
Package ‘SwimmeR’
July 21, 2025

Title Data Import, Cleaning, and Conversions for Swimming Results

Version 0.14.2

Description The goal of the 'SwimmeR' package is to provide means of acquiring, and then analyz-
ing, data from swimming (and diving) competitions. To that end 'SwimmeR' allows re-
sults to be read in from .html sources, like 'Hy-Tek' real time results pages, '.pdf' files, 'ISL' re-
sults, 'Omega' results, and (on a development basis) '.hy3' files. Once read in, 'Swim-
meR' can convert swimming times (performances) between the computationally useful for-
mat of seconds reported to the '100ths' place (e.g. 95.37), and the conventional reporting for-
mat (1:35.37) used in the swimming community. 'SwimmeR' can also score meets in a vari-
ety of formats with user defined point values, convert times be-
tween courses ('LCM', 'SCM', 'SCY') and draw single elimination brackets, as well as provid-
ing a suite of tools for working cleaning swimming data. This is a developmental pack-
age, not yet mature.

License MIT + file LICENSE

Imports purrr, dplyr, stringr, utils, rvest, pdftools, magrittr, xml2,
readr

Encoding UTF-8

LazyData true

RoxygenNote 7.2.2

Suggests testthat (>= 2.1.0), knitr, rmarkdown

VignetteBuilder knitr

NeedsCompilation no

Author Greg Pilgrim [aut, cre] (ORCID:
<https://orcid.org/0000-0001-7831-442X>),

Caitlin Baldwin [ctb]

Maintainer Greg Pilgrim <gpilgrim2670@gmail.com>

Depends R (>= 3.5.0)

Repository CRAN

Date/Publication 2023-03-24 13:20:02 UTC

1

https://orcid.org/0000-0001-7831-442X

2 Contents

Contents
add_event_dummy_row . 4
add_row_numbers . 4
age_format . 5
age_format_helper . 6
clean_events . 6
coalesce_many . 7
coalesce_many_helper . 7
collect_relay_swimmers . 8
collect_relay_swimmers_old . 8
collect_relay_swimmers_omega . 9
collect_relay_swimmers_splash . 10
correct_split_distance . 10
correct_split_distance_helper . 11
course_convert . 12
course_convert_DF . 13
course_convert_helper . 14
discard_errors . 15
dive_place . 16
draw_bracket . 17
event_parse . 18
event_parse_ISL . 19
fill_down . 19
fill_left . 20
fold . 20
format_results . 21
generate_row_to_add . 21
get_mode . 22
heat_parse_omega . 23
hy3_parse . 23
hy3_places . 24
hy3_times . 25
hytek_clean_strings . 25
hytek_length_3_DQ_sort . 26
hytek_length_3_sort . 26
hytek_length_4_DQ_sort . 27
hytek_length_4_sort . 27
hytek_length_5_sort . 28
hytek_length_6_sort . 28
hytek_length_7_sort . 29
hytek_length_8_sort . 30
hytek_length_9_sort . 30
interleave_results . 31
is_link_broken . 32
King200Breast . 32
lines_sort . 33
list_breaker . 33

Contents 3

list_to_list_names . 34
list_transform . 34
make_lineup . 35
make_lineup_helper . 36
make_lineup_helper_2 . 37
mmss_format . 38
name_reorder . 39
na_pad . 40
place . 40
reaction_times_parse . 42
read_htm . 42
read_hy3 . 43
read_pdf . 43
Read_Results . 44
read_results_flag . 45
replacement_entries . 45
results_score . 46
sec_format . 47
sec_format_helper . 48
splash_clean_strings . 49
splash_collect_splits . 50
splash_determine_indent_length . 50
splash_length_10_sort . 51
splash_length_11_sort . 51
splash_length_12_sort . 52
splash_length_4_sort . 52
splash_length_5_sort . 53
splash_length_6_sort . 54
splash_length_7_sort . 54
splash_length_8_sort . 55
splash_length_9_sort . 56
splits_parse . 56
splits_parse_ISL . 57
splits_parse_omega_relays . 58
splits_parse_splash . 58
splits_parse_splash_helper_1 . 59
splits_parse_splash_helper_2 . 59
splits_parse_splash_relays . 60
splits_reform . 61
splits_rename_omega . 61
splits_to_cumulative . 62
splits_to_cumulative_helper_recalc . 63
splits_to_lap . 64
splits_to_lap_helper_recalc . 65
SwimmeR-defunct . 66
SwimmeR-deprecated . 66
Swim_Parse . 66
swim_parse_hytek . 68

