Package 'PathwayVote'

July 21, 2025

Title Robust Pathway Enrichment for DNA Methylation Studies Using Ensemble Voting

Version 0.1.1

Description Performs pathway enrichment analysis using a voting-based framework that integrates CpG-gene regulatory information from expression quantitative trait methylation (eQTM) data. For a grid of top-ranked CpGs and filtering thresholds, gene sets are generated and refined using an entropy-based pruning strategy that balances information richness, stability, and probe bias correction. In particular, gene lists dominated by genes with disproportionately high numbers of CpG mappings are penalized to mitigate active probe bias—a common artifact in methylation data analysis. Enrichment results across parameter combinations are then aggregated using a voting scheme, prioritizing pathways that are consistently recovered under diverse settings and robust to parameter perturbations.

Contents

create_eQTM																					2
eQTM-class .																					3
getData																					3
getMetadata .																					4
pathway vote																					4

create_eQTM

Index 7

create_eQTM

Create an expression quantitative trait methylation (eQTM) object

Description

Create an expression quantitative trait methylation (eQTM) object

Usage

```
create_eQTM(data, metadata = list())
```

Arguments

data

A data.frame containing eQTM data with columns: cpg, statistics, p_value, distance, and at least one of entrez or ensembl.

cpg Character. CpG probe ID (e.g., "cg00000029"), representing a methylation site

statistics Numeric. Test statistic from eQTM association analysis (e.g., correlation coefficient, r-square, regression coefficient, or t-statistic). Can be positive or negative.

p_value Numeric. P-value associated with the test statistic, must be between 0 and 1

distance Numeric. Genomic distance (in base pairs) between the CpG and the associated gene's transcription start site (TSS). Must be non-negative.

entrez Character. Entrez gene ID of the associated gene. At least one of entrez or ensembl must be provided.

ensembl Character. Ensembl gene ID of the associated gene. At least one of entrez or ensembl must be provided.

metadata

A list of metadata (optional).

Value

An eQTM object.

Examples

```
data <- data.frame(
  cpg = c("cg000001", "cg000002"),
  statistics = c(2.5, -1.8),
  p_value = c(0.01, 0.03),
  distance = c(50000, 80000),
  entrez = c("673", "1956")
)
eqtm_obj <- create_eQTM(data)</pre>
```

eQTM-class 3

eQTM-class

Expression quantitative trait methylation (eQTM) Class

Description

A class to store eQTM data for pathway analysis. eQTM stands for Expression Quantitative Trait Methylation.

Slots

data A data.frame containing eQTM data with columns: cpg, statistics, p_value, distance, and at least one of entrez or ensembl.

metadata A list of metadata (e.g., data source, time point). Reserved for future use.

getData

Get expression quantitative trait methylation (eQTM) Data

Description

Retrieve the eQTM data.frame from an eQTM object.

Usage

```
getData(object)
## S4 method for signature 'eQTM'
getData(object)
```

Arguments

object

An eQTM object.

Value

A data.frame stored in the object.

4 pathway_vote

getMetadata

Get expression quantitative trait methylation (eQTM) Metadata

Description

Retrieve the metadata list from an eQTM object.

Usage

```
getMetadata(object)
## S4 method for signature 'eQTM'
getMetadata(object)
```

Arguments

object

An eQTM object.

Value

A list containing metadata.

pathway_vote

Pathway Voting-Based Enrichment Analysis

Description

Performs pathway enrichment analysis using a voting-based framework that integrates CpG-gene regulatory information from expression quantitative trait methylation (eQTM) data. For a grid of top-ranked CpGs and filtering thresholds, gene sets are generated and refined using an entropy-based pruning strategy that balances information richness, stability, and probe bias correction. In particular, gene lists dominated by genes with disproportionately high numbers of CpG mappings are penalized to mitigate active probe bias—a common artifact in methylation data analysis. Enrichment results across parameter combinations are then aggregated using a voting scheme, prioritizing pathways that are consistently recovered under diverse settings and robust to parameter perturbations.

