
Package ‘PCRedux’
July 21, 2025

Type Package

Title Quantitative Polymerase Chain Reaction (qPCR) Data Mining and
Machine Learning Toolkit as Described in Burdukiewicz (2022)
<doi:10.21105/Joss.04407>

Version 1.2-0

Date 2025-06-11

Description Extracts features from amplification curve data of quantitative
Polymerase Chain Reactions (qPCR) according to Pabinger et al. 2014
<doi:10.1016/j.bdq.2014.08.002> for machine learning purposes. Helper
functions prepare the amplification curve data for processing as functional
data (e.g., Hausdorff distance) or enable the plotting of amplification
curve classes (negative, ambiguous, positive). The hookreg() and hookregNL()
functions of Burdukiewicz et al. (2018) <doi:10.1016/j.bdq.2018.08.001>
can be used to predict amplification curves with an hook effect-like
curvature. The pcrfit_single() function can be used to extract features
from an amplification curve.

License MIT + file LICENSE

LazyLoad yes

LazyData yes

URL https://CRAN.R-project.org/package=PCRedux

BugReports https://github.com/PCRuniversum/PCRedux/issues

Depends R (>= 3.5.0)

Imports changepoint, chipPCR, ecp, fda.usc, MBmca, pbapply, pracma,
qpcR, robustbase, segmented, shiny, stats, utils, zoo

Suggests DT, future, knitr, listenv, RDML, readxl, rmarkdown,
shinycssloaders, spelling, testthat, xtable

NeedsCompilation no

VignetteBuilder knitr

Encoding UTF-8

Language en-US

1

https://doi.org/10.1016/j.bdq.2014.08.002
https://doi.org/10.1016/j.bdq.2018.08.001
https://CRAN.R-project.org/package=PCRedux
https://github.com/PCRuniversum/PCRedux/issues

2 PCRedux-package

RoxygenNote 7.1.2

Repository CRAN

Date/Publication 2025-06-13 05:00:02 UTC

Author Stefan Roediger [aut] (ORCID: <https://orcid.org/0000-0002-1441-6512>),
Michal Burdukiewicz [aut] (ORCID:

<https://orcid.org/0000-0001-8926-582X>),
Andrej-Nikolai Spiess [cre, aut] (ORCID:

<https://orcid.org/0000-0002-9630-4724>),
Konstantin A. Blagodatskikh [aut] (ORCID:

<https://orcid.org/0000-0002-8732-0300>),
Dominik Rafacz [ctb] (ORCID: <https://orcid.org/0000-0003-0925-1909>)

Maintainer Andrej-Nikolai Spiess <draspiess@gmail.com>

Contents
PCRedux-package . 2
armor . 3
autocorrelation_test . 4
decision_modus . 5
earlyreg . 7
encu . 8
head2tailratio . 9
hookreg . 10
hookregNL . 11
humanrater2 . 12
mblrr . 13
PCRedux_datasets . 14
pcrfit_single . 15
performeR . 18
qPCR2fdata . 20
run_PCRedux . 21
tReem . 22
winklR . 23

Index 25

PCRedux-package PCRedux - quantitative PCR Data Mining and Machine Learning
Toolkit

Description

PCRedux package is a toolbox for the analysis of sigmoid curve (qPCR) data.

Usage

l4

https://orcid.org/0000-0002-1441-6512
https://orcid.org/0000-0001-8926-582X
https://orcid.org/0000-0002-9630-4724
https://orcid.org/0000-0002-8732-0300
https://orcid.org/0000-0003-0925-1909

armor 3

Format

An object of class list of length 11.

Machine learning

In machine learning and statistics, the classification should be used to identify a new unknown
observation. This observation is assigned to a number of categories. One basis is training data sets
containing observations with known classes. Using the example of sigmoid amplification curves,
this could be an assignment to the class "negative","ambiguous" or "positive". Basically, a number
of descriptors (e. g., characteristics of curvature) are required to be able to assign classes. This
package contains functions for extracting characteristics. In addition, the package contains data
sets of classified amplification curves.

Author(s)

Stefan Roediger, Michal Burdukiewcz, Andrej-Nikolai Spiess, Konstantin A. Blagodatskikh

Examples

Use the mblrr function to analyse amplification curves
library(qpcR)
mblrr(x=boggy[, 1], y=boggy[, 2])

armor armor: fetch errors gently

Description

armor is a helper function that catches errors and creates an output that can be used for further
processing.

Usage

armor(f, n = 1)

Arguments

f is the function that needs armor.

n is the number of Zero repeats if a function fails.

Value

gives a numeric value (S3 class) as output for errors

Author(s)

Andrej Nikolai Spiess, Stefan Roediger

4 autocorrelation_test

Examples

Fetch the error from the diffQ function
In the following the approximate derivative of the amplification curve data
x <- RAS002[, 1] and y <- RAS002[, 2] is calculated by diffQ().
This will not give an error.
x <- RAS002[, 1]
y <- RAS002[, 2]
armor_diffQ_passes <- armor(diffQ(cbind(x, y), verbose = TRUE)$xy)
armor_diffQ_passes
#
In the following the approximate derivative of the sequences x <- 1:40
and y <- 1:40 is calculated by diffQ(). However, this will fail.
This will give the "internal" error
>
Error in list.res[[i]][[8]] : subscript out of bounds
that is resolved to 0.
x <- 1:40
y <- 1:40
armor_diffQ_fails <- armor(diffQ(cbind(x, y), verbose = TRUE)$xy)
armor_diffQ_fails

autocorrelation_test A function to test for autocorrelation of amplification curve data from
a quantitative PCR experiment

Description

autocorrelation_test is a function for an autocorrelation analysis from a quantitative PCR ex-
periment. The result of the function is a correlation coefficient.