4 add_row_numbers

swim_parse_ISL . 69
swim_parse_old . 70
swim_parse_omega . 72
swim_parse_samms . 73
swim_parse_splash . 74
swim_place . 75
tie_rescore . 77
toptimes_parse_hytek . 77
undo_interleave . 78
update_rank_helper . 79
%notin% . 80

Index 81

add_event_dummy_row Add dummy entry rows

Description

If a team does not have a full compliment, defined by max_entries, of athletes in a given event
then dummy rows containing blank entries need to be added to that event

Usage

add_event_dummy_row(x)

Arguments

x a list of data frames containing event results that need dummy entries added

Value

returns a list of data frames each with a dummy entry row added

add_row_numbers Add row numbers to raw results

Description

Takes the output of read_results and adds row numbers to it

Usage

add_row_numbers(text)

Arguments

text output from read_results

age_format 5

Value

returns a data frame with event names and row numbers to eventually be recombined with swimming
results inside swim_parse

See Also

add_row_numbers is a helper function inside swim_parse

age_format Formatting yyy-mm ages as years

Description

Takes a character string (or list) representing an age as years-months (e.g. 13-06 for 13 years, 6
months) and converts it to a character value (13.5) or a list of values representing ages in years.

Usage

age_format(x)

Arguments

x A character vector of ages in yyy-mm format (e.g. 93-03) to be converted to
years (93.25)

Value

returns the value of the string x which represents an age in yyy-mm format (93-03) and converts it
to years (93.25)

See Also

age_format_helper age_format uses age_format_helper

Examples

age_format("13-06")
age_format(c("13-06", "25-03", NA))

6 clean_events

age_format_helper Helper function for formatting yyy-mm ages as years, enables vector-
ization of age_format

Description

Helper function for formatting yyy-mm ages as years, enables vectorization of age_format

Usage

age_format_helper(x)

Arguments

x A character vector of age(s) in yyyy-mm format (e.g. 13-06) to be converted to
years (13.5)

clean_events Regularizes event names

Description

XXX

Usage

clean_events(x)

Arguments

x a character vector of event names

Value

a character vector of event names with naming conventions enforced to regularize event names

coalesce_many 7

coalesce_many Combined paired sets of columns following a join operation

Description

Combined paired sets of columns following a join operation

Usage

coalesce_many(df)

Arguments

df a data frame following a join and thereby containing paired columns of the form
Col_1.x, Col_1.y

Value

returns a data frame with all sets of paired columns combined into single columns and named as,
for example, Col_1, Col_2 etc.

See Also

coalesce_many runs inside swim_parse_splash

coalesce_many_helper Combined paired sets of columns following a join operation

Description

This function is intended to be mapped over a sequence i inside the function coalesce_many

Usage

coalesce_many_helper(df, new_split_names, i)

Arguments

df a data frame following a join and thereby containing paired columns of the form
Col_1.x, Col_1.y

new_split_names

a list of desired column names, e.g. Col_1, Col_2

i a number between 1 and the length of new_split_names

8 collect_relay_swimmers_old

Value

returns a data frame with one set of paired columns combined into a single column and named based
on new_split_names

See Also

coalesce_many_helper runs inside coalesce_many

collect_relay_swimmers

Collects relay swimmers as a data frame within swim_parse

Description

Collects relay swimmers as a data frame within swim_parse

Usage

collect_relay_swimmers(x)

Arguments

x output from read_results followed by add_row_numbers

Value

returns a data frame of relay swimmers and the associated performance row number

See Also

collect_relay_swimmers_data runs inside of swim_parse

collect_relay_swimmers_old

Collects relay swimmers as a data frame within swim_parse_old

Description

Depreciated version associated with depreciated version of swim_parse_old

Usage

collect_relay_swimmers_old(x, typo_2 = typo, replacement_2 = replacement)

collect_relay_swimmers_omega 9

Arguments

x output from read_results followed by add_row_numbers

typo_2 list of typos from swim_parse

replacement_2 list of replacements for typos from swim_parse

Value

returns a data frame of relay swimmers and the associated performance row number

See Also

collect_relay_swimmers runs inside of swim_parse

collect_relay_swimmers_omega

Collects relay swimmers as a data frame within swim_parse_omega

Description

Collects relay swimmers as a data frame within swim_parse_omega

Usage

collect_relay_swimmers_omega(x)

Arguments

x output from read_results followed by add_row_numbers

Value

returns a data frame of relay swimmers and the associated performance row number

See Also

collect_relay_swimmers_data runs inside of swim_parse_omega

10 correct_split_distance

collect_relay_swimmers_splash

Collects relay swimmers as a data frame within swim_parse_splash

Description

Collects relay swimmers as a data frame within swim_parse_splash

Usage

collect_relay_swimmers_splash(x, relay_indent = Indent_Length)

Arguments

x output from read_results followed by add_row_numbers

relay_indent the number of spaces relay swimmer lines are indented compared to regular
swimmer lines

Value

returns a data frame of relay swimmers and the associated performance row number

See Also

collect_relay_swimmers_data runs inside of swim_parse_splash

correct_split_distance

Changes lengths associated with splits to new values

Description

Useful for dealing with meets where some events are split by 50 and others by 25.

