Package 'MatchGATE'

July 21, 2025

Title Estimate Group Average Treatment Effects with Matching

Index

2 EstGATE

EstGATE

Estimating Group Average Treatment Effects

Description

When imputed values for Y^1 and Y^0 are available for each individual, we can use EstGATE to estimate the group average treatment effects (GATE) defined by

$$GATE(z) = E[Y^1 - Y^0|Z = z]$$

for some for possible values z of Z.

Usage

```
EstGATE(Y1_Y0, Z, Zeval, h)
```

Arguments

Y1_Y0	A vector in which each element is a treatment effect for each individual.
Z	A subvector of the covariates X, which is used to define the subgroup of interest.
Zeval	Vector of evaluation points of Z.
h	A smoothing parameter, bandwidth.

Value

The value of the corresponding GATE at different evaluation points.

Examples

```
set.seed(691)
n <- 2000
X1 \leftarrow runif(n, -0.5, 0.5)
X2 <- rnorm(n, sd = 0.5)
X = cbind(X1, X2)
A = sample(c(0,1), n, TRUE)
Y0 \leftarrow X2 + X1*X2/2 + rnorm(n, sd = 0.25)
Y1 \leftarrow A * (2*X1^2) + X2 + X1*X2/2 + rnorm(n, sd = 0.25)
Y < - A * Y1 + (1-A)*Y0
res.match <- match_y1y0(X, A, Y, K = 5)
y1_y0 <- res.match$Y1 - res.match$Y0</pre>
Z <- X1
Zeval = seq(min(Z), max(Z), len = 101)
h < -0.5 * n^{-1/5}
res <- EstGATE(Y1_Y0 = y1_y0, Z, Zeval, h = h)
plot(x = Zeval, y = 2*Zeval^2,
     type = "1", xlim = c(-0.6, 0.5),
     main = "Estimated value vs. true value",
     xlab = "Zeval", ylab = "GATE",
```

match_y1y0

match_y1y0

Imputing Missing Potential Outcomes with Matching

Description

Impute missing potential outcomes for each individual with matching.

Usage

```
match_y1y0(X, A, Y, K = 5, method = "euclidean")
```

Arguments

X	A matrix representing covariates, where each row represents the value of a different covariates for an individual.
A	A vector representing the treatment received by each individual.
Υ	A vector representing the observed outcome for each individual.
K	When imputing missing potential outcomes, the average number of similar individuals are taken based on covariates similarity.
method	The distance measure to be used. It is a argument embed in dist function.

Details

Here are the implementation details for the imputation processes. Denote \hat{Y}_i^0 and \hat{Y}_i^1 as the imputed potential outcomes for individual i. Without loss of generality, if $A_i=0$, then $\hat{Y}_i^0=Y_i$, and \hat{Y}_i^1 is the average of outcomes for the K units that are the most similar to the individual i, i.e.,

$$\hat{Y}_i^0 = \frac{1}{K} \sum_{j \in \mathcal{J}_K(i)} Y_j,$$

where $\mathcal{J}_K(i)$ represents the set of K matched individuals with $A_i = 1$, that are the closest to the individual i in terms of covariates similarity, and vice versa.

Value

Returns a matrix of completed matches, where each row is the imputed (Y^1,Y^0) for each individual.

4 match_y1y0_bc

Examples

```
n <- 100
p <- 2
X <- matrix(rnorm(n*p), ncol = p)
A <- sample(c(0,1), n, TRUE)
Y <- A * (2*X[,1]) + X[,2]^2 + rnorm(n)
match_y1y0(X = X, A = A, Y = Y, K =5)</pre>
```

match_y1y0_bc

Imputing Missing Potential Outcomes with Bias-Corrected Matching

Description

Impute missing potential outcomes for each individual with bias-corrected matching.

Usage

```
match_y1y0_bc(X, A, Y, miu1.hat, miu0.hat, K = 5, method = "euclidean")
```

Arguments

X	A matrix representing covariates, where each row represents the value of a different covariates for an individual.
Α	A vector representing the treatment received by each individual.
Υ	A vector representing the observed outcome for each individual.
miu1.hat	The estimated outcome regression function for Y^1 .
miu0.hat	The estimated outcome regression function for Y^0 .
K	When imputing missing potential outcomes, the average number of similar individuals are taken based on covariates similarity.
method	The distance measure to be used. It is a argument embed in dist function.

Details

Here are the implementation details for the imputation processes. Denote \hat{Y}_i^0 and \hat{Y}_i^1 as the imputed potential outcomes for individual i. For example, if $A_i=0$, then $\hat{Y}_i^0=Y_i^0$. However, for obtaining \hat{Y}_i^1 , we require to introduce an outcome regression function $\mu_1(X)$ for Y^1 . Let $\hat{\mu}_1(X)$ be the fitted value of $\mu_1(X)$, then \hat{Y}_i^1 is defined as follows,

$$\hat{Y}_i^1 = \frac{1}{K} \sum_{j \in \mathcal{J}_K(i)} \{ Y_j + \hat{\mu}_1(X_i) - \hat{\mu}_1(X_j) \},$$

where $\mathcal{J}_K(i)$ represents the set of K matched individuals with $A_i = 1$, that are the closest to the individual i in terms of covariates similarity, and vice versa.

match_y1y0_bc 5

Value

Returns a matrix of completed matches, where each row is the imputed (Y^1,Y^0) for each individual

Examples

Index

```
dist, 3, 4
EstGATE, 2
match_y1y0, 3
match_y1y0_bc, 4
```