Package 'KinMixLite'

July 21, 2025

Type Package

Title Inference About Relationships from DNA Mixtures

Version 2.2.0

Date 2025-07-15

Maintainer Peter Green <P.J.Green@bristol.ac.uk>

Description Methods for inference about/under complex relationships using

peak height data from DNA mixtures: the most basic example would be testing whether a contributor to

a mixture is the father of a child of known genotype. This provides most of the functionality of the 'KinMix' package, but with some loss of efficiency and restriction on problem size, as the latter uses 'RHugin' as the Bayes net engine, while this package uses 'gRain'. The package implements the methods introduced in Green, P. J. and Mortera, J. (2017) <doi:10.1016/j.fsigen.2017.02.001> and

Green, P. J. and Mortera, J. (2021) <doi:10.1111/rssc.12498>.

License GPL (≥ 2)

Depends DNAmixturesLite, gRaven

Imports statnet.common, gRbase, Rsolnp, numDeriv, Matrix, ribd, pedtools, methods

URL https://petergreen5678.github.io/research/software/kinmix.html

NeedsCompilation no

Author Peter Green [aut, cre]

Repository CRAN

Date/Publication 2025-07-15 11:40:12 UTC

Contents

KinMixLite-package	
add.child.meiosis.nodes	4
add.motherchild.likd.node	5
add.relative.likd.node	6
as.gt	7

checkdata
checkpeaks
convertIBD
delete.DQnodes
emperors
expr.make.findings
formats
gt2aca
intoMix
KinMix 15
logL.UKX
logLX
loop.rpt.IBD
make.profile
mixMLX
pedigreeIBD
plot.IBD
protected
protected.mixML
require.compiled
rGTs
rni
rpt.AMEL
rpt.IBD
rpt.UAF
size
test2data
wlr
38

KinMixLite-package Inference About Relationships from DNA Mixtures

Description

Index

Methods for inference about/under complex relationships using peak height data from DNA mixtures: the most basic example would be testing whether a contributor to a mixture is the father of a child of known genotype. This provides most of the functionality of the 'KinMix' package, but with some loss of efficiency and restriction on problem size, as the latter uses 'RHugin' as the Bayes net engine, while this package uses 'gRain'. The package implements the methods introduced in Green, P. J. and Mortera, J. (2017) <doi:10.1016/j.fsigen.2017.02.001> and Green, P. J. and Mortera, J. (2021) <doi:10.1111/rssc.12498>.

Details

This package is a toolkit for inference about mixtures and familial relationships, either between contributors or between a contributor and other typed individuals. It extends the functionality proposed in Green and Mortera (2017) by allowing more general relationships, specified in general by an IBD pattern distribution - the generalisation to more than two individuals of the coefficients of identity of Jacquard (1974). Details are in the paper by Green and Mortera (2021). KinMixLite extends the capability of the **DNAmixturesLite** package, and intimately relies on that package; as with that package, instead of the **RHugin** package, it uses **gRaven** and **gRain** for Bayes Net calculations. This version implements the ALN, MBN and WLR as well as RPT methods; see Green and Mortera (2017).

Formats

See formats for formats of the various data objects used in this package.

Author(s)

Maintainer: Peter Green <P.J.Green@bristol.ac.uk>

References

Green, P. J. and Mortera, J. (2017). Paternity testing and other inference about relationships from DNA mixtures. *Forensic Science International: Genetics*. <doi:10.1016/j.fsigen.2017.02.001>.

Green, P. J. and Mortera, J. (2021). Inference about complex relationships using peak height data from DNA mixtures. *Applied Statistics*. <doi:10.1111/rssc.12498>.

Jacquard, A. (1974) The genetic structure of populations. Springer-Verlag.

See Also

DNAmixturesLite

Examples

```
require(ribd)
data(test2data)
data(NGMDyes)
```

C<-50

Fit 2-person mixture - baseline model

```
mixD<-DNAmixture(list(epg),k=2,C=list(C),database=db)
pars<-mixpar(rho=list(2),eta=list(100),xi=list(0.1),phi=list(c(U1=0.7,U2=0.3)))
baseline<-logL(mixD)(pars)</pre>
```

Fit 2-person mixture model in which contributor 1 is parent of a typed individual Cgt

```
mixD<-DNAmixture(list(epg),k=2,C=list(C),database=db,triangulate=FALSE,compile=FALSE)
rpt.IBD(mixD,'parent',list(c=Cgt),targets=c('f','c'),contrib='f')
log10LR<-(logL(mixD)(pars)-baseline)/log(10)</pre>
```

```
cat('log10 LR',log10LR,'\n')
## Fit 2-person mixture, where contributors are siblings
mixD<-DNAmixture(list(epg),k=2,C=list(C),database=db)
pars<-mixpar(rho=list(2),eta=list(100),xi=list(0.1),phi=list(c(U1=0.6,U2=0.3,U3=0.1)))
baseline<-logL(mixD)(pars)
mixD<-DNAmixture(list(epg),k=2,C=list(C),database=db,triangulate=FALSE,compile=FALSE)
rpt.IBD(mixD,'sibs',targets=c('b1','b2'),contribs=c('b1','b2'))
log10LR<-(protected(logL(mixD)(pars))-baseline)/log(10)
cat('log10 LR',log10LR,'\n')</pre>
```

```
add.child.meiosis.nodes
```

Replace CPTs for mixture contributor a Father, given Child genotype, by MBN method

Description

loop over markers, and alleles within markers to create nodes for child allele count nodes, for paternity model with only Child genotyped then compile all domains. Implements method MBN.

Usage

add.child.meiosis.nodes(mixture,aca,ind=1)

Arguments

mixture	A compiled DNAmixture object
aca	Child's genotype profile as an allele count array
ind	Index of contributor regarded as Parent (or Child): which 'unknown' contributor are we modelling by amending his/her CPTs?

Details

To calculate the likelihood of this model, conditional on the child's genotype, a call to this function should be followed by (a) setting the finding of the child's genotype by defining extra.findings, (b) evaluating the loglikelihood using logLX, and (c) correcting the result by subtracting the log probability of the child's genotype, all as in the example below. Without (c), the value returned is the likelihood for the peak heights *and* the child's genotype.