Usage

autocorrelation_test(y, n = 8, sig.level = 0.01)

Arguments

y is the cycle dependent fluorescence amplitude (y-axis).

n is the number of lagged cycles (default 12).

sig.level is the significance level for the correlation test., Default: 0.01

Value

gives a numeric value (S3 class) as output for an autocorrelation

Author(s)

Stefan Roediger, Michal Burdukiewcz

decision_modus 5

Examples

library(qpcR)
default.par <- par(no.readonly = TRUE)
Test for autocorrelation in amplification curve data
Test for autocorrelation in the testdat data set
res_ac <- sapply(2:ncol(testdat), function(i) {

autocorrelation_test(testdat[, i])
}

)

Plot curve data as overview
Define the colors for the amplification curves
colors <- rainbow(ncol(testdat)-1, alpha=0.3)
Names of samplesfile:///home/tux/R_malade
samples <- colnames(testdat)[-1]
layout(matrix(c(1,2,1,3), 2, 2, byrow = TRUE))
matplot(testdat[, 1], testdat[, -1], xlab="Cycle", ylab="RFU",

main="testdat data set", type="l", lty=1, col=colors, lwd=2)
legend("topleft", samples, pch=19, col=colors, ncol=2, bty="n")

Curves rated by a human after analysis of the overview. 1 = positive,
0 = negative
human_rating <- c(1,1,0,0,1,1,0,0,

1,1,0,0,1,1,0,0,
1,1,0,0,1,1,0,0)

Convert the n.s. (not significant) to 0 and others to 1.
Combine the results of the aromatic autocorrelation_test as variable "ac",
the human rated values as variable "hr" in a new data frame (res_ac_hr).
res_ac_hr <- as.matrix(data.frame(ac=ifelse(res_ac=="n.s.", 0, 1),

hr=human_rating))
res_performeR <- performeR(res_ac_hr[, "ac"], res_ac_hr[, "hr"])

Add ratings by human and autocorrelation_test to the plot
par(las=2)
plot(1:nrow(res_ac_hr), res_ac_hr[, "hr"], xlab="Sample", ylab="Decisions",

xaxt="n", yaxt="n", pch=19)
axis(2, at=c(0,1), labels=c("negative", "positive"), las=2)
axis(1, at=1:nrow(res_ac_hr), labels=colnames(testdat)[-1], las=2)
points(1:nrow(res_ac_hr), res_ac_hr[, "ac"], pch=1, cex=2, col="red")
legend("topleft", c("Human", "autocorrelation_test"), pch=c(19,1),

bty="n", col=c("black","red"))

barplot(as.matrix(res_performeR[, c(1:10,12)]), yaxt="n",
ylab="", main="Performance of autocorrelation_test")

axis(2, at=c(0,1), labels=c("0", "1"), las=2)
par(default.par)

decision_modus A function to get a decision (modus) from a vector of classes

6 decision_modus

Description

decision_modus is a function that can be used to find the most frequent (modus) decision. The
classes can be defined by the user (e.g., a", "n", "y" -> "ambiguous", "negative", "positive"). This
function is useful if large collections of varying decision (e.g., "a", "a", "a", "n", "n") need to be
condensed to a single decision (3 x "a", 2 x "n" -> "a").

Usage

decision_modus(data, variables = c("a", "n", "y"), max_freq = TRUE)

Arguments

data is a table containing the classes.

variables is the class to look for.

max_freq is a logical parameter (default == TRUE) delivers either the most occurring class
or a summary.

Value

gives a factor (S3 class, type of integer) as output for a decision

Author(s)

Stefan Roediger, Michal Burdukiewcz

Examples

First example
Enter a string of arbritary of "a","a","y","n"
Result:
[1] a
Levels: a b n y

decision_modus(c("a","a","y","n","b"))

Second example
Analyze data from the decision_res_testdat.csv data file
filename <- system.file("decision_res_testdat.csv", package = "PCRedux")
my_data <- read.csv(filename)
head(my_data)

dec <- unlist(lapply(1L:nrow(my_data), function(i) {
decision_modus(my_data[i, 2:4])

}))

names(dec) <- my_data[, 1]
dec

earlyreg 7

earlyreg A function to calculate the slope and intercept of an amplification
curve data from a quantitative PCR experiment.

Description

earlyreg is a function to calculate the slope and intercept of an amplification curve data from a
quantitative PCR experiment. The number of cycles to be analyzed is defined by the user (default 6
cycles). The output contains the Maximal Information Coefficient (MIC), which can be interpreted
as a correlation measure with a range of [0,1]. A value of 0 mean statistically independent data and
1 approaches in "probability for noiseless functional relationships" (see original study by Reshef,
D. N. et al. Detecting novel associations in large data sets. Science, 334, 1518-1524 (2011)).

Usage

earlyreg(x, y, range = 5, normalize = FALSE)

Arguments

x is the cycle numbers (x-axis).

y is the cycle dependent fluorescence amplitude (y-axis).

range is the number of cycles to be used for the regression.

normalize is a logical parameter which indicates if the amplification curve data should be
normalized to the 99 percent percentile of the amplification curve.

Value

gives a numeric vector (S3 class, type of double) as output for local regression

Author(s)

Stefan Roediger, Michal Burdukiewcz

Examples

Calculate slope and intercept on noise (negative) amplification curve data
for the cycles 2 to 7 for the C316.amp data set
library(chipPCR)
data(C316.amp)

Plot the data
plot(C316.amp[, 2], y=C316.amp[, 3], xlab="Cycle", ylab="RFU",

main="C316.amp data set", lty=1, type="l")
res <- earlyreg(x=C316.amp[, 2], y=C316.amp[, 3], range=5)
res

8 encu

encu A function to calculate numerous features from amplification curve
data from a quantitative PCR experiment.

Description

encu (ENcode CUrves) is a function to calculate numerous features of a large amplification curve
data set. The pcrfit_single is performing the analysis for a single process.

Usage

encu(data, detection_chemistry = NA, device = NA)

Arguments

data is the data set containing the cycles and fluorescence amplitudes.

detection_chemistry

contains additional meta information about the detection chemistry (e.g., probes,
intercalating dye) that was used.

device contains additional meta information about the qPCR system that was used.

Value

gives a data.frame vector (S3 class, type of list) as output for features

The output of the encu function is identical to the pcrfit_single function.