Usage

```
pathway_vote(
  ewas_data,
  eQTM,
  databases = c("Reactome"),
  k_grid = NULL,
  stat_grid = NULL,
  distance_grid = NULL,
```

pathway_vote 5

```
fixed_prune = NULL,
  grid_size = 5,
  min_genes_per_hit = 2,
  overlap_threshold = 0.7,
  readable = FALSE,
  workers = NULL,
  verbose = FALSE
)
```

Arguments

ewas_data A data.frame containing CpG-level association results. The first column must

contain CpG probe IDs, which will be matched against the eQTM object. The second column should contain a numeric ranking metric, such as a p-value, t-

statistic, or feature importance score.

eQTM An eQTM object containing CpG-gene linkage information, created by the create_eQTM()

function. This object provides the CpG-to-gene mapping used for pathway in-

ference.

databases A character vector of pathway databases. Supporting: "Reactome", "KEGG",

and "GO".

k_grid A numeric vector of top-k CpGs used for gene set construction. If NULL, the

grid is automatically inferred using a log-scaled range guided by the number of CpGs passing FDR < 0.05. Note: This requires that ewas_data contains raw p-values (second column) from an association analysis; for other metrics (e.g.,

t-statistic or importance scores), k_grid must be provided manually.

stat_grid A numeric vector of eQTM statistic thresholds. If NULL, generated based on

quantiles of the observed distribution.

distance_grid A numeric vector of CpG-gene distance thresholds (in base pairs). If NULL,

generated similarly.

fixed_prune Integer or NULL. Minimum number of votes to retain a pathway. If NULL, will

use cuberoot(N) where N is the number of enrichment runs.

grid_size Integer. Number of values in each grid when auto-generating. Default is 5.

min_genes_per_hit

Minimum number of genes ('Count') a pathway must include to be considered.

Default is 2.

overlap_threshold

Numeric between 0 and 1. Controls the maximum allowed Jaccard similarity

between gene lists during redundancy filtering. Defualt is 0.7, which provides

robust and stable results across a variety of simulation scenarios.

readable Logical. whether to convert Entrez IDs to gene symbols in enrichment results.

workers Optional integer. Number of parallel workers. If NULL, use 2 logical cores.

verbose Logical. whether to print progress messages.

6 pathway_vote

Value

A named list of data.frames, each corresponding to a selected pathway database (e.g., 'Reactome', 'KEGG', 'GO'). Each data.frame contains enriched pathways with columns: 'ID', 'p.adjust', 'Description', and 'geneID'.

Examples

```
set.seed(123)
# Simulated EWAS result: a mix of signal and noise
n_cpg <- 500
ewas <- data.frame(</pre>
 cpg = paste0("cg", sprintf("%08d", 1:n_cpg)),
 p_value = c(runif(n_cpg*0.1, 1e-9, 1e-5), runif(n_cpg*0.2, 1e-3, 0.05), runif(n_cpg*0.7, 0.05, 1))
# Corresponding eQTM mapping (some of these CpGs have gene links)
signal_genes <- c("5290", "673", "1956", "7157", "7422")
background_genes <- as.character(1000:9999)</pre>
entrez_signal <- sample(signal_genes, n_cpg * 0.1, replace = TRUE)</pre>
entrez_background <- sample(setdiff(background_genes, signal_genes), n_cpg * 0.9, replace = TRUE)
eqtm_data <- data.frame(
 cpg = ewas$cpg,
 statistics = rnorm(n_cpg, mean = 2, sd = 1),
 p_value = runif(n_cpg, min = 0.001, max = 0.05),
 distance = sample(1000:100000, n_cpg, replace = TRUE),
 entrez = c(entrez_signal, entrez_background),
 stringsAsFactors = FALSE
eqtm_obj <- create_eQTM(eqtm_data)</pre>
# Run pathway voting with minimal settings
## Not run:
results <- pathway_vote(
 ewas_data = ewas,
 eQTM = eqtm_obj,
 databases = c("GO", "KEGG", "Reactome"),
 readable = TRUE,
 verbose = TRUE
head(results$GO)
head(results$KEGG)
head(results$Reactome)
## End(Not run)
```

Index

```
create_eQTM, 2
eQTM-class, 3
getData, 3
getData, eQTM-method (getData), 3
getMetadata, 4
getMetadata, eQTM-method (getMetadata), 4
pathway_vote, 4
```