Value

No value is returned, the function is called for its side effect

Author(s)

Peter Green (P.J.Green@bristol.ac.uk)

4

Examples

```
data(test2data)
# set threshold C
C<-0.001
mixD<-DNAmixture(list(epg),k=2,C=list(C),database=db)</pre>
pars<-mixpar(rho=list(2),eta=list(100),xi=list(0.1),phi=list(c(U1=0.7,U2=0.3)))</pre>
baseline<-logL(mixD)(pars)</pre>
mixMBN<-DNAmixture(list(epg),k=2,C=list(C),database=db,triangulate=FALSE,compile=FALSE)</pre>
cgtcaca<-gt2aca(mixMBN,Cgt)
add.child.meiosis.nodes(mixMBN,cgtcaca,1)
log10LR<-(logLX(mixMBN,</pre>
expr.make.findings(list(
list('Male',ind=1),
list('Caca',aca='cgtcaca')
))
)(pars)-attr(cgtcaca, 'logGt')-baseline)/log(10)
cat('log10 LR',log10LR,'\n')
```

add.motherchild.likd.node

Replace CPTs for mixture contributor a Father, given Child and Mother genotypes, by ALN method

Description

loop over markers, and alleles within markers to create node Rlikd for relative likelihood for individual i, for paternity model with Mother and Child genotyped then compile all domains. Implements method ALN.

Usage

add.motherchild.likd.node(mixture,Cgt,Mgt,db,ind=1)

Arguments

mixture	A DNAmixture object
Cgt	Child's genotype profile as a data frame containing variables marker, allele1 and allele2
Mgt	Mother's genotype profile as a data frame containing variables marker, allele1 and allele2
db	Allele frequency database
ind	Index of contributor regarded as Father: which 'unknown' contributor are we modelling by amending his CPTs?

No value is returned, the function is called for its side effect

Author(s)

Peter Green (P.J.Green@bristol.ac.uk)

Examples

data(test2data)

set threshold C
C<-0.001</pre>

```
mixD<-DNAmixture(list(epg),k=2,C=list(0.001),database=db)
pars<-mixpar(rho=list(2),eta=list(100),xi=list(0.1),phi=list(c(U1=0.7,U2=0.3)))
baseline<-logL(mixD)(pars)</pre>
```

```
mixD3<-DNAmixture(list(epg),k=2,C=list(0.001),database=db,triangulate=FALSE,compile=FALSE)
cgtcaca<-gt2aca(mixD3,Cgt)
add.motherchild.likd.node(mixD3,Cgt,Mgt,db,1)
log10LR<-(logLX(mixD3,
expr.make.findings(list(
list('Male',ind=1),
list('Rlikd',aca='cgtcaca',cgt='Cgt',evid='Revid')
))
)(pars)-baseline)/log(10)
cat('log10 LR',log10LR,'\n')</pre>
```

add.relative.likd.node

Replace CPTs for mixture contributor a Father, given Child genotype, by ALN method

Description

loop over markers, and alleles within markers to create node Rlikd for relative likelihood for individual i, for paternity model with only Child genotyped then compile all domains. Implements method ALN.

Usage

add.relative.likd.node(mixture,aca,ind=1)

Arguments

mixture	A compiled DNAmixture object
аса	Child's genotype profile as an allele count array
ind	Index of contributor regarded as Parent (or Child): which 'unknown' contributor
	are we modelling by amending his/her CPTs?

as.gt

Value

No value is returned, the function is called for its side effect

Author(s)

Peter Green (P.J.Green@bristol.ac.uk)

Examples

data(test2data)

set threshold C
C<-0.001</pre>

```
mixD<-DNAmixture(list(epg),k=2,C=list(C),database=db)
pars<-mixpar(rho=list(2),eta=list(100),xi=list(0.1),phi=list(c(U1=0.7,U2=0.3)))
baseline<-logL(mixD)(pars)</pre>
```

```
mixALN<-DNAmixture(list(epg),k=2,C=list(C),database=db,triangulate=FALSE,compile=FALSE)
cgtcaca<-gt2aca(mixALN,Cgt)
add.relative.likd.node(mixALN,cgtcaca,1)
log10LR<-(logLX(mixALN,
expr.make.findings(list(
list('Male',ind=1),
list('Rlikd',aca='cgtcaca',cgt='Cgt',evid='Revid')
))
)(pars)-baseline)/log(10)
cat('log10 LR',log10LR,'\n')</pre>
```

```
as.gt
```

Extract genotype profile for a single contributor from rGTs output

Description

Extract genotype profile for a single contributor from rGTs output

Usage

as.gt(res, ind)

Arguments

res	Output from rGTs
ind	Integer, which individual's genotype profile should be extracted

Value

Data frame, genotype profile for selected individual, for format see formats.

Author(s)

Peter Green (P.J.Green@bristol.ac.uk)

checkdata

Check data for absences of markers or allele values

Description

Check input data used by KinMix for absences of required markers or allele values.

Usage

checkdata(epg,database,typed.gts=NULL,reference.profiles=NULL)

Arguments

epg	data frame, the epg; see formats.
database	data frame, the db; see formats.
typed.gts	named list of genotype objects; see formats.
reference.profi	les
	data frame containing reference.profiles in DNAmixtures format

Value

NULL

Author(s)

Peter Green (P.J.Green@bristol.ac.uk)

Examples

data(test2data)

checkdata(epg,db,list(C=Cgt,F=Fgt),make.profiles(list(M=Mgt)))

checkpeaks

Check and modify database to have positive frequencies for all observed peaks/alleles

Description

Check whether database has positive frequencies for all peaks/alleles observed in epg and genotype profiles, and optionally modify db by addition of small positive frequencies so that it does, followed by renormalisation of frequencies for each allele to sum to 1.

Usage

checkpeaks(x,db,fix=0.003)

Arguments

х	data frame, the epg or genotype profile; see formats.
db	data frame, the db; see formats.
fix	numeric: if positive, increment to db frequency for each identified discrepant peak

Value

(possibly modified) db

Author(s)

Peter Green (P.J.Green@bristol.ac.uk)

Examples

```
data(test2data)
```

```
db<-checkpeaks(epg,db)
db<-checkpeaks(Cgt,db)
Xgt<-data.frame(marker=c('D10','D12'),allele1=c(8,13),allele2=c(13,10))
db<-checkpeaks(Xgt,db)
db</pre>
```

convertIBD

Description

Construct IBD pattern distribution from one of several alternative representations of multi-person condensed coefficients of identity

Usage

as.IBD(x='sibs', targets=NULL, ped=FALSE)
convertIBD(x='sibs', targets=NULL, ped=FALSE)

Arguments

х	A string, a vector of length 3 or 9, a list with components pr and patt, or a list
	with two components, a pedigree and a vector of target id's; see Details
targets	character vector of individual tags
ped	logical, should complete pedigree be added as an attribute to the output, if avail- able?