Author(s)

Stefan Roediger, Michal Burdukiewcz

Examples

library(qpcR)

Calculate curve features of an amplification curve data. Note that not all
available CPU cores are used. If need set "all" to use all available cores.
In this example the testdat data set from the qpcR package is used.
The samples F1.1 and F1.2 are positive amplification curves. The samples
F1.3 and F1.4 are negative.
res_encu <- encu(testdat[, 1:3])
res_encu

head2tailratio 9

head2tailratio A function to calculate to head to tail ratio of amplification curve data
from a quantitative PCR experiment

Description

head2tailratio is a function to calculate the ratio of the head and the tail of a quantitative PCR
amplification curve. In this test, only the head (first six cycles) and the tail (last six cycles) form the
region of interest (ROI).

Usage

head2tailratio(y, normalize = FALSE, slope_normalizer = FALSE, verbose = FALSE)

Arguments

y is the cycle dependent fluorescence amplitude (y-axis).

normalize is a logical parameter, which indicates if the amplification curve.
slope_normalizer

is a logical parameter, which indicates if the head2tailratio should be normalized
to the slope of the ROI.

verbose is a logical parameter, which indicates if all the values, parameters and coeffi-
cients of the analysis should be shown.

Value

gives a numeric (S3 class, type of double) as output for the head to tail ratio

Author(s)

Stefan Roediger, Michal Burdukiewcz

Examples

library(qpcR)

calculate head to tail ratio on amplification curve data
res_head2tailratio <- sapply(2:ncol(competimer), function(i) {

head2tailratio(y=competimer[, i], normalize=TRUE, slope_normalizer=TRUE)
})

res_head2tailratio_cluster <- kmeans(res_head2tailratio, 3)$cluster

matplot(competimer[, 1], competimer[, -1], xlab="Cycle", ylab="RFU",
main="competimer data set", type="l", lty=1, col=res_head2tailratio_cluster, lwd=2)

10 hookreg

hookreg A function to calculate the slope and intercept of an amplification
curve data from a quantitative PCR experiment at the end of the data
stream.

Description

hookreg is a function to calculate the slope and intercept of an amplification curve data from a
quantitative PCR experiment. The idea is that a strong negative slope at the end of an amplification
curve is indicative for a hook effect (see Barratt and Mackay 2002).

Usage

hookreg(
x,
y,
normalize = TRUE,
sig.level = 0.0025,
CI.level = 0.9975,
robust = FALSE

)

Arguments

x is the cycle numbers (x-axis).

y is the cycle dependent fluorescence amplitude (y-axis).

normalize is a logical parameter indicating if the data should be normalized to the 0.999
quantile

sig.level defines the significance level to test for a significant regression

CI.level confidence level required for the slope

robust is a logical parameter indicating if the data should be analyzed be a robust linear
regression (lmrob).

Value

gives a numeric (S3 class, type of double) as output for the detection of a hook

Author(s)

Stefan Roediger, Michal Burdukiewcz

References

K. Barratt, J.F. Mackay, Improving Real-Time PCR Genotyping Assays by Asymmetric Amplifica-
tion, J. Clin. Microbiol. 40 (2002) 1571–1572. doi:10.1128/JCM.40.4.1571-1572.2002.

hookregNL 11

Examples

library(qpcR)

default.par <- par(no.readonly = TRUE)
Calculate slope and intercept on noise (negative) amplification curve data
for the last eight cycles.
res_hook <- data.frame(sample=colnames(boggy)[-1],

t(sapply(2:ncol(boggy), function(i) {
hookreg(x=boggy[, 1], y=boggy[, i])})))

res_hook

data_colors <- rainbow(ncol(boggy[, -1]), alpha=0.5)
cl <- kmeans(na.omit(res_hook[, 2:3]), 2)$cluster

par(mfrow=c(1,2))
matplot(x=boggy[, 1], y=boggy[, -1], xlab="Cycle", ylab="RFU",
main="boggy Data Set", type="l", lty=1, lwd=2, col=data_colors)
legend("topleft", as.character(res_hook$sample), pch=19,

col=data_colors, bty="n")

plot(res_hook$intercept, res_hook$slope, pch=19, cex=2, col=data_colors,
xlab="intercept", ylab="Slope",
main="Clusters of Amplification Curves with an Hook Effect-like Curvature\nboggy Data Set")
points(res_hook$intercept, res_hook$slope, col=cl, pch=cl, cex=cl)
legend("topright", c("Strong Hook effect", " Weak Hook effect"), pch=c(1,2), col=c(1,2), bty="n")
text(res_hook$intercept, res_hook$slope, res_hook$sample)

par(default.par)

hookregNL hookregNL - A function to calculate the slope of amplification curves
in the tail region

Description

hookregNL is a function to calculate the slope and intercept of an amplification curve from a quanti-
tative PCR experiment. The idea is that a strong negative slope at the end of an amplification curve
is indicative for a hook effect (see Barratt and Mackay 2002). In contrast to hookreg fits this func-
tion a sex-parameter model to the amplification curve and extracts the coefficient, which describes
the slope.

Usage

hookregNL(x, y, plot = FALSE, level = 0.995, simple = TRUE, manualtrim = 5)

Arguments

x is the cycle numbers (x-axis).

y is the cycle dependent fluorescence amplitude (y-axis).

12 humanrater2

plot is a logical parameter indicating if the data should be plotted, Default: FALSE.

level the confidence level required, Default: 0.99.

simple is a logical parameter. If TRUE (default) only the slope, confidence interval and
decisions are shown as output

manualtrim is the number of cycles that should be removed from the background. (data.frame).
If FALSE, a list including the 6-parameter model is the output.

Value

gives a numeric (S3 class, type of double) as output for the detection of a hook

Author(s)

Andrej-Nikolai Spiess, Stefan Roediger, Michal Burdukiewcz

References

K. Barratt, J.F. Mackay, Improving Real-Time PCR Genotyping Assays by Asymmetric Amplifica-
tion, J. Clin. Microbiol. 40 (2002) 1571–1572. doi:10.1128/JCM.40.4.1571-1572.2002.

