Type: | Package |
Title: | Portmanteau Local Feature Discrimination for Matrix-Variate Data |
Version: | 0.2.1 |
Date: | 2025-05-20 |
Maintainer: | Zengchao Xu <zengc.xu@aliyun.com> |
Description: | The portmanteau local feature discriminant approach first identifies the local discriminant features and their differential structures, then constructs the discriminant rule by pooling the identified local features together. This method is applicable to high-dimensional matrix-variate data. See the paper by Xu, Luo and Chen (2023, <doi:10.1007/s13171-021-00255-2>). |
Depends: | R (≥ 3.5.0) |
Imports: | Rcpp (≥ 1.0.2), mathjaxr |
LinkingTo: | Rcpp (≥ 1.0.2), RcppArmadillo (≥ 0.9.800) |
URL: | https://github.com/paradoxical-rhapsody/PLFD |
BugReports: | https://github.com/paradoxical-rhapsody/PLFD/issues |
License: | GPL-3 |
Language: | en-US |
Encoding: | UTF-8 |
RoxygenNote: | 7.3.2 |
Suggests: | knitr, rmarkdown, markdown |
RdMacros: | mathjaxr |
VignetteBuilder: | knitr |
NeedsCompilation: | yes |
Packaged: | 2025-05-20 01:20:11 UTC; zengc |
Author: | Zengchao Xu [aut, cre], Shan Luo [aut], Zehua Chen [aut] |
Repository: | CRAN |
Date/Publication: | 2025-05-20 04:30:02 UTC |
PLFD: Portmanteau Local Feature Discrimination for Matrix-Variate Data
Description
The portmanteau local feature discriminant approach first identifies the local discriminant features and their differential structures, then constructs the discriminant rule by pooling the identified local features together. This method is applicable to high-dimensional matrix-variate data. See the paper by Xu, Luo and Chen (2023, doi:10.1007/s13171-021-00255-2).
Author(s)
Maintainer: Zengchao Xu zengc.xu@aliyun.com
Authors:
Shan Luo
Zehua Chen
See Also
Useful links:
Report bugs at https://github.com/paradoxical-rhapsody/PLFD/issues
PLFD
Description
A portmanteau local feature discrimination (PLFD) approach to the classification with high-dimensional matrix-variate data.
Usage
plfd(x, y, r0, c0, blockList, blockMode = NULL, permNum = 100, alpha = 0)
Arguments
x |
Array of \(r \times c \times n\). |
y |
Vector of length-\(n\) with values 1 or 2. |
r0 , c0 |
Row and column size of blocks. See details. |
blockList |
List including the index set of pre-specified blocks. See details. |
blockMode |
How the differential structure of \(M_1 - M_2\) are
detected. The default ( |
permNum |
Rounds of permutation. |
alpha |
The upper-\(\alpha\) quantile of the permutation statistic. |
Details
There are two ways to specify the blocks under consideration. In the case that
the matrix-variate is partition into non-overlapping blocks that share the common
row size and column size, these sizes can be specified by r0
and c0
. Otherwise, the
blocks can be flexibly specified by parameter blockList
, which should be a list in
which each element includes rIdx
and cIdx
corresponding to the row and column index
set of a block. See examples.
Value
List.
-
n1
,n2
,rDim
,cDim
,blockMode
,permNum
,alpha
; -
blockNumber
: the number of identified feature blocks. -
paras
:list(list(rIdx, cIdx, B, M), ...)
, list of the information of feature blocks.
References
Xu Z., Luo S. and Chen Z. (2021). A Portmanteau Local Feature Discrimination Approach to the Classification with High-dimensional Matrix-variate Data. Sankhya A. doi:10.1007/s13171-021-00255-2
Examples
set.seed(2023)
rDim <- 20
cDim <- 20
n <- 100
y <- sample(1:2, n, TRUE, c(0.5, 0.5))
x <- array(rnorm(rDim*cDim*n), dim=c(rDim, cDim, n))
x[, , y==2] <- (x[, , y==2] + 1.0)
ntest <- 200
ytest <- sample(1:2, ntest, TRUE, c(0.5, 0.5))
xtest <- array(rnorm(rDim*cDim*ntest), dim=c(rDim, cDim, ntest))
xtest[, , ytest==2] <- (xtest[, , ytest==2] + 1.0)
## Uniform partition
print( plfd(x, y, r0=5, c0=5) )
## Pre-specify feature blocks
blockList <- list(list(rIdx=1:5, cIdx=1:5),
list(rIdx=6:10, cIdx=1:5),
list(rIdx=3:9, cIdx=2:8))
print( plfd.model <- plfd(x, y, blockList=blockList) )
## Predict
predict(plfd.model, xtest, ytest)
Predict Method for plfd
Description
Predict Method for plfd
Usage
## S3 method for class 'plfd'
predict(object, x, y, ...)
Arguments
object |
|
x |
Array, matrix-variate data to be predicted. |
y |
Vector (optional), Labels of |
... |
Ignored currently. |
Value
list(W, y.hat, mcr)
with
-
W
: discriminant scores; -
y.hat
: predicted labels; -
mcr
: misclassification rate if parametery
is available.
Print Method for plfd
Description
Print Method for plfd
Usage
## S3 method for class 'plfd'
print(x, ...)
Arguments
x |
|
... |
Ignored currently. |