Details

Possible formats for the input x are:

- 1. certain verbal mnemonics; currently one of the following (or an unambiguous partial match): c('sibs', 'parent-child', 'half-sibs', 'cousins', 'half-cousins', 'second-cousins', 'double-first-cousins', 'quadruple-half-first-cousins', '3cousins-cyclic', '3cousins-star', 'trio')
- 2. a vector of 3 kappas
- 3. a vector of 9 Deltas
- 4. a list with matrix or vector valued component patt, with or without component pr
- 5. a list with 2 components, the first being a pedigree in the sense of the pedtools package, the second a vector of target id's
- 6. a 3-column character matrix of individual tags, each row denoting a child/mother/father triple an alternative compact representation of a pedigree

Value

IBD pattern distribution as a list with components pr and patt

Author(s)

Peter Green (P.J.Green@bristol.ac.uk)

See Also

pedtools, formats

delete.DQnodes

Examples

data(test2data)

IBD<-convertIBD('parent-child')</pre>

IBD <-convertIBD(c(0.5, 0.5, 0.0))

delete.DQnodes Delete D and Q dummy nodes from all Bayes nets in mixture

Description

Delete D and Q dummy nodes and associated edges from all Bayes nets in mixture, to save space; these nodes would only be needed for specific follow-up analyses

Usage

```
delete.DQnodes(mixture,which="DQ")
```

Arguments

mixture	A compiled DNAmixture object
which	character string

Details

The function removes the D and/or Q nodes from the DNA mixture object, depending on whether which includes "D", "Q" or both

Value

No value is returned, the function is called for its side effect

Author(s)

Peter Green (P.J.Green@bristol.ac.uk)

Examples

```
data(test2data)
data(NGMDyes)
```

```
mixD<-DNAmixture(list(epg),k=2,C=list(0.001),database=db,dyes=list(NGMDyes),
triangulate=FALSE,compile=FALSE)
delete.DQnodes(mixD)
replace.tables.for.UAF(mixD,40)
size(mixD)
```

emperors

Description

IBD pattern distribution in the Iulius-Claudius pedigree

Usage

data("emperors")

Format

IBD object

See Also

formats.

Examples

data(emperors)

expr.make.findings Coding additional findings as expression

Description

Returns an expression that will be evaluated in logL.UKX whenever the likelihood of the model is calculated using the current method, and encodes the additional findings needed to implement the method; the details of the model and the extra information needed are held in the list z

Usage

```
expr.make.findings(z)
```

Arguments

A list specifying the additional findings; for the format, see Details

formats

Details

Each component of the list z is a list encoding a particular type of additional finding: the first component of this (sub-)list being a character string specifying the type of finding, and the remainder of its components being named parameters giving details of the finding. The types of finding and the valid parameters of each are as follows:

Male ind: index of relevant contributor: which 'unknown' contributor are we modelling by amending his CPTs?

Female ind: index of relevant contributor

Rlikd aca: allele count array, cgt: character string naming genotype profile data frame, evid: character string naming list with one component for each marker, whose value is the evidence

Aca ind: index of relevant contributor, aca: allele count array

Caca ind: index of relevant contributor, aca: allele count array

Denom no parameters

If z is NULL, then there are no additional findings.

Value

Expression encoding the additional findings.

Author(s)

Peter Green (P.J.Green@bristol.ac.uk)

formats Formats

Description

Formats for data objects in KinMix and KinMixLite

Formats

An **allele frequency database** is a data frame containing variables marker, allele and frequency (character, numeric and numeric respectively).

A **mixture profile** is a data frame containing variables marker, allele and height (character, numeric and numeric respectively).

A **genotype profile** is a data frame containing variables marker, allele1 and allele2 (character, numeric and numeric respectively).

Examples of these 3 data formats are objects db, epg and Cgt, respectively, in test2data.

A **allele count array** is an alternative format for a genotype as a named list of vectors, one for each marker. Each vector gives the number of each allele in the genotype, with the alleles listed in the order in which they appear in the data component of the relevant mixture object.

An **IBD pattern distribution** or **IBD object** is a list with components pr (a numerical vector) and patt (an integer matrix with nrow(patt)==length(pr) and an even number of columns). The elements of pr are the probabilities of the IBD patterns in the corresponding rows of patt. Adjacent pairs of columns encode the genotypes of different individuals; equal elements in any row determine equality of the alleles; different elements denote independent draws from the gene pool. If the component pr is missing, functions rpt.IBD and rpt.typed.relatives assume the probabilities are equal.

Author(s)

Peter Green (P.J.Green@bristol.ac.uk)

gt2aca

Converts genotype profiles to allele count arrays

Description

Returns list of vectors of allele counts corresponding to genotype profile in gt

Usage

```
gt2aca(mixture,gt,eps=0)
```

Arguments

mixture	A compiled DNAmixture object
gt	Genotype profile as a data frame containing variables marker, allele1 and allele2
eps	If non-zero, the function creates the output allele count arrays in a different format, that mitigates subsequent propagation errors in some situations. Instead of a vector of allele counts, each element of the list is a matrix with 3 columns, corresponding to allele counts 0, 1 and 2, with entries 1 or eps.

Value

Returns list of vectors of allele counts. The log probability for the genotype is returned in its attribute 'logGt'.

Author(s)

Peter Green (P.J.Green@bristol.ac.uk)

intoMix

Examples

```
data(test2data)
data(NGMDyes)
# set threshold C
C<-0.001
mixD<-DNAmixture(list(epg),k=2,C=list(C),database=db,dyes=list(NGMDyes))
cgtcaca<-gt2aca(mixD,Cgt)
print(Cgt)
print(Cgt)
print(cgtcaca)</pre>
```

intoMix

Edit output from rGTs to omit individuals with NA amounts of DNA

Description

Edit output from rGTs to omit individuals with NA amounts of DNA

Usage

intoMix(res)

Arguments

res Output from rGTs

Value

The edited data structure

Author(s)

Peter Green (P.J.Green@bristol.ac.uk)

KinMix

Create a DNA mixture model, with possibly related contributors

Description

Create a DNA mixture model, with possibly related contributors.

