Type: | Package |
Title: | Computation of NTLKwIEx Distribution Properties |
Version: | 0.1.0 |
Author: | Mintodê Nicodème Atchadé [aut], Théophile Otodji [aut, cre] |
Maintainer: | Théophile Otodji <otodjitheodule@gmail.com> |
Description: | Implements statistical tools for analyzing, simulating, and computing properties of the New Topp-Leone Kumaraswamy Inverse Exponential (NTLKwIEx) distribution. See Atchadé M, Otodji T, and Djibril A (2024) <doi:10.1063/5.0179458> and Atchadé M, Otodji T, Djibril A, and N'bouké M (2023) <doi:10.1515/phys-2023-0151> for details. |
Depends: | R (≥ 3.6.0), stats, dplyr, ggplot2 |
License: | GPL-2 |
Encoding: | UTF-8 |
LazyData: | true |
RoxygenNote: | 7.2.3 |
VignetteBuilder: | knitr |
Suggests: | knitr, rmarkdown, testthat (≥ 3.0.0) |
Language: | fr |
Config/testthat/edition: | 3 |
NeedsCompilation: | no |
Packaged: | 2024-02-03 16:32:20 UTC; HP |
Repository: | CRAN |
Date/Publication: | 2024-02-05 19:30:07 UTC |
Cumulative Distribution Function (CDF) of the NTLKwIEx distribution
Description
This function calculates the Cumulative density function (CDF) of the NTLKwIEx distribution.
Usage
C_NTLKwIEx(x, teta, alpha, a, b, m)
Arguments
x |
Value up to which to calculate the CDF. |
teta |
Parameter teta of the distribution representing the distribution of the inverse exponential component. |
alpha |
Parameter alpha of the distribution representing the distribution of the new proposal component. |
a |
Parameter a of the distribution representing the distribution of the Kumaraswamy component. |
b |
Parameter b of the distribution representing the distribution of the Kumaraswamy component. |
m |
Parameter m of the distribution representing the distribution of the Topp Leone component. |
Details
It takes parameters x, teta, alpha, a, b, and m, and returns the CDF value at x based on these parameters. The formula used for the calculation is provided in the documentation header. The Cumulative Distribution Function (CDF) of the NTLKwIEx distribution is defined as:
F(x;a,b,m,\alpha,\theta) = \left[ 1-\left(1-K(x,\xi)^{a \alpha^{K(x,\xi)}}\right)^{2b} \right]^{m}
where \alpha , a , b, m, \theta > 0
.
Value
Value of the CDF for the NTLKwIEx distribution evaluated at x
Dataset: ConductorFailureTimes
Description
This dataset contains failure times measured in hours from an accelerated life test with 59 conductors.
Usage
data(ConductorFailureTimes)
Format
A numeric vector of failure times.
Details
This dataset contains failure times (measured in hours) obtained from an accelerated life test involving 59 conductors. The data are presented as a numeric vector.
References
Nasiri, B., et al. (2010). "Bayesian analysis of the accelerated life model with Type-II censoring." Journal of Statistical Planning and Inference, 140(6), 1565-1572.
Schafft, H. A., et al. (1987). "Reproducibility of the accelerated test for electric cable insulation." IEEE Transactions on Electrical Insulation, 22(5), 739-746.
Estimate parameters with constraints
Description
This function estimates the parameters of the NTLKwIEx distribution while adhering to parameter constraints. It employs the maximum likelihood estimation method and returns estimated values for each parameter based on a given dataset and the specified constraints.
Usage
E_NTLKwIEx(data)
Arguments
data |
Numeric vector of data values. |
Value
Numeric vector of estimated parameters.