Usage

correct_split_distance(df, new_split_length, events)

correct_split_length(df, new_split_length, events)

Arguments

df a data frame having some split columns (Split_50, Split_100 etc.)
new_split_length

split length to rename split columns based on

events list of events to correct splits for

correct_split_distance_helper 11

Value

a data frame where all events named in the events parameter have their split column labels adjusted
to reflect new_split_length

Examples

df <- data.frame(Name = c("Lilly King", "Caeleb Dressel"),
Event = c("Women 100 Meter Breaststroke", "Men 50 Yard Freestyle"),
Split_50 = c("29.80", "8.48"),
Split_100 = c("34.33", "9.15"))

df %>% correct_split_distance(
new_split_length = 25,
events = c("Men 50 Yard Freestyle")

)

correct_split_distance_helper

Changes lengths associated with splits to new values

Description

Useful for dealing with meets where some events are split by 50 and others by 25.

Usage

correct_split_distance_helper(df_helper, new_split_length_helper)

Arguments

df_helper a data frame having some split columns (Split_50, Split_100 etc.)
new_split_length_helper

split length to rename split columns based on

Value

a data frame where all values have been pushed left, replacing ‘NA‘s, and all columns containing
only ‘NA‘s have been removed

See Also

correct_split_distance_helper is a helper function inside correct_split_distance

12 course_convert

course_convert Swimming Course Converter

Description

Used to convert times between Long Course Meters, Short Course Meters and Short Course Yards

Usage

course_convert(time, event, course, course_to, verbose = FALSE)

Arguments

time A time, or vector of times to convert. Can be in either seconds (numeric, 95.97)
format or swim (character, "1:35.97") format

event The event swum as "100 Fly", "200 IM", "400 Free", "50 Back", "200 Breast"
etc.

course The course in which the time was swum as "LCM", "SCM" or "SCY"

course_to The course to convert the time to as "LCM", "SCM" or "SCY"

verbose If TRUE will return a data frame containing columns

• Time
• Course
• Course_To
• Event
• Time_Converted_sec
• Time_Converted_mmss

. If FALSE (the default) will return only a converted time.

Value

returns the time for a specified event and course converted to a time for the specified course_to
in swimming format OR a data frame containing columns

• Time

• Course

• Course_To

• Event

• Time_Converted_sec

• Time_Converted_mmss

depending on the value of verbose

Note

Relays are not presently supported.

course_convert_DF 13

References

Uses the USA swimming age group method described here: https://support.gomotionapp.
com/en/articles/6457476-how-to-perform-course-conversion-factoring-of-times

Examples

course_convert(time = "1:35.93", event = "200 Free", course = "SCY", course_to = "LCM")
course_convert(time = 95.93, event = "200 Free", course = "scy", course_to = "lcm")
course_convert(time = 53.89, event = "100 Fly", course = "scm", course_to = "scy")

course_convert_DF Course converter, returns data frame - defunct

Description

Used to convert times between Long Course Meters, Short Course Meters and Short Course Yards,
returns data frame

Usage

course_convert_DF(time, event, course, course_to)

course_convert_df(time, event, course, course_to)

Arguments

time A time, or vector of times to convert. Can be in either seconds (numeric, 95.97)
format or swim (character, "1:35.97") format

event The event swum as "100 Fly", "200 IM", "400 Free", "50 Back", "200 Breast"
etc.

course The course in which the time was swum as "LCM", "SCM" or "SCY"

course_to The course to convert the time to as "LCM", "SCM" or "SCY"

Value

This function returns a data frame including columns:

• Time

• Course

• Course_To

• Event

• Time_Converted_sec

• Time_Converted_mmss

https://support.gomotionapp.com/en/articles/6457476-how-to-perform-course-conversion-factoring-of-times
https://support.gomotionapp.com/en/articles/6457476-how-to-perform-course-conversion-factoring-of-times

14 course_convert_helper

Note

Relays are not presently supported.