Usage

```
KinMix(data,k,C,database,K=character(0),reference.profiles = NULL,
contribs=NULL,typed.gts=NULL,IBD=NULL,targets=NULL,pars=NULL,mle=FALSE,
dir=character(0),domainnamelist=NULL,
load=FALSE,write=FALSE,dyes=NULL,
triangulate=TRUE,compile=TRUE,compress=TRUE,use.order=TRUE)
```

Arguments

data	A list containing one data.frame for each DNA mixture. Note, that in the spe- cial case of analysing just one mixture, this still has to be specified as list(data). Each dataset should contain variables marker, allele, and frequency. Option- ally, also a column for each reference profile specified in K.
k	Number of contributors.
С	A list of thresholds, one for each mixture.
database	A data.frame containing at least variables marker, allele, frequency.
К	Names of reference profiles; these can be chosen freely, but should match (pos- sibly only a subset of) the names specified by the reference profiles.
reference.prof:	iles
	A data.frame containing allele counts for each reference profile, if not specified in data.
contribs	vector of character tags identifying contributors to the mixture
typed.gts	list of named genotype profiles
IBD	IBD pattern distribution, or any object accepted as an argument to as. IBD
targets	vector of character tags identifying individuals related according to IBD
pars	optionally, a mixpar object providing parameter values for peak height model
mle	logical: should mixML be called to estimate parameters by MLE?
dir	Location of network files if loading or saving the networks.
domainnamelist	Names of marker-wise network files (without hkb-extension). Default is the set of markers.
load	Read networks from disk?
write	Save networks as hkb files?
dyes	A list containing a list of dyes indexed by markers
triangulate	Triangulate the networks? Default is to triangulate the network using a good elimination order.
compile	Compile the networks?
compress	Compress the network? Defaults to TRUE and is strongly recommended for mod- els with a large number of contributors.
use.order	Should the default elimination order be used for triangulation? Otherwise the "total.weight" heuristic for triangulation in Hugin is used.

16

KinMix

Details

Generalises DNAmixture to allow relatedness as in rpt. IBD

Value

An object of class DNAmixture. This contains amongst other things

markers	The joint set of markers used for the mixtures specified.
domains	For models involving unknown contributors, a list containing one Bayesian net- work (hugin.domain) per marker; see buildMixtureDomains for details on the networks
data	A list containing for each marker the combined allele frequencies, peak heights, and reference profiles as produced by DNAmixtureData.
T. 1	

It may also contain

mle	Maximum likelihood estimates of the peak height model parameters
logL	log-likelihood of model evaluated at pars

Examples

data(test2data)

Fit 2-person mixture - baseline model

```
mixD<-DNAmixture(list(epg),k=2,C=list(0.001),database=db)
pars<-mixpar(rho=list(2),eta=list(100),xi=list(0.1),phi=list(c(U1=0.7,U2=0.3)))
baseline<-logL(mixD)(pars)
baseline</pre>
```

```
mixD<-DNAmixture(list(epg),k=2,C=list(0.001),database=db)
pars<-mixpar(rho=list(2),eta=list(100),xi=list(0.1),phi=list(c(U1=0.7,U2=0.3)))
mlD <- mixML(mixD, pars)
print(mlD$mle)
pars<-mlD$mle</pre>
```

```
baseline<-logL(mixD)(pars)
baseline</pre>
```

Fit 2-person mixture model in which contributor 1 is parent of a typed individual Cgt

```
mixD<-KinMix(list(epg),k=2,C=list(0.001),database=db,
contribs=c('F'),typed.gts=list(C=Cgt),IBD='parent-child',targets=c('F','C'),
pars=pars)
log10LR<-(mixD$logL-baseline)/log(10)
cat('log10 LR',log10LR,'\n')
```

Fit 2-person mixture model in which contributor 1 is father of a typed individual Cgt ## with mother Mgt

mixD<-KinMix(list(epg),k=2,C=list(0.001),database=db,</pre>

```
contribs=c('F'),typed.gts=list(M=Mgt,C=Cgt),IBD='trio',targets=c('F','M','C'),
pars=pars)
log10LR<-(mixD$logL-baseline)/log(10)
cat('log10 LR',log10LR,'\n')</pre>
```

```
logL.UKX
```

Evaluates mixture log likelihood for unknown contributors with extra findings

Description

Replacement for logL.UK in DNAmixtures that calls extra.findings immediately before propagating all findings and returning the normalising constant for the network.

Usage

```
logL.UKX(mixture, expr.extra.findings, initialize = FALSE)
```

Arguments

mixture	Compiled DNAmixture object.	
expr.extra.findings		
	expression containing the extra findings	
initialize	should all entered evidence be removed from the networks in mixture	

Value

The log likelihood.

Author(s)

Peter Green (P.J.Green@bristol.ac.uk)

See Also

See also logL.UK.

Examples

data(test2data)

set threshold C
C<-0.001</pre>

pars<-mixpar(rho=list(2),eta=list(100),xi=list(0.1),phi=list(c(U1=0.9,U2=0.1)))</pre>

```
mixMBN<-DNAmixture(list(epg),k=2,C=list(C),database=db,triangulate=FALSE,compile=FALSE)
cgtcaca<-gt2aca(mixMBN,Cgt)
add.child.meiosis.nodes(mixMBN,cgtcaca,1)</pre>
```

18

logLX

```
logL.UKX(mixMBN,
expr.make.findings(list(
list('Male',ind=1),
list('Caca',aca='cgtcaca')
)))(pars)
```

logLX

Evaluates mixture log likelihood when extra findings present

Description

Replacement for logL in DNAmixtures that calls calls LogL.UKX instead of logL.UK.

Usage

logLX(mixture, expr.extra.findings, presence.only = FALSE, initialize = FALSE)

Arguments

mixture	Compiled DNAmixture object.	
expr.extra.findings		
	expression containing the extra findings	
presence.only	Set to TRUE to ignore peak heights and evaluate the likelihood function con- sidering peak presence and absence (heights above and below threshold) only. Defaults to FALSE	
initialize	should all entered evidence be removed from the networks in mixture	

Value

The log likelihood.

Author(s)

Peter Green (P.J.Green@bristol.ac.uk)

See Also

See also logL.

Examples

```
data(test2data)
# set threshold C
C<-0.001
mixD<-DNAmixture(list(epg),k=2,C=list(0.001),database=db)</pre>
pars<-mixpar(rho=list(2),eta=list(100),xi=list(0.1),phi=list(c(U1=0.7,U2=0.3)))</pre>
baseline<-logL(mixD)(pars)</pre>
mixMBN<-DNAmixture(list(epg),k=2,C=list(C),database=db,triangulate=FALSE,compile=FALSE)</pre>
cgtcaca<-gt2aca(mixMBN,Cgt)</pre>
add.child.meiosis.nodes(mixMBN,cgtcaca,1)
log10LR<-(logLX(mixMBN,</pre>
expr.make.findings(list(
list('Male',ind=1),
list('Caca',aca='cgtcaca')
))
)(pars)-attr(cgtcaca,'logGt')-baseline)/log(10)
cat('log10 LR',log10LR,'\n')
```

loop.rpt.IBD Analysis of DNA mixtures with familial relationships by looping

Description

Analysis of DNA mixtures with familial relationships, by looping over traces, markers, and IBD patterns, to reduce total BN table size, at some price in execution time

