit.
palette	Character string for the GHR, RColorBrewer or colorspace palette (e.g. "Purp") colour palette to use for the different models. See all available options by running GHR_palettes(), RColorBrewer::display.brewer.all() and colorspace::hcl_palettes(plosingle R colors in colors() or hex codes can also be used.
title	Optional string for the plot title.
xlab	Optional character string for the x-axis label (default = "Effect size").
ylab	Optional character string for the y-axis label (default constructed from varying

Value

exp

A ggplot2 forest plot object representing the spatially or temporally varying effect, with each line corresponding to a different spatial or temporal unit.

 $Logical, if \ \mathsf{TRUE} \ the \ coefficients \ are \ exponentiated, \ Default \ is \ if \ \mathsf{FALSE}.$

covariate name).

32 plot_fit

Examples

```
# Load example GHRmodels object from the package:
model_cov_list_file <- system.file("examples", "model_cov_list.rds", package = "GHRmodel")</pre>
model_cov_list <- readRDS(model_cov_list_file)</pre>
plot_coef_varying(
 models = model_cov_list,
                                         # A list of fitted INLA model objects
 mod_id = "mod8",
                                         # Select the model with varying slopes
 palette = "Blues",
                                         # Color palette for the plot
 name = "main_climate_f",
                                         # The grouping variable
 title = "Effect of PDSI at one-month lag for each climate zone", # Plot title
 ylab = "Main climate zones",
                                         # Label for the y-axis
                                          # Map factor levels to descriptive names
 unit_label = c(
    "1" = "Tropical Rainforest Climate",
    "2" = "Tropical Monsoon Climate",
    "3" = "Tropical Savanna Climate with Dry Winter",
    "4" = "Humid Subtropical Climate")
)
```

plot_fit

Plot Observed vs. Fitted Cases

Description

This function creates a time-series plot comparing observed cases with fitted values from one or more models in a GHRmodels object. The plot supports faceting by model and/or group.

Usage

```
plot_fit(
 models = NULL,
 mod_id = NULL,
  time = NULL,
  group = NULL,
  group_id = NULL,
 mod_label = NULL,
 mod_facet = FALSE,
  palette = "IDE2",
  ref_color = NULL,
  obs_color = NULL,
  obs_label = NULL,
  title = "",
  ci = FALSE,
  transform = "identity",
  xlab = "Time",
```

plot_fit 33

```
ylab = "Cases",
xlim = NULL,
legend = "Model"
)
```

Arguments

models	A GHRmodels object containing fitted model output.
mod_id	$Character\ vector\ of\ model\ identifiers\ (from\ models\$mod_gof\$model_id)\ to\ plot.$
time	Character; name of the time-variable column in models\$data.
group	Optional; character name of the column defining independent time series (e.g., spatial areas).
group_id	Optional vector of specific group values to subset if group is provided.
mod_label	Optional custom labels for each model. Can be a named vector (e.g., c("mod1" = "Base")) or an unnamed vector with the same length and order as mod_id.
mod_facet	Logical; if TRUE, faceting is applied by model. Can be combined with group.
palette	Character; name of the color palette for fitted lines. Default is "IDE2".
ref_color	Optional color to override the first model's line (reference model).
obs_color	Color for observed data line. Default is "black".
obs_label	Legend label for observed data. Default is "Observed".
title	Character; title of the plot.
ci	Logical; if TRUE, adds 95% credible interval ribbons for model fits.
transform	Character string for y-axis transformation. Defaults to "identity" (no transform). Other options include "log10p1", "log1p", "sqrt", etc.
xlab	Label for the x-axis. Default is "Time".
ylab	Label for the y-axis. Default is "Cases".
xlim	Character vector of length two in "yyyy-mm-dd" format (e.g., c ("2010-01-01", "2020-12-31")). Use NA to leave one side open (e.g., c ("2015-01-01", NA)).
legend	Legend title for model lines. Default is "Model".

Details

- Faceting is flexible: if mod_facet = TRUE and group is provided, both are used.
- If ci = TRUE, ribbons are plotted for fitted model uncertainty.
- mod_label, ref_color, and obs_color allow full customization of the legend.
- The function automatically sums values across replicates for grouped time series.

Value

A ggplot2 object:

- Time-series line plot of observed vs fitted cases
- Optionally includes credible intervals and facets by model or group
- X-axis can be limited by xlim; Y-axis can be transformed for readability

plot_gof

See Also

fit_models to generate GHRmodels.

