Title: | Linear Parametric Models Applied to Hydrological Series |
Version: | 3.2 |
Depends: | R (≥ 3.5) |
Date: | 2024-06-15 |
Description: | Apply Univariate Long Memory Models, Apply Multivariate Short Memory Models To Hydrological Dataset, Estimate Intensity Duration Frequency curve to rainfall series. NEW – Calculate the monthly water requirement for herbaceous and arboreal plants. |
Imports: | stats, graphics, grDevices, fracdiff, powdist, MASS |
License: | GPL-2 |
Maintainer: | Corrado Tallerini <corrado.tallerini@gmx.com> |
URL: | http://www.corradotallerini.altervista.org/LPM.html |
BugReports: | http://www.corradotallerini.altervista.org/Contatti.html |
Encoding: | UTF-8 |
Author: | Corrado Tallerini [aut, cre], Salvatore Grimaldi [aut] |
NeedsCompilation: | no |
Packaged: | 2024-06-15 15:01:37 UTC; Corrado |
Repository: | CRAN |
Date/Publication: | 2024-06-15 15:50:02 UTC |
Intensity duration frequency curve
Description
Estimate IDF curve fitting a [mm/h], m ,n, b[h] parameters
Usage
IDFcurve(rain, g, s, tc, stvalue1 = 1, stvalue2 = fre, fre, Tr = 200,
MP=F, Trplot=F)
Arguments
rain |
Observed Univariate rainfall series non cumulative |
g |
Maximum bound for cumulative series. For daily series g = 7 is recommended, for hourly series g=24 is racommended |
s |
Threshold for defining "event". If "10", only h > = 10 mm values are considered |
tc |
Time of concentration of Basin [h] |
stvalue1 , stvalue2 |
Starting values of estimation algorithm. Deault stvalue1=1, stvalue2=fre |
fre |
Series frequency [h]. For daily series fre=24, for hourly series fre=1 |
Tr |
Return period [y]. Default Tr=200 |
MP |
logical: TRUE for 3 parameters formula i=a/(b+t)^m , FALSE for 2 parameters formula i=a*t^(n-1), Default MP=False |
Trplot |
logical: TRUE for plotting Tr values of a(Tr) parameter. Default Trplot=False |
Details
Estimate parameters of Intensity Duration Frequency curves
Value
par |
List of estimated parameters: a(tr), m, b, h(t) [mm], i(t) [mm/h], Offset of least squares optimizer |
Curve |
IDF curve Scattered point matrix [mm/h] |
Note
a(tr) is defined by Gumbel distribution.
Author(s)
Corrado Tallerini
See Also
Examples
## data(hourly.rainfall.series)
## res = IDFcurve(hourly.rainfall.series ,24, 15, 1, fre=1, Tr=200, MP=F)
## --> 2 parameters IDF curve estimation of a hourly rainfall series applying
## --> a Threshold "15 mm" and Time of concentration t=1 h
## res = IDFcurve(hourly.rainfall.series ,24, 15, 1, fre=1, Tr=200, MP=T)
## --> 3 parameters IDF curve estimation of a hourly rainfall series applying
## --> a Threshold "15 mm" and Time of concentration t=1 h
## --> It's obvious the best performance of the 3 parameters formula
Intensity duration frequency curve for maximum annual rainfall series of different duration
Description
Estimate IDF curve fitting a [mm/h], m ,n, b[h] parameters of maximum annual rainfall series
Usage
IDFcurve2(rain, tc, stvalue1 = 1, stvalue2 = 1, t, Tr = 200, MP = F, Trplot = F)
Arguments
rain |
Observed Maximum annual rainfall series [mm] of increasing duration |
tc |
Time of concentration of Basin [h] , maybe h(t) and i(t) duration must be calculated |
stvalue1 , stvalue2 |
Starting values of estimation algorithm. Deault stvalue1=1, stvalue2=1 |
t |
observed rainfall series duration [h] example t=c(1,3,6,12,24) for durations 1,3,6,12,24 hours |
Tr |
Return period [y]. Default Tr=200 |
MP |
logical: TRUE for 3 parameters formula i=a/(b+t)^m , FALSE for 2 parameters formula i=a*t^(n-1), Default MP=False |
Trplot |
logical: TRUE for plotting Tr values of a(Tr) parameter. Default Trplot=False |
Details
Estimate parameters of Intensity Duration Frequency curves for maximum annual rainfall series of different duration
Value
par |
List of estimated parameters: a(Tr), m, b, h(t) [mm], i(t) [mm/h], Offset of least squares optimizer |
I |
I(t) curve scattered point matrix [mm/h] |
Curve |
IDF curve scattered point matrix [mm/h] |
Note
a(Tr) is defined by Gumbel distribution.