Examples

library(qpcR)

Analyze data from the boggy data set for potential hook effect like
curvature
has hook
res <- hookregNL(boggy[, 1], boggy[, 2])
res

has no hook
res <- hookregNL(boggy[, 1], boggy[, 12])
res

humanrater2 Human Rater 2.0

Description

Launches graphical user interface for the manual annotation of large amplification curve data sets,
similarly to the humanrater function.

Usage

humanrater2()

Value

No return value, called for side effects

mblrr 13

Warning

Any ad-blocking software may cause malfunctions.

mblrr A function to perform a Local Robust Regression in Ranges defined by
Qunantile-filtering

Description

mblrr is a function to perform the Median based Local Robust Regression (mblrr) from a quantita-
tive PCR experiment. In detail, this function attempts to break the amplification curve in two parts
(head (~background) and tail (~plateau)). Subsequent, a robust linear regression analysis (lmrob) is
preformed individually on both parts. The rational behind this analysis is that the slope and intercept
of an amplification curve differ in the background and plateau region.

Usage

mblrr(x, y, sig.level = 0.01, normalize = FALSE)

Arguments

x is the cycle numbers (x-axis).

y is the cycle dependent fluorescence amplitude (y-axis).

sig.level is the significance level for the correlation test.

normalize is a logical parameter, which indicates if the amplification curve data should be
normalized to the 99 percent quantile of the amplification curve.

Details

mblrr_intercept_bg is the intercept of the head region, mblrr_slope_bg is the slope of the head
region, mblrr_cor_bg is the coefficient of correlation of the head region, mblrr_intercept_pt is the
intercept of the tail region, mblrr_intercept_pt is the slope of the tail region, mblrr_cor_pt is the
coefficient of correlation of the tail region

Value

gives a numeric (S3 class, type of double) as output for the regressed regions

Author(s)

Stefan Roediger, Michal Burdukiewcz

14 PCRedux_datasets

Examples

library(qpcR)

Perform an mblrr analysis on noise (negative) amplification data of qPCR data
with 35 cycles.
mblrr(x=boggy[, 1], y=boggy[, 2], normalize=TRUE)

PCRedux_datasets The datasets implemented in PCRedux

Description

A compilation of datasets for method evaluation/comparison.

Usage

data_sample
RAS002
RAS002_decisions
kbqPCR
decision_res_kbqPCR

Details

data_sample
Setup: Amplification curve data were analyzed with the encu() and the decision_modus() functions.
Details:
Data sets: batsch1, boggy, C126EG595, competimer, dil4reps94, guescini1, karlen1, lievens1,
reps384, rutledge, testdat, vermeulen1, VIMCFX96_60, stepone_std.rdml, RAS002.rdml, RAS003.rdml,
HCU32_aggR.csv, lc96_bACTXY.rdml.

RAS002
Setup: Amplification curve data of the RAS002.rdml data set.
Details:
Data sets: RAS002.rdml.

RAS002_decisions
Setup: Classes of the amplification curves from the RAS002.rdml data set.
Details:
Data sets: decision_res_RAS002.csv.

Author(s)

Stefan Roediger

pcrfit_single 15

References

Roediger, S., Burdukiewicz, M., Spiess, A.-N. & Blagodatskikh, K. Enabling reproducible real-time
quantitative PCR research: the RDML package. Bioinformatics (2017). doi:10.1093/bioinformatics/btx528
Roediger, S., Burdukiewicz, M. & Schierack, P. chipPCR: an R package to pre-process raw data of
amplification curves. Bioinformatics 31, 2900–2902 (2015)
Ritz, C. & Spiess, A.-N. qpcR: an R package for sigmoidal model selection in quantitative real-time
polymerase chain reaction analysis. Bioinformatics 24, 1549–1551 (2008).

Examples

'data_sample' dataset.
head(data_sample)

'RAS002.rdml' dataset as rda file.
head(RAS002)
head(RAS002_decisions)

pcrfit_single pcrfit_single - A function to extract features from an amplification
curve

Description

The pcrfit_single is responsible for the extraction of features from amplification curve data. The
function can be used for custom functions for a paralleled analysis of amplification curve data. An
example is given in the vignette.

Usage

pcrfit_single(x)

Arguments

x is the data set containing the fluorescence amplitudes.

Details

Details can be found in the vignette.

Value

Output Description

"cpD1" maximum of the first derivative curve numeric
"cpD2" maximum of the second derivative curve numeric
"cpD2_approx" maximum of the second derivative curve calculated by the approximate derivative numeric
"cpD2_ratio" a value calculated from the ratio between cpD2 and cpD2_approx numeric
"eff" qPCR amplification efficiency numeric