Examples

```
# Load example GHRmodels object from the package:
model_list_file <- system.file("examples", "model_list.rds", package = "GHRmodel")</pre>
model_list <- readRDS(model_list_file)</pre>
# Plot observed vs. fitted cases over time for three selected models
plot_fit(
 models = model_list,
                                         # A GHRmodels object containing the fitted models
                                                # Vector of model IDs to plot
 mod_id = c("mod1", "mod3", "mod5"),
 mod_label = c("Baseline",
                                                # Custom display names
                "tmin.l1.nl",
                "pdsi.l1.nl_tmin.l1.nl"),
 ref_color = "grey",
                                                # Color for the reference model
 time = "date",
                                                # Name of the time variable
 palette = "Set2".
                                                # Color palette for fitted lines
 xlim = c("2010-01-01", "2020-01-01"),
                                                # Limit x-axis to this date range
 title = "Fitted vs Observed"
                                                # Main plot title
)
```

plot_gof

Plot Models by Goodness-of-Fit

Description

Provides visualization of model performance using selected goodness-of-fit (GoF) metrics for one or more models. It is typically used with the mod_gof component of a GHRmodels object (produced by fit_models), but it can also accept any custom data frame — provided it contains the same column names as the default mod_gof output (including model_id and the relevant metric column names). It supports visual grouping by aesthetics (color, shape, facet), arranging models by metric, and adding credible intervals for model differences.

Usage

```
plot_gof(
  mod_gof,
  metric = "dic",
  mod_id = NULL,
  mod_label = NULL,
  ci = FALSE,
  var_arrange = NULL,
  var_color = NULL,
  var_shape = NULL,
```

plot_gof 35

```
var_facet = NULL,
palette = "IDE2"
)
```

Arguments

mod_gof	A data frame containing goodness-of-fit statistics for each model. Typically this is the mod_gof component of a GHRmodels object. It must include at least a model_id column and the selected metric. Other columns can be used for aesthetics (e.g., color, shape).
metric	 Character string specifying the GoF metric to plot. Common options include: "dic", "waic", "lms", "mae", "rmse", "crps", "rsq" Differences from baseline: "dic_vs_first", "waic_vs_first", "mae_vs_first", etc. Random effect variances: "re_n_var", "re_n_var_change", where n is an index.
mod_id	Optional character vector of model IDs to include. If NULL, includes all in mod_gof.
mod_label	Optional named or unnamed vector to customize display names for models. If unnamed, must match the order of mod_id.
ci	Logical. If TRUE, adds credible intervals for "*_vs_first" metrics (if available).
var_arrange	Character string for a column name used to order models along the x-axis. Defaults to "model_id" order if NULL.
var_color	Optional; name of a column in mod_gof to use for color grouping.
var_shape	Optional; name of a column in mod_gof to use for point shape grouping.
var_facet	Optional; name of a column in mod_gof to use for faceting the plot.
palette	Character; name of a color palette to use if var_color is provided. Default is "IDE2".

Details

This function helps interpret and visualize comparative model performance:

- Relative metrics (e.g., "*_vs_first") assume the first model is a reference.
- If ci = TRUE, the function looks for columns like "dic_vs_first_lci" and "_uci".
- The user can customize model order with var_arrange and legend groupings using var_color, etc.

Value

A ggplot2 object showing the specified metric for each model, optionally grouped and faceted. The plot supports:

- Ranking or sorting models by a specified variable
- Highlighting credible intervals for relative metrics (e.g. "dic_vs_first")
- Group-level comparisons via color, shape, and facet aesthetics

36 plot_ppd

See Also

fit_models for fitting multiple INLA models.

Examples

plot_ppd

Plot Posterior Predictive Densities Versus Observed Data

Description

This function draws kernel-density curves for posterior-predictive samples and observed data using ggplot2::geom_line(). Each predictive sample's density is plotted in light blue; the observed density is overlaid in black.