Author(s)
Corrado Tallerini
See Also
Examples
## data(milano)
## ris=IDFcurve2(milano, 1, stvalue1 = 1, stvalue2 = 1,
## t=c(0.25,0.5,0.75,1,1.25,1.5,2,2.5,3,4,6), Tr = 200, MP=F)
## --> 2 parameters IDF curve estimation of annual maximum rainfall
## series recorded in Palazzo Marino - Milan (Italy)
## ris=IDFcurve2(milano, 1, stvalue1 = 1, stvalue2 = 1,
## t=c(0.25,0.5,0.75,1,1.25,1.5,2,2.5,3,4,6), Tr = 200, MP=T)
## --> 3 parameters IDF curve estimation of annual maximum rainfall
## series recorded in Palazzo Marino - Milan (Italy)
## --> It's obvious the best performance of the 3 parameters formula
LPM
Description
Apply Univariate Long Memory Models, Apply Multivariate Short Memory Models To Hydrological Dataset, Estimate Intensity Duration Frequency curve to rainfall series. NEW – Calculate the monthly water requirement for herbaceous and arboreal plants.
Details
See
ar.egls
,
lpm
,
mlpm
rain.adapt
WNeeds
PWN
Author(s)
Authors: Salvatore Grimaldi and Corrado Tallerini
Maintainer: Corrado Tallerini
References
Grimaldi S., Tallerini C., Serinaldi F. (2004) 'Modelli multivariati lineari per la generazione di serie di precipitazioni giornaliere' Giornata di Studio: Metodi Statistici e Matematici per l'Analisi Idrologiche Napoli 2004
Grimaldi S. , Serinaldi F. & Tallerini C. (2004) 'Multivariate linear parametric models applied to daily rainfall time series' Mediterranean Storms, 6rd EGU Plinius Conference held in Mediterranean Sea, Italy, October 2004
Lutkepohl, H. (1993) Introduction to Multiple Time Series Analysis 2nd edition, Springer-Verlag, Berlin.
Grimaldi, S., 'Linear parametric models applied on daily hydrological series', Journal of Hydrologic Engineering, Vol. 9, No 5 , September 2004.
Brockwell, P.J and Davis, R.A. (1990) Time Series: Theory and Methods 2nd edition, Springer, NY.
Hipel, K.W. and McLeod, A.I., (1994) Time Series Modelling of Water Resources and Enviromental Systems, Reading, UK.
Hosking, J.R.M. (1980) 'The Multivariate Portmanteau Statistic' Journal of the American Statistical Association, Vol.75, N.371, 502-608.
United States Department of Agricolture (USDA - SCS). IRRIGATION - National Engineering handbook.
Fao irrigation and dreinage paper N. 24 - Crop water requirement, Food and agriculture organization of the united nations ROME, rivisited 1977
Moisello U. "Idrologia Tecnica" La Goliardica Pavese.
Genovesi R., Bottau D. "L'importanza della falda nell' alimentazione idrica delle colture nella pianura emiliano-romagnola."
Regione Campania - Assessorato Agricoltura - Settore S.I.R.C.A. La tessitura del suolo (foglio divulgativo novembre - dicembre 2002)
Crop Water requirement
Description
Calculate the monthly irrigation requirement of crops based on cumulative probability [p] and daily watering duration of irrigation [h]
Usage
PWN(x1, frvol, R, p, irr)
Arguments
x1 |
Bivariate series of monthly cumulative rainfall and average monthly temperatures |
frvol |
Volume fraction of the soil. It is 0.10 for sandy soil, 0.20 fpr loamy soil, 0.18 for clayey soil, 0.13 for medium-textured soil |
R |
Length of plant roots [cm] — see FAO-24 Mannini reworked, maximum extraction depth |
p |
Cumulative probability of plant's water requirement [percent] |
irr |
Daily watering duration of irrigation [h] |
Value
Values |
Monthly water requirement values [m3/ha] relating to the cumulative probability indicated (p) |
Flow |
Irrigation flow [l/s/ha] relating to the daily watering duration (irr) and cumulative probability (p) |
Author(s)
Corrado Tallerini
References
United States Department of Agricolture (USDA - SCS). IRRIGATION - National Engineering handbook.
Moisello U. "Idrologia Tecnica" La Goliardica Pavese.
Genovesi R., Bottau D. "L'importanza della falda nell' alimentazione idrica delle colture nella pianura emiliano-romagnola."