Probability Density Function (PDF) of the NTLKwIEx distribution
Description
The Probability Density Function (PDF) of the NTLKwIEx distribution is defined as:
Usage
P_NTLKwIEx(x, teta, alpha, a, b, m)
Arguments
x |
Value to evaluate the PDF at |
teta |
Parameter teta of the distribution |
alpha |
Parameter alpha of the distribution |
a |
Parameter a of the distribution |
b |
Parameter b of the distribution |
m |
Parameter m of the distribution |
Details
f(x, \theta, \alpha, a, b, m) =2abm\frac{\theta}{x^{2}}\left( -\frac{\theta}{x}log\left( \alpha \right)+ exp\left( \dfrac{\theta}{x}\right)\right)exp\left\lbrace -\frac{\theta}{x}\left(1+a\alpha^{exp\left(-\frac{\theta}{x}\right)}\right)\right\rbrace \left\lbrace 1-exp\left( -a\frac{\theta}{x}\alpha^{exp\left(-\frac{\theta}{x}\right)} \right)\right\rbrace^{2b-1}\left\lbrace 1-\left\lbrace 1-exp\left( -\frac{a\theta}{x} \alpha^{exp\left(-\frac{\theta}{x}\right) }\right)\right\rbrace ^{2b} \right\rbrace^{m-1}
Value
Value of the PDF for the NTLKwIEx distribution evaluated at x
Graphical representation of the Cumulative Distribution Function (CDF) of the NTLKwIEx distribution
Description
This function generates a plot of the Cumulative Distribution Function (CDF) of the NTLKwIEx distribution over a specified range of x values.
Usage
Plot_CNTLKwIEx(teta, alpha, a, b, m, min_x, max_x)
Arguments
teta |
Parameter teta of the distribution |
alpha |
Parameter alpha of the distribution |
a |
Parameter a of the distribution |
b |
Parameter b of the distribution |
m |
Parameter m of the distribution |
min_x |
Minimum value of x for the plot |
max_x |
Maximum value of x for the plot |
Value
A plot of the CDF of the NTLKwIEx distribution
Graphical representation of the probability density function (PDF) of the NTLKwIEx distribution
Description
This function generates a graph of the probability density function (PDF) of the NTLKwIEx distribution over a specified range of x values.
Usage
Plot_PNTLKwIEx(teta, alpha, a, b, m, min_x, max_x)
Arguments
teta |
Parameter teta of the distribution |
alpha |
Parameter alpha of the distribution |
a |
Parameter a of the distribution |
b |
Parameter b of the distribution |
m |
Parameter m of the distribution |
min_x |
Minimum value of x for the graph |
max_x |
Maximum value of x for the graph |
Value
A graph of the PDF of the NTLKwIEx distribution
Quantile Value of the NTLKwIEx distribution
Description
This function calculates the quantile value of the NTLKwIEx distribution for a given probability p.
Usage
Q_NTLKwIEx(p, teta, alpha, a, b, m)
Arguments
p |
Probability for which the quantile value is to be calculated (0 <= p <= 1) |
teta |
Parameter teta of the distribution |
alpha |
Parameter alpha of the distribution |
a |
Parameter a of the distribution |
b |
Parameter b of the distribution |
m |
Parameter m of the distribution |
Value
The quantile value corresponding to the probability p for the NTLKwIEx distribution
Random Sampling from the NTLKwIEx distribution
Description
This function generates random samples from the NTLKwIEx distribution based on the given parameters.
Usage
R_NTLKwIEx(n, teta, alpha, a, b, m)
Arguments
n |
Number of random samples to generate |
teta |
Parameter teta of the distribution |
alpha |
Parameter alpha of the distribution |
a |
Parameter a of the distribution |
b |
Parameter b of the distribution |
m |
Parameter m of the distribution |
Value
A vector of n random samples from the NTLKwIEx distribution
Estimate parameters with constraints
Description
This function generates a histogram that depicts the distribution of the provided input data. Additionally, it estimates the parameters of a distribution that would correspond to the given data. By overlaying the estimated density function onto the histogram, Sim_NTLKwIEx enables an immediate comparison between the empirical distribution and the estimated one. Sim_NTLKwIEx proves to be a valuable tool for initial data exploration, streamlining trend identification, and understanding key features. Its usage comes recommended for tasks that require a swift exploratory analysis of data distributions.
Usage
Sim_NTLKwIEx(data)
Arguments
data |
Numeric vector of data values. |
Value
Numeric vector of estimated parameters.
Examples
Sim_NTLKwIEx(c(38.181, 38.542, 38.928, 39.334,35.8))