Usage

```
plot_ppd(
   ppd,
   xlab = "Outcome",
   ylab = "Density",
   title = "Posterior Predictive Distribution",
   xlim = NULL,
   obs_color = NULL,
   ppd_color = NULL
)
```

Arguments

ppd	A data. frame containing posterior-predictive samples (one column per sample) and the column with observed data.
xlab	Character: x-axis label. Default "Outcome".
ylab	Character: y-axis label. Default "Density".

plot_ppd 37

title	Character: plot title. Default "Posterior Predictive Distribution".
xlim	Numeric vector of length 2 giving the minimum and maximum x-axis values, e.g. $c(0, 25)$. If NULL (default) the limits are $c(0, quantile(observed, 0.95))$.
obs_color	Color for the observed line density
ppd_color	Color for the posterior predictive distribution lines density

Value

A ggplot2 plot object.

Examples

```
# Load example dataset
data(dengueMS)
# Declare formulas
formulas <- c("dengue_cases ~ tmin + f(year, model='rw1')")</pre>
# Tranform formulas into a 'GHRformulas' object
ghr_formula <- as_GHRformulas(formulas)</pre>
# Fit multiple models
results <- fit_models(</pre>
  formulas = ghr_formula,
        = dengue_MS[dengue_MS$year %in% 2005:2010,],
  family = "nbinomial",
          = "model",
  name
  offset = "population",
 nthreads = 2,
 control_compute = list(config = FALSE),
           = TRUE
)
# Generate 100 samples from the posterior predictive distribution of the model
ppd_df <- sample_ppd(</pre>
  results,
  mod_id = "model1",
  s = 100,
  nthreads = 2)
# Plot densities of the posterior predictive distribution and observed cases.
plot_ppd(ppd_df, obs_color = "blue", ppd_color = "red")
```

38 plot_re

plot_re

Plot Random Effects

Description

Generates plots of random effects from one or more fitted models contained within a GHRmodels object. The function supports two main display modes:

- Caterpillar plot of effect sizes with uncertainty intervals (the default).
- Choropleth map (when a spatial map (sf object) is provided in the map argument).

It also supports visualization of replicated or grouped effects via the rep_id argument.

Usage

```
plot_re(
 models,
 mod_id,
  re_id,
  rep_id = NULL,
 map = NULL,
 map_area = NULL,
 mod_label = NULL,
  re_label = NULL,
  rep_label = NULL,
  ref_color = NULL,
  palette = NULL,
  var_arrange = "ID",
  title = "",
  xlab = "Re ID",
  ylab = "Effect Size",
  legend = "Effect Size",
  centering = 0,
  exp = FALSE
)
```

Arguments

models	A GHRmodels object containing fitted models and random effects.
mod_id	$Character\ vector\ of\ model\ IDs\ to\ plot\ (must\ match\ entries\ in\ models\$mod_gof\$model_id).$
re_id	Character; name of the variable defining the random effect (from models\$re).
rep_id	Optional character string; name of a grouping variable if random effects are replicated. Default is NULL.
map	Optional sf object providing spatial geometry. If NULL, returns a caterpillar plot.
map_area	Character; column name in map indicating spatial units (must match re_id order).

plot_re 39

mod_label	Optional labels for models. Can be a named vector (e.g., $c("mod1" = "Baseline", "mod2" = "Adjusted"))$ or an unnamed vector with the same order as mod_id.
re_label	Optional; variable in the data to label the random effect units (e.g., year names instead of numeric IDs).
rep_label	Optional; label for replicated grouping variable (e.g., for years or time periods).
ref_color	Color used for the reference model. If specified, this will apply to the first model in mod_id.
palette	Character; name of the color palette to use. Defaults to "IDE1" for maps and "IDE2" otherwise.
var_arrange	Character; how to arrange REs on the x-axis. Options: "median" or " \mbox{ID} ". Default is " \mbox{ID} ".
title	Title for the plot.
xlab	Label for the x-axis. Default is "Re ID".
ylab	Label for the y-axis. Default is "Effect Size".
legend	Label for the legend in map plots. Default is "Effect Size".
centering	Value at which to center the color scale for map plots. Default is 0.
exp	Logical; if TRUE, exponentiates the effects (useful for log-scale models). Default is FALSE.

Details

Plot Random Effects from GHRmodels

- If map is used, map_area must match a column in map and correspond in order to the RE unit.
- For BYM/BYM2 models, only the total random effect is plotted (structured/unstructured parts are merged).
- When no map is used, the plot compares models via colored points and intervals for each RE unit.
- Replicated REs (e.g., for years) can be plotted across facets using rep_label.
- Model comparison is visually aided using distinct colors; the first model in mod_id is the reference.