Usage

```
loop.rpt.IBD(listdata, pars, IBD, typed.gts = NULL, inds = 1,
    jtyped = ncol(IBD$patt)/2 - length(typed.gts) + seq_along(typed.gts),
    jcontr = seq_along(inds), targets = NULL, contribs,
    quiet=FALSE, verbose=FALSE, presence.only=FALSE, ...)
```

Arguments

listdata	as in call to DNAmixture
pars	parameter structure, in mixpar format
IBD	multi-person coefficients of identity, in any of the formats accepted by convertIBD
typed.gts, inds,	jtyped, jcontr, targets, contribs, quiet
	as in call to rpt.IBD
verbose	should per-marker and overall log10LR's be reported?
presence.only	Set to TRUE to ignore peak heights and evaluate the likelihood function con- sidering peak presence and absence (heights above and below threshold) only. Defaults to FALSE.
	other arguments to DNAmixture, particularly including k, C, database

20

make.profile

Value

The value of the overall log10 LR, and the contributions of individual markers in the form of a vector-valued attribute 'log10LR', are returned invisibly; individual marker/pattern values are also printed out.

Author(s)

Peter Green (P.J.Green@bristol.ac.uk)

Examples

```
data(test2data)
data(NGMDyes)
C<-0.001
## Fit 3-person mixture - baseline model
mixD<-DNAmixture(list(epg),k=3,C=rep(list(C),length(list(epg))),database=db)</pre>
pars3<-mixpar(rho=list(2),eta=list(100),xi=list(0.1),phi=list(c(U1=0.6,U2=0.3,U3=0.1)))</pre>
baseline3<-logL(mixD)(pars3)</pre>
size(mixD)
## Fit 3-person mixture - in which U1 and U2 have a parent-child relationship
mixD<-DNAmixture(list(epg),k=3,C=rep(list(C),length(list(epg))),database=db,</pre>
triangulate=FALSE,compile=FALSE)
delete.DQnodes(mixD)
rpt.IBD(mixD,IBD=c(0,1,0),typed.gts=list(),inds=1:2,jtyped=NULL)
size(mixD)
log10LR<-(logL(mixD)(pars3)-baseline3)/log(10)</pre>
cat('log10 LR',log10LR,'\n')
## the same analysis by loop.rpt.IBD
listdata<-list(epg)</pre>
print(loop.rpt.IBD(listdata,pars3,IBD=c(0,1,0),
k=3,C=rep(list(C),length(listdata)),database=db,
typed.gts=list(),inds=1:2,jtyped=NULL))
```

make.profile

Convert genotype profile to reference profile format

Description

Convert genotype profile(s) to reference profile format

Usage

```
make.profile(gt,name='K')
make.profiles(typed.gts)
```

Arguments

gt	genotype profile
name	character string used to name profile in output data frame
typed.gts	named list of genotype profiles

Value

data frame containing reference profile(s)

Author(s)

Peter Green (P.J.Green@bristol.ac.uk)

Examples

```
data(test2data)
S1prof<-make.profile(S1gt,'S1')
C<-0.001
mixD<-DNAmixture(list(epg),k=3,K='S1',reference.profile=S1prof,C=list(C),database=db)</pre>
```

mixMLX

```
Maximises mixture likelihood when extra findings present
```

Description

Replacement for mixML in DNAmixtures that calls logLX instead of logL.

Usage

```
mixMLX(mixture, expr.extra.findings, pars, constraints = NULL, phi.eq = FALSE,
        val = NULL, trace = FALSE, order.unknowns = TRUE, initialize = FALSE, ...)
```

Arguments

mixture	Compiled DNAmixture object.	
expr.extra.findings		
	expression containing the extra findings	
pars	Parameters, in mixpar format.	
constraints	as in mixML	
phi.eq	as in mixML	
val	as in mixML	

22

mixMLX

trace	as in mixML
order.unknowns	as in mixML
initialize	should all entered evidence be removed from the networks in $\verb"mixture"$
	as in mixML

Value

A list containing

mle The (suggested) MLE.

lik The log of the likelihood (log e).

as well as the output from the optimisation.

Author(s)

Peter Green (P.J.Green@bristol.ac.uk)

See Also

See also mixML.

Examples

data(test2data)

set threshold C
C<-0.001</pre>

mixD<-DNAmixture(list(epg),k=2,C=list(C),database=db)</pre>

```
# find MLE's and maximised likelihood
# adding evidence individual 1 is Male
```

expr.extra.findings<-expr.make.findings(list(list('Male',ind=1)))</pre>

```
startpar<-mixpar(rho=list(60),eta=list(24),xi=list(0.16),phi=list(c(U1=0.75,U2=0.25)))
mlDM<-mixMLX(mixD,expr.extra.findings,startpar,trace=FALSE)
pars<-mlDM$mle
cat('\nBaseline model maximised likelihood:',mlDM$lik,'\n')
cat('and MLEs:\n')
print(mlDM$mle)</pre>
```

pedigreeIBD

Description

Construct IBD pattern distribution from a pedigree and a target list of individuals

Usage

pedigreeIBD(x, targets, cond = TRUE, ped=FALSE, quiet = TRUE, verbose = FALSE)

Arguments

х	A pedigree in pedtools format
targets	Character vector, some or all of the individual identifiers in the pedigree x
cond	should IBD pattern be condensed?
ped	logical, should complete pedigree be added as an attribute to the output, if available?
quiet	should resulting IBD pattern distribution be printed?
verbose	should trace information be printed?

Details

This function computes the multi-person condensed coefficients of identity for an arbitrary set of individuals, in the sparse notation of the IBD pattern distribution of Green and Vigeland (2019).

Value

IBD pattern distribution as a list with components pr and patt

Author(s)

Peter Green (P.J.Green@bristol.ac.uk)

References

Multi-person condensed coefficients of identity, by Peter J. Green and Magnus Dehli Vigeland, University of Bristol technical report, 2019.