16 pcrfit_single

"sliwin" qPCR amplification efficiency according the the ’window-of-linearity’ method by Ruijter et al. (2009) numeric
"cpDdiff" absolute difference between cpD1 and cpD2 numeric
"loglin_slope" slope determined by a linear model of the data points from the minimum and maximum of the second derivative numeric
"cpD2_range" cycle difference between the maximum and the minimum of the second derivative curve numeric
"top" takeoff point. When no top can be determined, the tob value is set to the first cycle number. numeric
"f.top" fluorescence at takeoff point. When no f.tdp can be determined, the f.tdp value is set to the RFU value at the first cycle number. numeric
"tdp" takes the maximum fluorescence subtracted by reverse values of the fluorescence and calculates then the fake takeoff point. It is so to speak the take down point (tdp). When no tdp can be determined, the tdb value is set to the last cycle number. numeric
"f.tdp" fluorescence at tdp point. When no f.tdp can be determined, the f.tdp value is set to the RFU value at the last cycle number. numeric
"bg.stop" estimates the end (cycle) the amplification curve background based on the bg.max function and normalizes it to the total cycle number numeric
"amp.stop" estimates the end (cycle) of the amplification curve based in the bg.max function and normalizes it to the total cycle number numeric
"b_slope" Is the slope of the seven parameter model numeric
"b_model_param" Is the b model parameter of the model optimally fitted according to the AIC numeric
"c_model_param" Is the c model parameter of the model optimally fitted according to the AIC numeric
"d_model_param" Is the d model parameter of the model optimally fitted according to the AIC numeric
"e_model_param" Is the e model parameter of the model optimally fitted according to the AIC numeric
"f_model_param" Is the f model parameter of the model optimally fitted according to the AIC numeric
"f_intercept" Is the intercept of the seven parameter model numeric
"convInfo_iteratons" Number of iterations needed to fit the 7 parameter model numeric
"qPCRmodel" non-linear model determined for the analysis factor
"qPCRmodelRF" non-linear model determined for the analysis of the reversed amplification curve factor
"minRFU" minimum of fluorescence amplitude numeric
"maxRFU" maximum of fluorescence amplitude numeric
"init2" initial template fluorescence from an exponential model numeric
"fluo" raw fluorescence value at the point defined by cpD2 numeric
"slope_bg" slope of the first cycles numeric
"k1_model_param" Is the k1 model parameter of the seven parameter model numeric
"k2_model_param" Is the k2 model parameter of the seven parameter model numeric
"intercept_bg" intercept of the first cycles numeric
"sigma_bg" sigma of background numeric
"sd_bg" standard deviation of the background (ground phase) region (start to takeoff point) numeric
"head2tail_ratio" ratio between the signal of the background and tail region numeric
"mblrr_intercept_bg" the value of the intercept in the estimated background region of the amplification curve numeric
"mblrr_slope_bg" the value of the slope in the estimated background region of the amplification curve numeric
"mblrr_cor_bg" the value of the linear correlation coefficient in the estimated background region of the amplification curve numeric
"mblrr_intercept_pt" the value of the intercept in the estimated plateau phase of the amplification curve numeric
"mblrr_slope_pt" the value of the slope in the estimated plateau phase of the amplification curve numeric
"mblrr_cor_pt" the value of the linear correlation coefficient in the estimated plateau phase of the amplification curve numeric
"polyarea" area of a polygon given by the vertices in the vectors cycles and fluorescence numeric
"peaks_ratio" Takes the estimate approximate local minimums and maximums
"autocorrelation" is a value of autocorrelation of a gain curve from a quantitative PCR experiment numeric
"cp_e.agglo" agglomerative hierarchical estimate for multiple change points numeric
"amptester_shapiro" tests based on the Shapiro-Wilk normality test if the amplification curve is just noise binary
"amptester_lrt" performs a cycle dependent linear regression and determines if the coefficients of determination deviates from a threshold binary
"amptester_rgt" Resids growth test (RGt) tests if fluorescence values in a linear phase are stable binary
"amptester_tht" Threshold test (THt) takes the first 20 percent and the last 15 percent of any input data set and performs a Wilcoxon rank sum tests. binary
"amptester_slt" Signal level test compares 1. the signals by a robust "sigma" rule by median + 2 * mad and 2. by comparison of the signal/noise ratio binary
"amptester_polygon" pco test (pco) determines if the points in an amplification curve (like a polygon, in particular non-convex polygons) are in a "clockwise" order. binary
"amptester_slope.ratio" SlR uses the inder function to find the approximated first derivative maximum, second derivative minimum and the second derivative maximum. These are used for a regression analysis with the corresponding fluorescence amplitude data. numeric