Value

A ggplot2 plot object:

- If map is NULL, returns a caterpillar plot showing median REs with 95% uncertainty intervals.
- If map is provided, returns a faceted choropleth map showing RE medians by area and (optionally) replicate.

See Also

fit_models for model fitting; as_GHRformulas for formula setup.

40 rank_models

Examples

```
# Load example GHRmodels object from the package:
model_list_file <- system.file("examples", "model_list.rds", package = "GHRmodel")</pre>
model_list <- readRDS(model_list_file)</pre>
# Plot the estimated yearly random effects for three different models.
plot_re(
 model = model_list,
                                                # A GHRmodels object
 mod_id = c("mod1", "mod3", "mod5"),
                                                # IDs of the models
 mod_label = c("Baseline",
                                                # Custom labels for the models
                "tmin.l1_nl",
                "pdsi.l1_nl + tmin.l1_nl"),
 re_id = "year_id",
                                                # Name of the random effect variable
 re_label = "year",
                                                # Label to map year_id to calendar years
 ref_color = "grey",
                                                # Color for the reference model's effects
 palette = "IDE2",
                                                # Color for other model effects
 title = "Yearly Random Effect",
                                                # Title for the plot
 xlab = "Year"
                                                # Label for the x-axis
)
```

rank_models

Rank Models by Goodness-of-Fit

Description

This function ranks fitted models in a GHRmodels object by a chosen metric (e.g., dic, waic, crps, etc.).

Usage

```
rank_models(models, metric = "dic", n = 10)
```

Arguments

models A GHRmodels object containing fitted model output.

A character string indicating which goodness-of-fit metric to use for ranking. One of: "dic", "waic", "lms", "mae", "rmse", "crps", "rsq", "dic_vs_first", "waic_vs_first", "mae_vs_first", "rmse_vs_first", "crps_vs_first", "re_n_var", and "re_n_var_change" (where n is the number of random ef-

fect, for ex. re_1_var, re_1_var_change).

An integer specifying how many top-ranked models to return (default 10).

Value

n

A character vector of the top model IDs (in ascending order of the specified metric).

sample_ppd 41

See Also

fit_models for fitting multiple INLA models.

Examples

```
# Load example GHRmodels object from the package:
model_list_file <- system.file("examples", "model_list.rds", package = "GHRmodel")
model_list <- readRDS(model_list_file)

# Get a list of the 5 best models by DIC
top_model_dic <- rank_models(
    models = model_list,
    metric = "dic",
    n = 5
)
top_model_dic</pre>
```

sample_ppd

Sample from the Posterior Predictive Distribution

Description

This function refits a specified model from a GHRmodels object and generates samples from its posterior predictive distribution.

Usage

```
sample_ppd(models, mod_id, s = 1000, nthreads = 8)
```

Arguments

models	A GHRmodels object.
mod_id	Character; model identifier (from models\$mod_gof\$model_id).
S	An integer specifying the number of samples to draw from the posterior predictive distribution.
nthreads	An integer specifying the number of threads for parallel computation to refit the model. Default is 8.

Value

A data.frame containing columns for each of the posterior predictive samples and one column with observed data.

42 stack_models

Examples

```
# Load example dataset
data(dengueMS)
# Declare formulas
formulas <- c("dengue_cases ~ tmin + f(year, model='rw1')")</pre>
# Tranform formulas into a 'GHRformulas' object
ghr_formula <- as_GHRformulas(formulas)</pre>
# Fit multiple models
results <- fit_models(
  formulas = ghr_formula,
          = dengue_MS[dengue_MS$year %in% 2005:2010,],
  family = "nbinomial",
  name
           = "model",
  offset = "population",
  nthreads = 2,
  control_compute = list(config = FALSE),
           = TRUE
  pb
# Generate 100 samples from the posterior predictive distribution of the model
ppd_df <- sample_ppd(</pre>
  results,
  mod_id = "model1",
  s = 100,
  nthreads = 2)
```

stack_models

Merge GHRmodels

Description

This function stack together two or more objects GHRmodels object, returning **one** GHRmodels object that contains *all* the input models.

If **any** model_id is duplicated across the inputs the new_name argument must be provided to ensure unique IDs.

Usage

```
stack_models(..., new_name = NULL, vs_first = FALSE)
```

Arguments

.. Two or more GHRmodels objects, or a single list of them.

subset_models 43

new_name NULL (default) **or** a character used to build the new model IDs.

vs_first Logical. If TRUE columns comparing the model vs the first model are kept in

the mod_gof , otherwise are discarded. Default is FALSE. Set to TRUE only when models contained in the GHRmodels object to be stacked are compared

with the same first models.