See Also

pedtools, formats

plot.IBD

Examples

require(ribd)

```
id<-c('gf','gm','b1','b2','m','c')
fid<-c(0,0,'gf','gf',0,'b1')
mid<-c(0,0,'gm','gm',0,'m')
sex<-c(1,2,1,1,2,0)
x<-ped(id,fid,mid,sex)
IBD<-pedigreeIBD(x,c('m','c','b1','b2'))
kappaIBD(x,c('m','c','b1','b2'))</pre>
```

plot.IBD

Plot IBD patterns and pattern distributions

Description

Plot IBD patterns and pattern distributions

Usage

```
## S3 method for class 'IBD'
plot(x,labels=NULL,probs=NULL,order=NULL,colrs=c('black','red','blue'),
digits=3,nr=ceiling(sqrt(np)),...)
```

Arguments

x	A matrix whose rows are IBD patterns, or a list whose components are patt, such a matrix, together with pr, a vector of the corresponding probabilities
labels	Vector of numerical or character labels for the patterns, if NA, labels are con- structed from the patterns by catenation, if NULL, the labels are not displayed.
probs	Vector of probabilities of the patterns, if not provided as a component of pattern; if NULL, the probabilities are not displayed.
order	A character string, partially matched using pmatch to one of 'pattern', 'probs', or 'labels', requesting ordering diagram accordingly (in the case of probs in decreasing order, or a numeric, complex, character or logical vector of length the number of patterns, requesting ordering by this variable, or NULL (the default), requesting no re-ordering.
colrs	A vector of colours: ties in the ordering variable are indicated by coloured groups, with colours chosen cyclically from this vector.
digits	Integer, overwriting default number of significant digits for probs
nr	Integer, overwriting default number of rows for plotted array, default a rounding up of the square root of the number of patterns.
	additional arguments to plot

Value

No value is returned, the function is called for its side effect, a plot on the current display device.

Author(s)

Peter Green (P.J.Green@bristol.ac.uk)

Examples

```
require(ribd)
data(emperors)
plot.IBD(convertIBD('3cousins-star'),order='probs',col=c('blue','red','black'))
plot(attr(emperors,'ped'))
o<-order(emperors$pr)[1:12]
plot.IBD(emperors$patt[o,],probs=emperors$pr[o],labels=NA,order='probs')</pre>
```

protected

Catch numerical errors, and return -Inf

Description

Attempts to catch numerical erros in evaluating the expression x, delivering a default result instead of NaN or other failures

Usage

```
protected(x,default=-Inf)
```

Arguments

Х	expression to be evaluated, typically the log-likelihood of a modified mixture model
default	value to be delivered if numerical errors are encountered

Value

Returns -Inf in case of error, otherwise the value of x

Author(s)

Peter Green (P.J.Green@bristol.ac.uk)

protected.mixML Protect against numerical errors in maximum likelihood computation

Description

Attempts to catch numerical errors in maximum likelihood computation, by replacing logL values by a default value instead of NaN or other failures

Usage

```
protected.mixML(mixture, pars, constraints = NULL, phi.eq = FALSE, val = NULL,
trace = FALSE, order.unknowns = TRUE, default=-999999, ...)
```

Arguments

mixture	A DNAmixture object.
pars	A mixpar parameter used as a starting value for the optimisation.
constraints	Equality constraint function as function of an array of parameters.
phi.eq	Should the mixture proportions be the same for all traces? Defaults to FALSE.
val	Vector of values to be satisfied for the equality constraints.
trace	Print the evaluations of the likelihood-function during optimisation?
order.unknowns	Should unknown contributors be ordered according to decreasing contributions? Defaults to TRUE.
	Further arguments to be passed on to solnp.
default	value of logL to be used if numerical errors are encountered

Value

A list containing

mle	The (suggested) MLE.
lik	The log of the likelihood (log e).

as well as the output from the optimisation.

Author(s)

Peter Green (P.J.Green@bristol.ac.uk)

require.compiled Force compilation of all BNs in a DNA mixture model

Description

Scan all Bayes nets in mixture, and compile any that are not already compiled

Usage

```
require.compiled(mixture)
```

Arguments

mixture A DNAmixture object

Value

No value is returned, the function is called for its side effect

Author(s)

Peter Green (P.J.Green@bristol.ac.uk)

Examples

data(test2data)
data(NGMDyes)

```
mixD<-DNAmixture(list(epg),k=2,C=list(0.001),database=db,dyes=list(NGMDyes),
triangulate=FALSE,compile=FALSE)
replace.tables.for.UAF(mixD,40,compile=FALSE)
require.compiled(mixD)
```

rGTs	
------	--

Simulate random genotype profiles and DNA samples for related individuals

Description

Simulate random genotype profiles and DNA samples for arbitrarily related individuals

Usage

rGTs(nreps,IBD,db,DNA,sex=rep(0,ncontr),nU=0)

Arguments

nreps	Integer, number of replicates
IBD	Specification of relationships, as in convertIBD
db	Data frame, database of alleles and their frequencies, for each marker; for for- mat, see formats.
DNA	Integer vector, numbers of DNA cells for the respective individuals, can be NA
sex	Integer vector, sex of the respective contributors: 1=male, 2=female, 0=unspec- ified
nU	Integer, include also this number of unrelated individuals

Details

Genotype profiles are generated randomly, using the allele frequency database db, under the relationships specified by the IBD argument. In accordance with the underlying biology, allele values for the AMEL marker (if this is one of the markers included) are not influenced by relationships with other individuals; however they are influenced by the sex of the individuals, where this is known. Information on sex can be specified by the optional argument sex: a male is given the profile X-Y, a female X-X, and an individual with unspecified sex X-X or X-Y with equal probabilities.

Value

Data frame with variables Sim, Sample.name, Marker, Allele, and DNA, suitable for input to simExtraction, etc. See package pcrsim.

Author(s)

Peter Green (P.J.Green@bristol.ac.uk)

Examples

```
data(test2data)
data(NGMDyes)
```

rni

Random number initialiser supporting spontaneous replication

Description

Random number initialiser supporting spontaneous replication

Usage

rni(seed=0)

Arguments

seed

Integer, seed

Details

This is a convenience front end to set.seed. A non-zero value of seed is passed directly to set.seed. Given a zero value (the default), the function calls Sys.time to generate an unpredictable starting value – but the value ultimately passed to set.seed is both output using cat and returned invisibly, so can be used for unanticipated replica runs of a simulation.

Value

Non-zero seed value that can be used to reproduce run subsequently

Author(s)

Peter Green (P.J.Green@bristol.ac.uk)

Examples

rni(0)
runif(6)
rni(0)
runif(6)
rni(3456)
runif(6)
runif(6)
runif(6)
keep<-rni(0)
print(keep)
runif(6)
rni(keep)
runif(6)</pre>

rpt.AMEL

Replace CPTs for AMEL marker in a DNA mixture

Description

Used after a call to DNAmixture with compile=FALSE, triangulate=FALSE, this function replaces the CPTs for the genotype allele count arrays for the AMEL marker in a DNA mixture to specify sex of contributors

Usage

rpt.AMEL(mixture,sex,compile=TRUE)

Arguments

mixture	A DNAmixture object
sex	Integer vector, sex of each contributor
compile	Logical, should BN be compiled after modification?

rpt.IBD

Details

The sex of each contributor is coded as in pedtools, namely 0=unspecified, 1=male, 2=female.