pcrfit_single 17

"hookreg_hook" estimate of hook effect like curvature binary
"hookreg_hook_slope" estimate of slope of the hook effect like curvature numeric
"hookreg_hook_delta" Estimated value for the number of cycles from the qPCR cycle where the hook effect was determined up to the last qPCR cycle numeric
"central_angle" shows the central angle calculated from the maximum and minimum of the second derivatives, with the first derivative maximum being the center numeric
"sd_bg" shows the standard deviation of the fluorescence in the ground phase numeric
"number_of_cycles" Number of cylces numeric
"direction" test if the maximum of the first derivative is positive or negative numeric
"range" outputs the difference of fluorescence between 0.99 and 0.01 percentile. The value thus corresponds approximately to the maximum achievable signal difference of an amplification curve. numeric
"polyarea_trapz" calculates trapezoidal integration. The calculation stops when the difference from one step to the next is smaller than a tolerance value, or the iterations become too large. The value corresponds to the sum signal via the total amplification curve. numeric
"cor" is the value of the correlation coefficient from a linear correlation analysis according to Pearson between all PCR cycles and the fluorescence signals. numeric
"res_coef_pcrfit.b" is the parameter from the adjustment with a nonlinear (sigmoid) four-parametric model which describes the Hill’s slope of the curve (i.e. this is related to the steepness of the curve point e) numeric
"res_coef_pcrfit.c" is the parameter from the adjustment with a nonlinear (sigmoid) four-parametric model which describes the maximum value that can be obtained (i.e. what happens at infinite number of cycles) numeric
"res_coef_pcrfit.d" is the parameter from the adjustment with a nonlinear (sigmoid) four-parametric model which describes the minimum value that can be obtained (i.e. what happens at 0 cycles) numeric
"res_coef_pcrfit.e" is the parameter from the adjustment with a nonlinear (sigmoid) four-parametric model, which describes the point of inflection (i.e. the point on the sigmoid curve halfway between d and c) numeric
"fitAIC" is the value of the Akaike’s second-order corrects Information Criterion, which was determined on a non-linear (sigmoid) four-parameter model numeric
"fitIter" Number of iterations needed to fit the 4 parameter model numeric
"segment_x" Adjusts a regression model with segmented (linear) relationships between fluorescence and PCR cycles. This segment describes the baseline in an amplification curve. numeric
"segment_U1.x" Adjusts a regression model with segmented (linear) relationships between fluorescence and PCR cycles. This segment describes the slope in an amplification curve. numeric
"segment_U2.x" Adjusts a regression model with segmented (linear) relationships between fluorescence and PCR cycles. This segment describes the plateau in an amplification curve. numeric
"segment_psi1.x" Adjusts a regression model with segmented (linear) relationships between fluorescence and PCR cycles. The value is based on the break-point(s) fixed at the values and describes the transition from the baseline phase to the exponential phase. numeric
"segment_psi2.x" Adjusts a regression model with segmented (linear) relationships between fluorescence and PCR cycles. The value is based on the break-point(s) fixed at the values and describes the transition from the exponential phase to the plateau phase. numeric
"sumdiff" describes proportion of cycles x in which the fluorescence signal of x is smaller than in x+1 numeric
"poly_1" is a value of a third-order polynomial a + b*x + c*x^2 + d*x^3 is fitted to the curve data, where the intercept correspond to the baseline and the three predictor-dependent terms deliver a approximation to the sigmoidal curve structure. This value describes the intercept "a" (cutting point of the amplification curve model with the ordinate). numeric
"poly_2" is a value of a third-order polynomial a + b*x + c*x^2 + d*x^3 is fitted to the curve data, where the intercept correspond to the baseline and the three predictor-dependent terms deliver a approximation to the sigmoidal curve structure. This value describes the linear part "b*x". numeric
"poly_3" is a value of a third-order polynomial a + b*x + c*x^2 + d*x^3 is fitted to the curve data, where the intercept correspond to the baseline and the three predictor-dependent terms deliver a approximation to the sigmoidal curve structure. This value describes the quadratic part "c*x^2". numeric
"poly_4" is a value of a third-order polynomial a + b*x + c*x^2 + d*x^3 is fitted to the curve data, where the intercept correspond to the baseline and the three predictor-dependent terms deliver a approximation to the sigmoidal curve structure. This value describes the cubic part "d*x^3". numeric
"window_Win_1" The complete curve trajectory is segmented into 10 equidistant windows by fitting an interpolating smoothing spline with smoothing factor 0.5 to the curve, interpolating exactly 50 curve points, and then cutting these into 10 windows of five values each, with a subsequent calculation of the MAD/Median ratio for each of these windows. This is the 1st window for cycles (0.961,4.9]. numeric
"window_Win_2" The complete curve trajectory is segmented into 10 equidistant windows by fitting an interpolating smoothing spline with smoothing factor 0.5 to the curve, interpolating exactly 50 curve points, and then cutting these into 10 windows of five values each, with a subsequent calculation of the MAD/Median ratio for each of these windows. This is the 2nd window for cycles (4.9,8.8]. numeric
"window_Win_3" The complete curve trajectory is segmented into 10 equidistant windows by fitting an interpolating smoothing spline with smoothing factor 0.5 to the curve, interpolating exactly 50 curve points, and then cutting these into 10 windows of five values each, with a subsequent calculation of the MAD/Median ratio for each of these windows. This is the 3rd window for cycles (8.8,12.7]. numeric
"window_Win_4" The complete curve trajectory is segmented into 10 equidistant windows by fitting an interpolating smoothing spline with smoothing factor 0.5 to the curve, interpolating exactly 50 curve points, and then cutting these into 10 windows of five values each, with a subsequent calculation of the MAD/Median ratio for each of these windows. This is the 4th window for cycles (12.7,16.6]. numeric
"window_Win_5" The complete curve trajectory is segmented into 10 equidistant windows by fitting an interpolating smoothing spline with smoothing factor 0.5 to the curve, interpolating exactly 50 curve points, and then cutting these into 10 windows of five values each, with a subsequent calculation of the MAD/Median ratio for each of these windows. This is the 5th window for cycles (16.6,20.5]. numeric
"window_Win_6" The complete curve trajectory is segmented into 10 equidistant windows by fitting an interpolating smoothing spline with smoothing factor 0.5 to the curve, interpolating exactly 50 curve points, and then cutting these into 10 windows of five values each, with a subsequent calculation of the MAD/Median ratio for each of these windows. This is the 6th window for cycles (20.5,24.4]. numeric
"window_Win_7" The complete curve trajectory is segmented into 10 equidistant windows by fitting an interpolating smoothing spline with smoothing factor 0.5 to the curve, interpolating exactly 50 curve points, and then cutting these into 10 windows of five values each, with a subsequent calculation of the MAD/Median ratio for each of these windows. This is the 7th window for cycles (24.4,28.3]. numeric
"window_Win_8" The complete curve trajectory is segmented into 10 equidistant windows by fitting an interpolating smoothing spline with smoothing factor 0.5 to the curve, interpolating exactly 50 curve points, and then cutting these into 10 windows of five values each, with a subsequent calculation of the MAD/Median ratio for each of these windows. This is the 8th window for cycles (28.3,32.2]. numeric
"window_Win_9" The complete curve trajectory is segmented into 10 equidistant windows by fitting an interpolating smoothing spline with smoothing factor 0.5 to the curve, interpolating exactly 50 curve points, and then cutting these into 10 windows of five values each, with a subsequent calculation of the MAD/Median ratio for each of these windows. This is the 9th window for cycles (32.2,36.1]. numeric
"window_Win_10" The complete curve trajectory is segmented into 10 equidistant windows by fitting an interpolating smoothing spline with smoothing factor 0.5 to the curve, interpolating exactly 50 curve points, and then cutting these into 10 windows of five values each, with a subsequent calculation of the MAD/Median ratio for each of these windows. This is the 10th window for cycles (36.1,40]. numeric
"sd_plateau" describes the standard deviation in the late phase of an amplification curve (last five cycles). With ideal PCRs, this corresponds to the plateau phase. numeric

gives a data.frame (S3 class, type of list) as output for the curve features

Author(s)

Stefan Roediger, Michal Burdukiewcz

References

M. Febrero-Bande, M.O. de la Fuente, others, Statistical computing in functional data analysis: The
R package fda.usc, Journal of Statistical Software. 51 (2012) 1–28. http://www.jstatsoft.org/v51/i04/

18 performeR

A.-N. Spiess, C. Deutschmann, M. Burdukiewicz, R. Himmelreich, K. Klat, P. Schierack, S. Roedi-
ger, Impact of Smoothing on Parameter Estimation in Quantitative DNA Amplification Experi-
ments, Clinical Chemistry. 61 (2015) 379–388. doi:10.1373/clinchem.2014.230656.

S. Roediger, A. Boehm, I. Schimke, Surface Melting Curve Analysis with R, The R Journal. 5
(2013) 37–53. http://journal.r-project.org/archive/2013-2/roediger-bohm-schimke.pdf.

S. Roediger, M. Burdukiewicz, K.A. Blagodatskikh, P. Schierack, R as an Environment for the
Reproducible Analysis of DNA Amplification Experiments, The R Journal. 7 (2015) 127–150.
http://journal.r-project.org/archive/2015-1/RJ-2015-1.pdf.