Details

Combine (Stack) Multiple GHRmodels Objects

Value

A single GHRmodels object containing all models from the inputs.

See Also

subset_models for subsetting GHRmodels objects, fit_models for fitting INLA models.

Examples

```
# Load example GHRmodels object from the package:
model_list_file <- system.file("examples", "model_list.rds", package = "GHRmodel")
model_list <- readRDS(model_list_file)

# Load example GHRmodels object with DLNM from the package:
model_dlnm_file <- system.file("examples", "model_dlnm.rds", package = "GHRmodel")
model_dlnm <- readRDS(model_dlnm_file)

# Merge models from the model_list and model_dlnm objects
model_stack <- stack_models(
    model_list,
    model_dlnm,
    new_name = "mod")

# The combined model_stack combines the models in the model_list and model_dlnm objects
model_stack$mod_gof$model_id</pre>
```

subset_models

Subset GHRmodels Objects

Description

This function subsets selected models from a GHRmodels object into a new reduced GHRmodels object.

subset_models

Usage

```
subset_models(models, mod_id, new_name = NULL)
```

Arguments

models A GHRmodels object.

mod_id A character vector of model IDs indicating which model(s) to keep. These must

 $match \ models \$ mod_gof\$ model_id.$

new_name NULL (default) **or** a character used to build the new model IDs.

Value

A new GHRmodels object containing only the specified model(s).

See Also

stack_models for combining GHR models objects, fit_models for fitting INLA models.

Examples

```
# Load example GHRmodels object from the package:
model_list_file <- system.file("examples", "model_list.rds", package = "GHRmodel")</pre>
model_list <- readRDS(model_list_file)</pre>
# Extract a vector with the moded IDs of the 2 best fitting models by WAIC
best_waic <- rank_models(</pre>
  models = model_list, # GHRmodels object containing model fit results
 metric = "waic",
                        # Metric used to rank models (lower WAIC is better)
  n = 2
                        # Number of top-ranked models to return
)
# The output is a vector
best_waic
# Subset those specific models and assign new IDs
model_waic <- subset_models(</pre>
  model = model_list,
  mod_id = best_waic,
  new_name = "best_waic"
)
# Check output subset model names
model_waic$mod_gof$model_id
```

write_inla_formulas 45

Description

This function streamlines the creation of INLA-compatible model formulas by automatically structuring fixed effects, random effects, and interactions. It accepts a list of covariate sets and produces a corresponding set of model formulas that share a common random effect structure.

Usage

```
write_inla_formulas(
  outcome,
  covariates = NULL,
  baseline = TRUE,
  re1 = list(id = NULL, model = NULL, replicate = NULL, group = NULL, graph = NULL,
    cyclic = FALSE, scale.model = FALSE, constr = FALSE, adjust.for.con.comp = FALSE,
    hyper = NULL),
  re2 = NULL,
  re3 = NULL,
  re4 = NULL,
  re5 = NULL
)
```

Arguments

outcome	Character string specifying the name of the outcome variable.
covariates	A list of character vectors, where each vector contains covariate names to be included in the model. If a single vector is provided, a single model formula is generated.
baseline	Logical; If TRUE, a baseline formula without covariates is included. If no random effects are specified, this will be an intercept-only model. If random effects are specified, the baseline formula will include random effects but not covariates. This formula will be the first in the list. Default is TRUE.
re1	A list defining a random effect structure. Up to five such lists (re1 through re5) can be passed.
re2	Additional random effect definitions, as described for re1.
re3	Additional random effect definitions, as described for re1.
re4	Additional random effect definitions, as described for re1.
re5	Additional random effect definitions, as described for re1.

46 write_inla_formulas

Details

The write_inla_formulas() function simplifies the creation of multiple INLA models by automatically structuring fixed effects, random effects, and interactions. The function ensures that all models have a consistent structure, making them easier to analyze and modify.

If baseline = TRUE, a null formula (without covariates) is included as the first element of the list.

The number of formulas generated depends on the length of the covariates list.

