Type: | Package |
Title: | Robust Exponential Factor Analysis |
Date: | 2023-11-01 |
Version: | 0.1.0 |
Author: | Jiaqi Hu [cre, aut], Xueqin Wang [aut] |
Maintainer: | Jiaqi Hu <hujiaqi@mail.ustc.edu.cn> |
Description: | A robust alternative to the traditional principal component estimator is proposed within the framework of factor models, known as Robust Exponential Factor Analysis, specifically designed for the modeling of high-dimensional datasets with heavy-tailed distributions. The algorithm estimates the latent factors and the loading by minimizing the exponential squared loss function. To determine the appropriate number of factors, we propose a modified rank minimization technique, which has been shown to significantly enhance finite-sample performance. |
Imports: | mvtnorm |
Depends: | R (≥ 3.5.0) |
License: | GPL-3 |
Encoding: | UTF-8 |
RoxygenNote: | 7.2.3 |
NeedsCompilation: | no |
Packaged: | 2023-11-18 03:28:45 UTC; hujiaqi |
Repository: | CRAN |
Date/Publication: | 2023-11-19 15:20:05 UTC |
Estimation of errors for common component
Description
Estimation of errors for common component
Usage
ECC(Chat, C)
Arguments
Chat |
The estimated common component |
C |
The true common component |
Value
a numeric value of the ECC
Author(s)
Jiaqi Hu
References
Manuscript: Robust factor analysis with exponential squared loss
Examples
dat = gendata()
Y = dat$Y
F0 = dat$F0
L0 = dat$L0
C0 = F0
res = REFA(dat$Y, r = 3)
Fhat = res$Fhat
Lhat = res$Lhat
Chat = Fhat
ECC(Chat, C0)
Principal Component Analysis for Factor Models
Description
Principal Component Analysis for Factor Models
Usage
FA(X, r)
Arguments
X |
Input matrix, of dimension |
r |
A positive integer indicating the factor numbers. |
Value
Fhat |
The estimated factor matrix. |
Lhat |
The estimated loading matrix. |
Author(s)
Jiaqi Hu
References
Manuscript: Robust factor analysis with exponential squared loss
Examples
##---- Should be DIRECTLY executable !! ----
Robust Exponential Factor Analysis
Description
Robust Exponential Factor Analysis
Usage
REFA(Y, r = 3, tau = 0.75, q = 0.05, eps = 1e-05, init = TRUE)
Arguments
Y |
Input matrix, of dimension |
r |
A positive integer indicating the factor numbers. |
q |
Hyper parameter |
eps |
The stopping criterion parameter. The default is 1e-5. |
tau |
Hyper parameter |
init |
Warn start of the algorithm. If |
Value
Fhat |
The estimated factor matrix. |
Lhat |
The estimated loading matrix. |
loss |
the value of the loss function. |
Author(s)
Jiaqi Hu
References
Manuscript: Robust factor analysis with exponential squared loss
Examples
dat = gendata()
REFA(dat$Y, r = 3)
Estimating Factor Numbers via Modified Rank Minimization
Description
Estimating Factor Numbers via Modified Rank Minimization
Usage
REFA_FN(Y, rmax = 8, tau = 0.75, q = 0.1, eps = 1e-04, init = TRUE)
Arguments
Y |
Input matrix, of dimension |
rmax |
The bound of the number of factors. |
q |
Hyper parameter in modified PCA algorithm. Default is |
eps |
The stopping criterion parameter. Default is |
tau |
Hyper parameter in selecting |
init |
Warn start by modified PCA algorithm. Default is |
Value
rhat |
The estimated factor number. |
Fhat |
The estimated factor matrix. |
Lhat |
The estimated loading matrix. |
loss |
the value of the loss function. |
Author(s)
Jiaqi Hu
References
Manuscript: Robust factor analysis with exponential squared loss
Examples
dat = gendata()
REFA_FN(dat$Y, rmax = 8)
Trace ratios
Description
Trace ratios
Usage
TR(Fhat, F0)
Arguments
Fhat |
The estimated factors. |
F0 |
The true factors. |
Value
a numeric value of the trace ratios.
Author(s)
Jiaqi Hu
References
Manuscript: Robust factor analysis with exponential squared loss
Examples
dat = gendata()
Y = dat$Y
F0 = dat$F0
res = REFA(dat$Y, r = 3)
Fhat = res$Fhat
TR(Fhat, F0)
Estimating Factor Numbers Corresponding PCA
Description
Estimating Factor Numbers Corresponding PCA
Usage
est_num(X, kmax = 8, type = "BIC3")
Arguments
X |
Input matrix, of dimension |
kmax |
The user-supplied maximum factor numbers. |
type |
the method used. |
Value
the estimated factor numbers
Author(s)
Jiaqi Hu
References
Manuscript: Robust factor analysis with exponential squared loss
Examples
dat = gendata()
est_num(dat$Y)
Data generation process
Description
Generate heavy-tailed data.
Usage
gendata(seed = 1, T = 50, N = 50, type = "1a")
Arguments
seed |
the |
T |
time dimension. |
N |
cross-sectional dimension. |
type |
the type of the data generation process, it can be |
Value
a list consisting of Y, F0, L0
.
Author(s)
Jiaqi Hu
References
Manuscript: Robust factor analysis with exponential squared loss
Examples
dat = gendata()
Y = dat$Y
head(Y)