S. Pabinger, S. Roediger, A. Kriegner, K. Vierlinger, A. Weinhauusel, A survey of tools for the
analysis of quantitative PCR (qPCR) data, Biomolecular Detection and Quantification. 1 (2014)
23–33. doi:10.1016/j.bdq.2014.08.002.

S. Roediger, M. Burdukiewicz, P. Schierack, chipPCR: an R package to pre-process raw data of
amplification curves, Bioinformatics. 31 (2015) 2900–2902. doi:10.1093/bioinformatics/btv205.

Examples

Load the chipPCR package and analyze from the C126EG685 the first qPCR run
"A01" (column 2).
library(chipPCR)
res <- pcrfit_single(C126EG685[, 2])

performeR Performance analysis for binary classification

Description

This function performs an analysis sensitivity and specificity to asses the performance of a binary
classification test. For further reading the studies by Brenner and Gefeller 1997, James 2013 by
Kuhn 2008 are a good starting point.

Usage

performeR(sample, reference)

Arguments

sample is a vector with logical decisions (0, 1) of the test system.

reference is a vector with logical decisions (0, 1) of the reference system.

Details

TP, true positive; FP, false positive; TN, true negative; FN, false negative

Sensitivity - TPR, true positive rate TPR = TP / (TP + FN)

Specificity - SPC, true negative rate SPC = TN / (TN + FP)

Precision - PPV, positive predictive value PPV = TP / (TP + FP)

performeR 19

Negative predictive value - NPV NPV = TN / (TN + FN)

Fall-out, FPR, false positive rate FPR = FP / (FP + TN) = 1 - SPC

False negative rate - FNR FNR = FN / (TN + FN) = 1 - TPR

False discovery rate - FDR FDR = FP / (TP + FP) = 1 - PPV

Accuracy - ACC ACC = (TP + TN) / (TP + FP + FN + TN)

F1 score F1 = 2TP / (2TP + FP + FN)

Likelihood ratio positive - LRp LRp = TPR/(1-SPC)

Matthews correlation coefficient (MCC) MCC = (TP*TN - FP*FN) / sqrt(TN + FP) * sqrt(TN+FN)
)

Cohen’s kappa (binary classification) kappa=(p0-pc)/(1-p0)

r (reference) is the trusted label and s (sample) is the predicted value

r=1 r=0
s=1 a b
s=0 c d

n = a+ b+ c+ d

pc=((a+b)/n)((a+c)/n)+((c+d)/n)((b+d)/n)

po=(a+d)/n

Value

gives a data.frame (S3 class, type of list) as output for the performance

Author(s)

Stefan Roediger, Michal Burdukiewcz

References

H. Brenner, O. Gefeller, others, Variation of sensitivity, specificity, likelihood ratios and predictive
values with disease prevalence, Statistics in Medicine. 16 (1997) 981–991.

M. Kuhn, Building Predictive Models in R Using the caret Package, Journal of Statistical Software.
28 (2008). doi:10.18637/jss.v028.i05.

G. James, D. Witten, T. Hastie, R. Tibshirani, An Introduction to Statistical Learning, Springer New
York, New York, NY, (2013). doi:10.1007/978-1-4614-7138-7.

20 qPCR2fdata

Examples

Produce some arbitrary binary decisions data
test_data is the new test or method that should be analyzed
reference_data is the reference data set that should be analyzed
test_data <- c(0,0,0,0,0,0,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1)
reference_data <- c(0,0,0,0,1,1,1,1,0,1,0,1,0,1,0,1,0,1,0,1,1,1,1,1)

Plot the data of the decisions
plot(1:length(test_data), test_data, xlab="Sample", ylab="Decisions",

yaxt="n", pch=19)
axis(2, at=c(0,1), labels=c("negative", "positive"), las=2)
points(1:length(reference_data), reference_data, pch=1, cex=2, col="blue")
legend("topleft", c("Sample", "Reference"), pch=c(19,1),

cex=c(1.5,1.5), bty="n", col=c("black","blue"))

Do the statistical analysis with the performeR function
performeR(sample=test_data, reference=reference_data)

qPCR2fdata A helper function to convert amplification curve data to the fdata for-
mat.

Description

qPCR2fdata is a helper function to convert qPCR data to the functional fdata class as proposed by
Febrero-Bande & de la Fuente (2012). This function prepares the data for further analysis with the
fda.usc package, which includes utilities for functional data analysis (e.g., Hausdorff distance).

Usage

qPCR2fdata(data, preprocess = FALSE)

Arguments

data is a data set containing the amplification cycles (1. column) and the fluorescence
(subsequent columns).

preprocess is a logical parameter (default FALSE). If TRUE, the CPP function from the
chipPCR package (Roediger et al. 2015) is used to pre-process the data (e.g.,
imputation of missing values). and the fluorescence (subsequent columns).

Value

gives an fdata object (S3 class, type of list) as output for a converted amplification curve.

Author(s)

Stefan Roediger, Michal Burdukiewcz

run_PCRedux 21

References

M. Febrero-Bande, M.O. de la Fuente, others, Statistical computing in functional data analysis: The
R package fda.usc, Journal of Statistical Software. 51 (2012) 1–28. http://www.jstatsoft.org/v51/i04/

S. Roediger, M. Burdukiewicz, P. Schierack, chipPCR: an R package to pre-process raw data of
amplification curves, Bioinformatics. 31 (2015) 2900–2902. doi:10.1093/bioinformatics/btv205.