Value

No value is returned, the function is called for its side effect

Author(s)

Peter Green (P.J.Green@bristol.ac.uk)

Examples

rpt.IBD	Replacing CPTs for selected mixture contributors with familial rela-
	tionships

Description

Used after a call to DNAmixture with compile=FALSE, triangulate=FALSE, this function replaces the CPTs for the genotype allele count arrays for specified mixture contributors by those representing the specified relationship with each other and typed relatives

Usage

```
rpt.IBD(mixture, IBD="parent-child", typed.gts = NULL, inds = 1,
jtyped = ncol(IBD$patt)/2 - length(typed.gts) + seq_along(typed.gts),
jcontr = seq_along(inds),
targets=attr(IBD, 'targets'), contribs=NULL, quiet=FALSE, all.freq = NULL, compile = TRUE)
rpt.typed.relatives(mixture, IBD="parent-child", typed.gts = NULL, inds = 1,
jtyped = ncol(IBD$patt)/2 - length(typed.gts) + seq_along(typed.gts),
jcontr = seq_along(inds),
targets=attr(IBD, 'targets'), contribs=NULL, quiet=FALSE, all.freq = NULL, compile = TRUE)
rpt.typed.child(mixture, aca, ind=1)
replace.Ui.tables(mixture, aca, ind=1)
rpt.typed.parents(mixture, Mgt, Fgt, ind=1, compile=TRUE)
rpt.typed.relative(mixture, Rgt, IBD=c(0.25,0.5,0.25), ind=1, compile=TRUE)
```

Arguments

mixture	DNAmixtures object created by previous call to DNAmixture with triangulate=FALSE,compile=FALSE
IBD	relationships between the specified individuals, as multi-person condensed co- efficients of identity, in one of several representation; see Details.
typed.gts	list of 0 or more genotypes of relatives; the components of this list must be named (with the id's of the relevant individuals) if targets and contribs are used to code the correspondences (see Details).
inds	vector of 1 or more integers: which 'unknown' contributors are we modelling by amending their CPTs? The elements should be listed in the same order as the corresponding pairs of columns of the IBD patterns in IBD
jtyped	indices of pairs of columns of IBD\$patt that correspond to the typed relatives (if any); default the last length(typed.gts) pairs of columns
jcontr	indices of pairs of columns of IBD\$patt that correspond to the relevant mixture contributors; default the first length(inds) pairs of columns
targets	Character vector of the tags of the individuals referred to in IBD
contribs	Character vector of the tags of the individuals included in the mixture, in order
quiet	should calculated values of inds, jtyped and jcontr be reported?
all.freq	alternative allele frequency database(s), see Details.
compile	logical flag: should mixture object be compiled on exit?
ind	as inds, used above when only one allowed
aca, Mgt, Fgt, Rgt	
	individual genotypes, as allele count arrays

individual genotypes, as allele count arrays

Details

In using rpt.IBD or rpt.typed.relatives (which is identical), the correspondence between mixture contributors, specified relationships, and typed genotype profiles should be specified **either** (preferably) using targets, contribs and through the names of the components in typed.gts, **or** (to be deprecated) with inds, jcontr and jtyped: the two representations should not be mixed up. If either targets or contribs specified, the former representation is assumed.

Special cases are treated slightly more efficiently: rpt.typed.child: single contributor, single typed relative, parent or child; rpt.typed.parents: single contributor, both parents typed; rpt.typed.relative: single contributor, single typed relative.

Note that IBD\$patt always has an even number of columns, two for each individual in the joint relationship specified; jtyped and jcontr are vectors of indices of these individuals, i.e. to pairs of adjacent columns of IBD\$patt.

Multiple functions in this group can validly be called sequentially (with all but the last having compile=FALSE) providing they reference different sets of contributors among the targets, **and** that these sets are conditionally independent given the typed genotypes specified.

There are multiple valid representations for relationships in the argument IBD – as an IBD pattern distribution, via a pedigree, or. in the case of just two individuals. via either a vector of 3 kappas or 9 Deltas (Jacquard's condensed coefficients of identity). For full details, see convertIBD. If IBD is missing, the default value represents parent-child.

rpt.IBD

In the interests of upward compatibility, in rpt.typed.child and replace.Ui.tables (which are identical), the argument Cgt can be given as either a genotype profile data frame, or an allele count array.

By default, the allele frequency database used for the founding genes is that used when the mixture object is created, in an earlier call to DNAmixture. A non-null value for the all.freq argument allows the user to specify alternative database (s) for the founding genes. If its value is an allele frequency database (in the format specified in formats) then that database is used for all founding genes; if the value of the argument is a list of such databases, then component k of the list is used for allele frequencies for the founding gene labelled k in the IBD argument. Note that this option allows modelling of mixtures where different contributors are drawn from different populations, whether or not there are relationships among individuals.

Value

Vector of marker-specific probabilities of the typed genotypes.

Author(s)

Peter Green (P.J.Green@bristol.ac.uk)

Examples

```
data(test2data)
data(NGMDyes)
```

Fit 2-person mixture - baseline model

```
mixD<-DNAmixture(list(epg),k=2,C=list(0.001),database=db)
pars<-mixpar(rho=list(2),eta=list(100),xi=list(0.1),phi=list(c(U1=0.7,U2=0.3)))
baseline<-logL(mixD)(pars)</pre>
```

Fit 2-person mixture model in which contributor 1 is parent of a typed individual Cgt

```
mixD<-DNAmixture(list(epg),k=2,C=list(0.001),database=db,triangulate=FALSE,compile=FALSE)
rpt.IBD(mixD,,list(Cgt))
log10LR<-(logL(mixD)(pars)-baseline)/log(10)
cat('log10 LR',log10LR,'\n')</pre>
```

Fit 2-person mixture model in which contributor 1 is father of a typed individual Cgt
with mother Mgt

```
mixD<-DNAmixture(list(epg),k=2,C=list(0.001),database=db,triangulate=FALSE,compile=FALSE)
rpt.IBD(mixD,,list(Mgt,Cgt))
log10LR<-(logL(mixD)(pars)-baseline)/log(10)
cat('log10 LR',log10LR,'\n')</pre>
```