Random effects can be added using re1, ..., re5, where each effect must be a named list (e.g. $re1 = list(id = "year_id", model = "rw1")$). In the list the following fields are strictly necessary:

- id (character): the variable name that indexes the random effect (e.g., "year", "region").
- model (character): the type of random effect. Supported values include: "iid", "rw1", "rw2", "bym", and "bym2".
- The following optional fields can be provided in the random effect list:
 - replicate (*character*): defines an additional variable used to replicate the random effect structure across groups (e.g., spatial units for repeated time-series).
 - group (character): used to model group-specific effects or nested structures.
 - graph (character): required for "bym" and "bym2" models; refers to the name of an object in the environment that holds the spatial adjacency matrix.
 - cyclic (logical): indicates whether the random walk ("rw1" or "rw2") is cyclic. Default is FALSE. Use for periodic structures (e.g., months).
 - scale.model (logical): if TRUE, scales structured random effects (like rw1, rw2, bym) so
 the generalized variance is 1. For bym2 INLA automatically applies scale.model = TRUE
 internally.
 - constr (logical): If TRUE, a sum to zero constrain is introduced. This 'constr' option is applied only to 'iid' random effects. For rw, ar, bym, bym2 INLA automatically applies scale.model = TRUE internally.
 - adjust.for.con.comp (logical): if TRUE, accounts for disconnected components in spatial graphs. Recommended for "bym" and "bym2". Default is FALSE.
 - hyper (character): the name of an object in the environment that contains the hyperprior specification for the random effect's precision or other parameters.

For more information on random effects in R-INLA, see Bayesian inference with INLA: Mixed-effects Models.

Value

A character vector of INLA model formulas.

See Also

as_GHRformulas for transforming model formulas into structured objects.

write_inla_formulas 47

Examples

```
# Define covariates of interest
covs <- c("tmin.l1", "tmin.l2", "pdsi.l1", "pdsi.l2", "urban_level")</pre>
# Combine covariate names using a pattern-matching functionality
combined_covariates <- cov_multi(</pre>
  covariates = covs,
  pattern = c("tmin", "pdsi", "urban_level")
# Define hyperprior specifications for random effects
prior_re1 \leftarrow list(prec = list(prior = "loggamma", param = c(0.01, 0.01)))
prior_re2 <- list(prec = list(prior = "loggamma", param = c(0.01, 0.01)))</pre>
prior_re3 <- list(</pre>
 prec = list(prior = "pc.prec", param = c(0.5 / 0.31, 0.01)),
  phi = list(prior = "pc", param = c(0.5, 2 / 3))
)
# Write a set of INLA-compatible model formulas
inla_formulas <- write_inla_formulas(</pre>
  outcome = "dengue_cases",
  covariates = combined_covariates,
  re1 = list(
             = "month_id",
   id
   model
                 = "rw1",
   cyclic = TRUE,
   hyper = "prior_re1",
   replicate = "spat_meso_id"
  ),
  re2 = list(
   id = "year_id",
   model = "rw1",
   hyper = "prior_re2"
  ),
  re3 = list(
   id = "spat_id",
   model = "iid",
   hyper = "prior_re3"
  ),
  baseline = TRUE
)
```

Index

```
* datasets
                                                  plot_fit, 32
    dengue_MS, 14
                                                  plot_gof, 34
    dengue_SP, 15
                                                  plot_ppd, 36
    map_MS, 23
                                                  plot_re, 38
as_GHRformulas, 3, 20, 39, 46
                                                  rank_models, 40
                                                  sample_ppd, 41
cov_add, 4, 16
                                                  stack_models, 42, 44
cov_interact, 5, 16
                                                  subset_models, 43, 43
cov_multi, 4, 5, 6, 7, 9, 16
cov_nl, 6, 7, 16
                                                  write_inla_formulas, 3-10, 45
cov_uni, 5-7, 8, 9, 16
cov_varying, 9, 16
crossbasis, 11
crossbasis_inla, 10, 12
crosspred, 13, 25, 26
crosspred_inla, 12, 25
dengue_MS, 14
dengue_SP, 15
dlnm::crossbasis, 10, 11
dlnm::crosspred, 12, 13
extract_names, 6, 9, 16
fit_models, 3, 17, 34, 36, 39, 41, 43, 44
geom_pointrange, 28
get\_covariates, 21
lag_cov, 11, 22
map_MS, 23
onebasis, 23, 24
onebasis_inla, 12, 23
plot_coef_crosspred, 24
plot_coef_lin, 26
plot_coef_nl, 28
plot_coef_varying, 31
```