Regione Campania - Assessorato Agricoltura - Settore S.I.R.C.A. La tessitura del suolo (foglio divulgativo novembre - dicembre 2002)
Fao irrigation and dreinage paper N. 24 - Crop water requirement, Food and agriculture organization of the united nations ROME, rivisited 1977
Grimaldi, S. Tallerini, C., Serinaldi, F., "Modelli multivariati lineari per la generazione di serie di precipitazioni giornaliere", Giornata di Studio: Metodi Statistici e Matematici per l'Analisi delle Serie Idrologiche, Napoli, maggio 2004
Examples
##---- data(Pistoia)
##---- PWN(Pistoia,0.13,40,75,16)
##---- Calculate the monthly irrigation requirement of a plant (Length of plant roots 40 cm in
##---- a medium-textured soil) based on a 75% cumulative probability and 16 hours daily irrigation
Dataset of Pistoia (Italy)
Description
Bivariate series of observed rainfall-temperature for Pistoia (Italy) during the period 1951-2012
Usage
data(Pistoia)
Format
A data frame with 744 observations on the following 2 variables.
V1
Monthly cumulative rainfall (mm)
V2
Average monthly temperature (degree)
Source
Ce.Spe.Vi. (Centro sperimentale per il vivaismo) Web: http://www.cespevi.it
Examples
data(Pistoia)
## maybe str(Pistoia) ; plot(Pistoia) ...
Crop water requirement
Description
Calculates the water requirement [m3/ha] of herbaceous or arboreal crops
Usage
WNeeds(x, frvol, R)
Arguments
x |
Bivariate series of monthly cumulative rainfall [mm] and average monthly temperatures [degree] |
frvol |
Volume fraction of the soil. It is 0.10 for sandy soil, 0.20 fpr loamy soil, 0.18 for clayey soil, 0.13 for medium-textured soil |
R |
Length of plant roots [cm] — see FAO-24 Mannini reworked, maximum extraction depth |
Author(s)
Corrado Tallerini
References
United States Department of Agricolture (USDA - SCS). IRRIGATION - National Engineering handbook.
Moisello U. "Idrologia Tecnica" La Goliardica Pavese.
Genovesi R., Bottau D. "L'importanza della falda nell' alimentazione idrica delle colture nella pianura emiliano-romagnola."
Regione Campania - Assessorato Agricoltura - Settore S.I.R.C.A. La tessitura del suolo (foglio divulgativo novembre - dicembre 2002)
Fao irrigation and dreinage paper N. 24 - Crop water requirement, Food and agriculture organization of the united nations ROME, rivisited 1977
Grimaldi, S. Tallerini, C., Serinaldi, F., "Modelli multivariati lineari per la generazione di serie di precipitazioni giornaliere", Giornata di Studio: Metodi Statistici e Matematici per l'Analisi delle Serie Idrologiche, Napoli, maggio 2004
Examples
## data(Pistoia)
## A1=WNeeds(Pistoia,0.13,60)
## edit(A1)
Subset Autoregressive Model
Description
Estimate VAR(p) model fixing some parameter values to zero
Usage
ar.egls(x, R, order.max , na.action = na.fail, series = NULL, ...)
Arguments
x |
Univariate or multivariate series with nil mean |
R |
Matrices of parameters selection |
order.max |
Model order |
na.action |
Function to be called to handle missing values |
series |
Names for the series. Defaults to 'deparse(substitute(x))' |
... |
See ar.ols |
Details
R matrix is a list of p matrices, with p the autoregressive order. In R value '1' allows parameter estimation, '0' fix the parameter value to zero.
Value
See ar.ols
Note
Function is created modifing ar.ols by Adrian Trapletti and Brian Ripley
Author(s)
Corrado Tallerini
References
Grimaldi S. , Serinaldi F. & Tallerini C. (2004) 'Multivariate linear parametric models applied to daily rainfall time series' Mediterranean Storms, 6rd EGU Plinius Conference held in Mediterranean Sea, Italy, October 2004
Lutkepohl, H. (1993) Introduction to Multiple Time Series Analysis 2nd Edition ._ Springer Verlag, NY
Examples
## S1=matrix(0,3,3)
## S1[1,1]=1
## S1[1,2]=1
## S=list()
## S[[1]]=S1
## S[[2]]=S1
## ar.egls(series.rainfall[,1:3],S,order.max=2)
## --> Apply a Subset VAR(2) model restricted to 4 parameters (position (1,1)
## --> and (1,2) in both matrices) to first 3 series of series.rainfall
## --> dataset
hourly rainfall series
Description
Hourly rainfall series recorded in Burlington (US) during the period 2012-2015.