Fit 2-person mixture model in which contributors are two parents of a child with ## genotype Cgt, and a parent of one of them has genotype Rgt. Note the encoding of allele ## labels to reduce the complexity of the IBD pattern distribution IBD.

```
IBD<-list(patt=rbind(c(1,3,2,4,1,2,1,5),c(1,3,2,4,1,2,3,5)))</pre>
```

```
mixD<-DNAmixture(list(epg),k=2,C=list(0.001),database=db,triangulate=FALSE,compile=FALSE)
rpt.IBD(mixD,IBD,list(Cgt,Rgt),1:2)
log10LR<-(logL(mixD)(pars)-baseline)/log(10)
cat('log10 LR',log10LR,'\n')
## the same, with individuals and relationships denoted by character tags
mixD<-DNAmixture(list(epg),k=2,C=list(0.001),database=db,triangulate=FALSE,compile=FALSE)
rpt.IBD(mixD,IBD,list(c=Cgt,gf=Rgt),targets=c('f','m','c','gf'),contribs=c('f','m'))
log10LR<-(logL(mixD)(pars)-baseline)/log(10)
cat('log10 LR',log10LR,'\n')</pre>
```

rpt.UAF

Replace CPTs in a DNA mixture to model uncertain allele frequencies

Description

Replace CPTs in a DNA mixture to model uncertainty in allele frequencies

Usage

```
replace.tables.for.UAF(mixture, M, compile = TRUE)
```

```
rpt.UAF(mixture, M, compile = TRUE)
```

Arguments

mixture	DNAmixtures object created by previous call to DNAmixture with triangulate=FALSE, compile=FALSE
Μ	Size of allele frequency database
compile	logical flag: should mixture object be compiled on exit?

Value

No value is returned, the function is called for its side effect

Author(s)

Peter Green (P.J.Green@bristol.ac.uk)

Examples

```
data(test2data)
data(NGMDyes)
## Fit 2-person mixture - baseline model
mixD<-DNAmixture(list(epg),k=2,C=list(0.001),database=db)</pre>
```

```
size
```

```
pars<-mixpar(rho=list(2),eta=list(100),xi=list(0.1),phi=list(c(U1=0.7,U2=0.3)))
baseline<-logL(mixD)(pars)
## Fit 2-person mixture model under assumption that database size was only 40
mixD<-DNAmixture(list(epg),k=2,C=list(0.001),database=db,triangulate=FALSE,compile=FALSE)
replace.tables.for.UAF(mixD,40)
log10LR<-(logL(mixD)(pars)-baseline)/log(10)
cat('log10 LR',log10LR,'\n')</pre>
```

size

Calculate and display total size of BN tables for a DNA mixture

Description

Calculate and display total size of BN tables for a DNA mixture

Usage

size(mixture)

Arguments

mixture A compiled DNAmixture object

Value

Returns total size, typically to be printed by bespoke method

Author(s)

Peter Green (P.J.Green@bristol.ac.uk)

Examples

data(test2data)
data(NGMDyes)

Fit 2-person mixture - baseline model

```
mixD<-DNAmixture(list(epg),k=2,C=list(0.001),database=db)
size(mixD)</pre>
```

35

Description

Small test data set (2 markers with 4 or 5 alleles each, plus AMEL), for demonstrating some capabilities of KinMix and KinMixLite

Usage

```
data("test2data")
```

Format

Data objects for demonstrating KinMix: epg (DNAmixtures peak height data), db (DNAmixtures allele frequency database), and Cgt, Fgt, Mgt, Rgt, S1gt, S2gt potential relative genotype data frames.

Examples

data(test2data)

wlr

Computes paternity LR using WLR method

Description

Computes overall LR from Ugt-specific LR's using estimated Ugt genotype profile in sep corresponding to contributor i in the mixture as Father; uses Child genotype information in Cgt data.frame and optionally Mother's genotype in Mgt. Implements method WLR.

Usage

wlr(sep, Cgt, db, ind=1, Mgt=NULL)

Arguments

sep	Separation, a list of configurations of genotypes for some or all unknown con- tributors, output by map.genotypes.
Cgt	Child's genotype profile as a data frame containing variables marker, allele1 and allele2
db	Allele frequency database
ind	Index of contributor regarded as Father
Mgt	(optionally) Mother's genotype profile as a data frame containing variables marker, allele1 and allele2

wlr

Value

Returns LR for paternity

Author(s)

Peter Green (P.J.Green@bristol.ac.uk)

See Also

See also map.genotypes.

Examples

data(test2data) data(NGMDyes)

set threshold C
C<-0.001</pre>

```
pars<-mixpar(rho=list(2),eta=list(100),xi=list(0.1),phi=list(c(U1=0.9,U2=0.1)))</pre>
```

```
mixWLR<-DNAmixture(list(epg),k=2,C=list(C),database=db,dyes=list(NGMDyes))
setPeakInfo(mixWLR,pars)
sepWLR<-map.genotypes(mixWLR,type="all",pmin=0.0001,U=1)
LR<-wlr(sepWLR,Cgt,db)
cat('\nWLR LR:',LR,'; log10(LR):',log10(LR),'\n')</pre>
```

Index

* datasets emperors, 12 test2data, 36 * package KinMixLite-package, 2 add.child.meiosis.nodes.4 add.motherchild.likd.node, 5 add.relative.likd.node, 6 as.gt,7 as.IBD (convertIBD), 10 buildMixtureDomains, 17 Cgt (test2data), 36 checkdata, 8 checkpeaks, 9 convertIBD, 10, 32 db (test2data), 36 delete.DQnodes, 11 DNAmixtureData, 17 DNAmixturesLite, 3 emperors, 12 epg (test2data), 36 expr.make.findings, 12 Fgt (test2data), 36 formats, 3, 7-10, 12, 13, 24, 29, 33 gt2aca, 14 intoMix, 15 KinMix. 15 KinMixLite (KinMixLite-package), 2 KinMixLite-package, 2 logL, 19

logL.UK, <u>18</u>

logL.UKX, 18 logLX, 19 loop.rpt.IBD, 20 make.profile, 21 make.profiles (make.profile), 21 map.genotypes, 37 Mgt (test2data), 36 mixML, 23 mixMLX, 22 pedigreeIBD, 24 pedtools, 10, 24 plot, 25 plot.IBD, 25 protected, 26 protected.mixML, 27 replace.tables.for.UAF(rpt.UAF), 34 replace.Ui.tables(rpt.IBD), 31 require.compiled, 28 Rgt (test2data), 36 rGTs, 28 rni, 29 rpt.AMEL, 30 rpt.IBD, 31 rpt.typed.child(rpt.IBD), 31 rpt.typed.parents (rpt.IBD), 31 rpt.typed.relative (rpt.IBD), 31 rpt.typed.relatives(rpt.IBD), 31 rpt.UAF, 34 S1gt (test2data), 36 S2gt (test2data), 36 size, 35 test2data, 36

wlr, 36