Examples

library(qpcR)
library(fda.usc)

default.par <- par(no.readonly = TRUE)
Calculate slope and intercept on noise (negative) amplification curve data
for the last eight cycles.
Convert the qPCR data set to the fdata format
res_fdata <- qPCR2fdata(testdat)

Extract column names and create rainbow color to label the data
res_fdata_colnames <- colnames(testdat[-1])
data_colors <- rainbow(length(res_fdata_colnames), alpha=0.5)

Plot the converted qPCR data
par(mfrow=c(1,2))
plot(res_fdata, xlab="cycles", ylab="RFU", main="testdat", type="l",

lty=1, lwd=2, col=data_colors)
legend("topleft", as.character(res_fdata_colnames), pch=19,

col=data_colors, bty="n", ncol=2)

Calculate the Hausdorff distance (fda.usc) package and plot the distances
as clustered data.

res_fdata_hclust <- metric.hausdorff(res_fdata)
plot(hclust(as.dist(res_fdata_hclust)), main="Clusters of the amplification\n

curves as calculated by the Hausdorff distance")
par(default.par)

run_PCRedux PCRedux app

Description

A graphical user interface for computing the properties of amplification curves. Take a look at the
vignette to learn more about the different ways to start the app.

Usage

run_PCRedux()

22 tReem

Value

null.

No return value, called for side effects

Note

Any ad-blocking software may cause malfunctions.

tReem A function to Group Amplification Curves According to their Shape

Description

tReem is a function to group amplification curves from a quantitative PCR experiment according to
their shape. Either the Pearson correlation coefficient or the Hausdorff distance is used as measure.
In most cases the grouping based on the Pearson correlation coefficient is sufficient. The grouping
based on the Hausdorff distance can be very slow for large data sets.

Usage

tReem(data, cor = TRUE, k = 2)

Arguments

data is the cycle dependent fluorescence amplitude (y-axis).

cor is a logical parameter. If set true, the Pearson correlation is used as distance
measure. If set FALSE the Hausdorff distance will be used.

k an integer scalar or vector with the desired number of groups.

Value

gives a data.frame (S3 class, type of list) as output for the manual analyzed data

Author(s)

Stefan Roediger, Andrej-Nikolai Spiess

Examples

Classify amplification curve data by Hausdorff distance
library(qpcR)
tReem(testdat[, 1:5])

winklR 23

winklR winklR: A function to calculate the angle based on the first and the
second derivative of an amplification curve data from a quantitative
PCR experiment.

Description

winklR is a function to calculate the in the trajectory of the first and the second derivatives maxima
and minima of an amplification curve data from a quantitative PCR experiment. For the determi-
nation of the angle (central angle), the origin is the maximum of the first derivative. On this basis,
the vectors to the minimum and maximum of the second derivative are determined. This means
that systematic off-sets, such as those caused by background, are taken into account. The output
contains the angle.

Usage

winklR(x, y, normalize = FALSE, preprocess = TRUE)

Arguments

x is the cycle numbers (x-axis). By default the first ten cycles are removed.

y is the cycle dependent fluorescence amplitude (y-axis).

normalize is a logical parameter, which indicates if the amplification curve data should be
normalized to the 99 percent percentile of the amplification curve.

preprocess is a logical parameter, which indicates if the amplification curve data should be
smoothed (moving average filter, useful for noisy, jagged data).

Value

gives a list (S3 class, type of list) as output for the angles from an amplification curve.

Author(s)

Stefan Roediger

Examples

Calculate the angles for amplification curve data from the RAS002 data set
data(RAS002)

Plot the data
plot(RAS002[, 1],

y = RAS002[, 2], xlab = "Cycle", ylab = "RFU",
main = "RAS002 data set", lty = 1, type = "l"

)
res <- winklR(x = RAS002[, 1], y = RAS002[, 2])
res

24 winklR

plot(rbind(res$origin, res$p1, res$p2), col = c("black", "green", "blue"))

plot(RAS002[, 1],
y = RAS002[, 7], xlab = "Cycle", ylab = "RFU",
main = "RAS002 data set", lty = 1, type = "l"

)
res <- winklR(x = RAS002[, 1], y = RAS002[, 7])
res
plot(rbind(res$origin, res$p1, res$p2), col = c("black", "green", "blue"))

res_angles <- unlist(lapply(2:21, function(i) {
winklR(RAS002[, 1], RAS002[, i])$angle

}))
cdplot(RAS002_decisions[1L:20] ~ res_angles, xlab = "angle", ylab = "decision")

Index

∗ accuracy
performeR, 18

∗ angle
winklR, 23

∗ autocorrelation
autocorrelation_test, 4
tReem, 22

∗ datasets
PCRedux-package, 2

∗ decision
decision_modus, 5

∗ derivative
winklR, 23

∗ error
armor, 3

∗ fdata
qPCR2fdata, 20

∗ head
head2tailratio, 9

∗ hook
hookreg, 10

∗ intercept
earlyreg, 7
encu, 8
hookreg, 10

∗ models
PCRedux_datasets, 14

∗ modus
decision_modus, 5

∗ normalization
encu, 8

∗ precision
performeR, 18

∗ preprocessing
encu, 8

∗ ratio
head2tailratio, 9

∗ regression
mblrr, 13

∗ segmented
mblrr, 13

∗ sensitivity
performeR, 18

∗ slope
earlyreg, 7
encu, 8
hookreg, 10

∗ specificity
performeR, 18

∗ tail
head2tailratio, 9

armor, 3
autocorrelation_test, 4

data.frame, 12
data_sample (PCRedux_datasets), 14
decision_modus, 5
decision_res_kbqPCR (PCRedux_datasets),

14

earlyreg, 7
encu, 8

head2tailratio, 9
hookreg, 10, 11
hookregNL, 11
humanrater, 12
humanrater2, 12

kbqPCR (PCRedux_datasets), 14

l4 (PCRedux-package), 2
list, 12

mblrr, 13

PCRedux (PCRedux-package), 2
PCRedux-package, 2
PCRedux_datasets, 14

25

26 INDEX

pcrfit_single, 8, 15
performeR, 18

qPCR2fdata, 20

RAS002 (PCRedux_datasets), 14
RAS002_decisions (PCRedux_datasets), 14
run_PCRedux, 21

tReem, 22

winklR, 23

	PCRedux-package
	armor
	autocorrelation_test
	decision_modus
	earlyreg
	encu
	head2tailratio
	hookreg
	hookregNL
	humanrater2
	mblrr
	PCRedux_datasets
	pcrfit_single
	performeR
	qPCR2fdata
	run_PCRedux
	tReem
	winklR
	Index