Usage
data(hourly.rainfall.series)
Details
Dataset is available on The Iowa Environmental Mesonet (IEM) website
Source
https://mesonet.agron.iastate.edu/request/download.phtml?
Examples
data(hourly.rainfall.series)
## maybe str(series.rainfall) ; plot(series.rainfall) ...
Linear Parametric Model
Description
Estimate ARMA and FARMA models, make simulations and ed eventually apply a corrective procedure to rainfall synthetic series. Besides you can remove seasonal components with STL modified method.
Usage
lpm(x, p, q, n, smean, svar, outer=0, prob = 0.95, fre = 365,
fractional = F, Plag = 20, lsign=0.05, n1 = 399, trasfo = F, des = T, rain = F, graph = F)
Arguments
x |
Univariate series |
p |
AR order |
q |
MA order |
n |
Number of series to simulate |
outer |
Number of outer loops for STL modified method. Default outer = 0 |
smean , svar |
Mean and Variance smoothing windows of STL modified method |
prob |
Parameter confidence interval. Default prob = 0.95 |
fre |
Series frequency. Default fre = 365 (for daily series) |
fractional |
Logical variable: T to apply FARMA model. Default fractional = F |
Plag |
Maximum lag of ACF used in the Portmanteau test. Default Plag = 20 |
lsign |
Portmanteau Test significance level. Default lsign = 0.05 |
n1 |
Number of parameters of infinite MA model . Default n1 = 399 |
trasfo |
Logical variable: T for preventive logarithmical trasformation. Default trasfo = F |
des |
Logical variable: T to remove seasonal components. Default des = T |
rain |
Logical variable: T to apply the corrective procedure to daily rainfall simulated series. Default rain = F |
graph |
Logical variable: T to receive some graphics. Default graph = F |
Details
Need integer periodical dataset. Function to complete modelling univariate series.
Value
para |
List of estimated parameters |
res |
Residual series |
simdes |
List of simulated series without application of corrective procedure |
sim |
List of simulated series |
BIC |
Bayesian Information criterion index of estimated model |
Note
Portmonteau test and BIC index are displaied during application. Portmonteau Test is positive if Q < chi square
Author(s)
Salvatore Grimaldi
References
Grimaldi, S., 'Linear parametric models applied on daily hydrological series', Journal of Hydrologic Engineering, Vol.9, No 5, September 2004.
Grimaldi S., F. Napolitano, L. Ubertini, 'A procedure to use linear parametric models for daily rainfall series simulation'
Brockwell, P.J and Davis, R.A. (1990) Time Series: Theory and Methods 2nd edition, Springer, NY.
Hipel, K.W. and McLeod, A.I., (1994) Time Series Modelling of Water Resources and Enviromental Systems, Reading, UK.
See Also
Examples
##--- lpm(series.runoff,1,1,0,30,30,fractional=T,trasfo=T)
##-- Apply a FARMA(1,d,1) model to series.runoff after e preventive
## logarithmical trasformation and deseasonalization with smoothing 30.
Maximum annual rainfall series for different durations
Description
Maximum annual rainfall series for different durations recorded at the pluviograph of Palazzo Marino, Milan (Italy)
Usage
data(milano)
Details
Maximum annual precipitation series for 0.25, 0.5, 0.75, 1, 1.25, 1.50, 2, 2.5, 3, 4, 6 [h] 1931-1970
Source
dataset of Palazzo Marino pluviograph , Milan (Italy)
Examples
data(milano)
## maybe str(series.rainfall) ; plot(series.rainfall) ...
Multivariate Linear Parametric Model
Description
Multivariate modelling using VAR(p) and SVAR(p) different estimation methods, simulation, daily rainfall simulated series correction and deseasonalization are performed
Usage
mlpm(x, p, prob, nsim, smean, svar, fre = 365, outer = 0,plot = F,
rain = T, over = T, estimate = "ols", CCFlag = 20, Plag = 20, lsign = 0.05, des = T)
Arguments
x |
Multivariate series |
p |
Model order |
prob |
Condifidence interval used to fix parameters in SVAR(p) model |
nsim |
Number of series to simulated |
smean , svar |
Mean and Variance smoothing windows of STL modified method |
fre |
Series frequency. Default fre = 365 |
outer |
Outer loops of STL modified method. Default outer = 0 |
plot |
Logical variable: T to receive some graphics. Default plot = F |
rain |
Logical variable: T to apply rain adaptor to simulated series. Default rain = F |
over |
Logical variable: T to use SVAR(p) model estimated with EGLS method. Need estimate = 'ols' Default over = T |
estimate |
Define VAR(p) estimation method. 'ols', 'burg', 'yw' (Yule-Walker). Default estimate = 'ols' |
CCFlag |
Lag of (Partial) Auto-CrossCorrelation function graphics . Default CCFlag = 20 |
Plag |
Maximum lag of A-CCF used in the Portmanteau Test. Default Plag = 20 |
lsign |
Portmanteau Test significance level. Default lsign = 0.05 |
des |
Logical variable: T to remove seasonal components |
Details
Need integer periodical datasets. Simulation use Lutkepohl algorithm with a residuals vectorial permutation to obtain innovations. Parameters selections of EGLS method is defined by t-ratio approach.
