Package 'Rdsdp'

July 21, 2025

Version 1.0.6

Title R Interface to DSDP Semidefinite Programming Library

Maintainer Zhisu Zhu <zhuzhisu@alumni.stanford.edu>

Description R interface to DSDP semidefinite programming library. The DSDP software is a free open source implementation of an interior-point method for semidefinite programming. It provides primal and dual solutions, exploits low-rank structure and sparsity in the data, and has relatively low memory requirements for an interior-point method.

Imports utils, methods

LazyLoad yes

License GPL-3

URL https://www.mcs.anl.gov/hs/software/DSDP

NeedsCompilation yes

Repository CRAN

Date/Publication 2025-06-08 16:20:02 UTC

Author Zhisu Zhu [aut, cre], Yinyu Ye [aut] (DSDP by Steve Benson, Yinyu Ye and Xiong Zhang)

Contents

Rdsdp	. 2
Rdsdp::dsdp	. 3
Rdsdp::dsdp.readsdpa	. 5

6

Index

Rdsdp

Description

Rdsdp is the R package providing a R interface to DSDP semidefinite programming library. The DSDP package implements a dual-scaling algorithm to find solutions (X, y) to linear and semidefinite optimization problems of the form

(P) inf
$$tr(CX)$$

subject to $\mathcal{A}X = b$
 $X \succeq 0$

with $(AX)_i = tr(A_iX)$ where $X \succeq 0$ means X is positive semidefinite, C and all A_i are symmetric matrices of the same size and b is a vector of length m.

The dual of the problem is

(D) sup
$$b^T y$$

subject to $\mathcal{A}^* y + S = C$
 $S \succeq 0$

where $Ay = \sum_{i=1}^{m} y_i A_i$.

Matrices C and A_i are assumed to be block diagonal structured, and must be specified that way (see Details).

References

- https://www.mcs.anl.gov/hs/software/DSDP/
- Steven J. Benson and Yinyu Ye: *Algorithm 875: DSDP5 software for semidefinite programming* ACM Transactions on Math- ematical Software (TOMS) 34(3), 2008 <u>http://web.stanford.edu/~yyye/DSDP5-Paper.pdf</u>
- Steven J. Benson and Yinyu Ye and Xiong Zhang: Solving Large-Scale Sparse Semidefinite Programs for Combinatorial Optimization SIAM Journal on Optimization 10(2):443-461, 2000 http://web.stanford.edu/~yyye/Jargesdp.ps.gz

Rdsdp::dsdp

Description

Interface to DSDP semidefinite programming library.

Usage

dsdp(A,b,C,K,OPTIONS=NULL)

Arguments

A	An object of class "matrix" with m rows defining the block diagonal constraint matrices A_i . Each constraint matrix A_i is specified by a row of A as explained in the Details section.
b	A numeric vector of length m containg the right hand side of the constraints.
С	An object of class "matrix" with one row or a valid class from the class hierarchy in the "Matrix" package. It defines the objective coefficient matrix C with the same structure of A as explained above.
К	Describes the sizes of each block of the sdp problem. It is a list with the follow- ing elements:
	"s": A vector of integers listing the dimension of positive semidefinite cone blocks.
	"1": A scaler integer indicating the dimension of the linear nonnegative cone block.
OPTIONS	A list of OPTIONS parameters passed to dsdp. It may contain any of the fol- lowing fields:

print: = k to display output at each k iteration, else = 0 [default 10].

logsummary: = 1 print timing information if set to 1.

save: to set the filename to save solution file in SDPA format.

outputstats: = 1 to output full information about the solution statistics in STATS.

gaptol: tolerance for duality gap as a fraction of the value of the objective functions [default 1e-6].

maxit: maximum number of iterations allowed [default 1000].

Please refer to DSDP User Guide for additional OPTIONS parameters available.

Details

All problem matrices are assumed to be of block diagonal structure, the input matrix A must be specified as follows:

1. The coefficients for nonnegative cone block are put in the first K\$1 columns of A.

 The coefficients for positive semidefinite cone blocks are put after nonnegative cone block in the the same order as those in K\$s. The ith positive semidefinite cone block takes (K\$s)[i] times (K\$s)[[i]] columns, with each row defining a symmetric matrix of size (K\$s)[[i]].

This function does not check for symmetry in the problem data.

Value

Returns a list of three objects:

X	Optimal primal solution X . A vector containing blocks in the same structure as explained above.
у	Optimal dual solution y . A vector of the same length as argument b
STATS	A list with three to eight fields that describe the solution of the problem:
	stype: PDFeasible if the solutions to both (D) and (P) are feasible, Infeasible if (D) is infeasible, and Unbounded if (D) is unbounded.
	dobj: objective value of (D).
	pobj: objective value of (P).
	r: the multiple of the identity element added to $C - \mathcal{A}^* y$ in the final solution to make S positive definite.
	mu: the final barrier parameter ν .
	pstep: the final step length in (P)
	dstep: the final step length in (D)
	pnorm: the final value $ P(\nu) $.
	The last five fields are optional, and only available when OPTIONS\$outputstats is set to 1.

References

 Steven J. Benson and Yinyu Ye: DSDP5 User Guide — Software for Semidefinite Programming Technical Report ANL/MCS- TM-277, 2005 https://www.mcs.anl.gov/hs/software/DSDP/DSDP5-Matlab-UserGuide.pdf

Examples

Rdsdp::dsdp.readsdpa

```
OPTIONS=NULL
OPTIONS$gaptol=0.000001
OPTIONS$logsummary=0
OPTIONS$outputstats=1
```

```
result = dsdp(A,b,C,K,OPTIONS)
```

Rdsdp::dsdp.readsdpa Solving semidefinite programs reading from SDPA format files.

Description

Function to read the semidefinite program input data in SDPA format and solve it.

Usage

```
dsdp.readsdpa(sdpa_filename, options_filename="")
```

Arguments

sdpa_filename The location of the SDPA input file.
options_filename
The location of the OPTIONS file [default ""].

Index

dsdp(Rdsdp::dsdp), 3 dsdp.readsdpa(Rdsdp::dsdp.readsdpa), 5

Rdsdp, 2 Rdsdp::dsdp, 3 Rdsdp::dsdp.readsdpa, 5 readsdpa(Rdsdp::dsdp.readsdpa), 5