Value
coeff |
List of estimated coefficients matrix |
coeffstd |
List of estimated standard deviations coefficients matrix. Only for OLS and EGLS method |
struct |
List of 'structure' of SVAR(p) model (1 define position of estimated parameter). Only for EGLS method |
res |
Residual series |
fit |
Output List of ar function |
aic |
Akaike Information Criterion index |
Q |
Portmonteau statistic |
sim |
List of simulated series |
Note
Portmonteau test, AIC e SBC index are displaied during application. Portmonteau test is positive if Q < chi square.
Author(s)
Corrado Tallerini
References
Grimaldi S., Tallerini C., Serinaldi F. (2004) 'Modelli multivariati lineari per la generazione di serie di precipitazioni giornaliere' Giornata di Studio: Metodi Statistici e Matematici per l'Analisi Idrologiche Napoli 2004
Grimaldi S. , Serinaldi F. & Tallerini C. (2004) 'Multivariate linear parametric models applied to daily rainfall time series' Mediterranean Storms, 6rd EGU Plinius Conference held in Mediterranean Sea, Italy, October 2004
Lutkepohl, H. (1993) Introduction to Multiple Time Series Analysis 2nd edition, Springer-Verlag, Berlin.
Grimaldi, S., 'Linear parametric models applied on daily hydrological series', Journal of Hydrologic Engineering, Vol. 9, No 5 , September 2004.
Brockwell, P.J and Davis, R.A. (1990) Time Series: Theory and Methods 2nd edition, Springer, NY.
Hipel, K.W. and McLeod, A.I., (1994) Time Series Modelling of Water Resources and Enviromental Systems, Reading, UK.
Hosking, J.R.M. (1980) 'The Multivariate Portmanteau Statistic' Journal of the American Statistical Association, Vol.75, N.371, 502-608.
See Also
Examples
##-- Mrain=mlpm(series.rainfall,3,0.95,0,120,120)
##-- Apply a SVAR(3) model with selection probability 95 % to series.rainfall
##-- after preventive deseasonalization with smoothing 120.
Rainfall Adaptor
Description
Apply a corrective procedure to daily rainfall series to enforce actual caracteristics.
Usage
rain.adapt(x, a, ser)
Arguments
x |
Observed series |
a |
Univariate series to modify (simulated series) |
ser |
Series identification number |
Details
The no-rain frequency consequentally the total rainfall depth of the observed series are enforced on the synthetic series
Value
Corrected series
Author(s)
Salvatore Grimaldi
References
Grimaldi S., F. Napolitano, L. Ubertini, 'A procedure to use linear parametric models for daily rainfall series simulation'
Examples
## rain=lpm(series.rainfall[,1],1,1,1,120,120)
## rain.adapt(series.rainfall[,1],rain$sim[[1]],1)
##-- ==> Apply rain adaptor to a simulated series with a ARMA(1,1) model
Support function
Description
Support function
Daily Rainfall Series
Description
Group of 5 daily rainfall series recorded in Tuscany region of Italy during the period 1958-1979.
Usage
data(series.rainfall)
Details
Dataset is created removing lacking years and replacing lacking days with the mean of previous and successive value. Beside 29 february day values are removed to obtain integer periodical dataset.
Source
Rudari, R. 'Predicibilita' del clima europeo ed influenze delle forzanti a scala sinottica su eventi regionali di precipitazione intensa', PDh Thesis 2001
Examples
data(series.rainfall)
## maybe str(series.rainfall) ; plot(series.rainfall) ...
Daily Runoff Series
Description
Daily runoff series of Tiber river observed to Ripetta station during the period 1930-1983
Usage
data(series.runoff)
Details
29 february day values are removed to obtain integer periodical dataset
Source
Available on the web site www.gndci.cnr.it. "Gruppo nazionale per la difesa delle catastrofi idrogeologiche"
Examples
data(series.runoff)
## maybe str(series.runoff) ; plot(series.runoff) ...