References

Uses the USA swimming age group method described here https://support.gomotionapp.com/
en/articles/6457476-how-to-perform-course-conversion-factoring-of-times

course_convert_helper Swimming Course Convertor Helper

Description

Used to convert times between Long Course Meters, Short Course Meters and Short Course Yards

Usage

course_convert_helper(time, event, course, course_to, verbose = FALSE)

Arguments

time A time, or vector of times to convert. Can be in either seconds (numeric, 95.97)
format or swim (character, "1:35.97") format

event The event swum as "100 Fly", "200 IM", "400 Free", "50 Back", "200 Breast"
etc.

course The course in which the time was swum as "LCM", "SCM" or "SCY"

course_to The course to convert the time to as "LCM", "SCM" or "SCY"

verbose If TRUE will return a data frame containing columns

• Time
• Course
• Course_To
• Event
• Time_Converted_sec
• Time_Converted_mmss

. If FALSE (the default) will return only a converted time.

Value

returns the time for a specified event and course converted to a time for the specified course_to
in swimming format OR a data frame containing columns

• Time

• Course

• Course_To

https://support.gomotionapp.com/en/articles/6457476-how-to-perform-course-conversion-factoring-of-times
https://support.gomotionapp.com/en/articles/6457476-how-to-perform-course-conversion-factoring-of-times

discard_errors 15

• Event

• Time_Converted_sec

• Time_Converted_mmss

depending on the value of verbose

See Also

course_convert_helper is a helper function inside course_convert

discard_errors Discards elements of list that have an error value from
purrr::safely.

Description

Used in scrapping, when swim_parse is applied over a list of results using purrr::map the result
is a list of two element lists. The first element is the results, the second element is an error register.
This function removes all elements where the error register is not NULL, and then returns the results
(first element) of the remaining lists.

Usage

discard_errors(x)

Arguments

x a list of lists from purrr::map and purrr:safely

Value

a list of lists where sub lists containing a non-NULL error have been discarded and error elements
have been removed from all remaining sub lists

Examples

result_1 <- data.frame(result = c(1, 2, 3))
error <- NULL

list_1 <- list(result_1, error)
names(list_1) <- c("result", "error")

result_2 <- data.frame(result = c(4, 5, 6))
error <- "result is corrupt"

list_2 <- list(result_2, error)
names(list_2) <- c("result", "error")

list_of_lists <- list(list_1, list_2)

16 dive_place

discard_errors(list_of_lists)

dive_place Adds places to diving results

Description

Places are awarded on the basis of score, with highest score winning. Ties are placed as ties (both
athletes get 2nd etc.)

Usage

dive_place(
df,
score_col = Finals,
max_place = NULL,
keep_nonscoring = TRUE,
verbose = TRUE

)

Arguments

df a data frame with results from swim_parse, including only diving results (not
swimming)

score_col the name of a column in df containing scores on which to place (order) perfor-
mances

max_place highest place value that scores #’ @param score_col the name of a column in df
containing scores on which to place (order) performances

keep_nonscoring

are athletes in places greater than max_place be retained in the data frame. Ei-
ther TRUE or FALSE

verbose should warning messages be posted. Default is TRUE and should rarely be
changed.

Value

data frame modified so that places have been appended based on diving score

See Also

dive_place is a helper function used inside of results_score

draw_bracket 17

draw_bracket Creates a bracket for tournaments involving 5 to 64 teams, single elim-
ination

Description

Will draw a single elimination bracket for the appropriate number of teams, inserting first round
byes for higher seeds as needed

Usage

draw_bracket(
teams,
title = "Championship Bracket",
text_size = 0.7,
round_two = NULL,
round_three = NULL,
round_four = NULL,
round_five = NULL,
round_six = NULL,
champion = NULL

)

Arguments

teams a list of teams, ordered by desired seed, to place in bracket. Must be between 5
and 64 inclusive. Teams must have unique names

title bracket title

text_size number passed to cex in plotting

round_two a list of teams advancing to the second round (need not be in order)

round_three a list of teams advancing to the third round (need not be in order)

round_four a list of teams advancing to the forth round (need not be in order)

round_five a list of teams advancing to the fifth round (need not be in order)

round_six a list of teams advancing to the fifth round (need not be in order)

champion the name of the overall champion team (there can be only one)

Value

a plot of a bracket for the teams, with results and titles as specified

References

based on draw.bracket from the seemingly now defunct mRchmadness package by Eli Shayer and
Saber Powers and used per the terms of that package’s GPL-2 license

18 event_parse

Examples

Not run:
teams <- c("red", "orange", "yellow", "green", "blue", "indigo", "violet")
round_two <- c("red", "yellow", "blue", "indigo")
round_three <- c("red", "blue")
champion <- "red"
draw_bracket(teams = teams,

round_two = round_two,
round_three = round_three,
champion = champion)

End(Not run)

event_parse Pulls out event labels from text

Description

Locates event labels in text of results output from read_results and their associated row numbers.
The resulting data frame is joined back into results to include event names

Usage

event_parse(text)

Arguments

text output from read_results followed by add_row_numbers

Value

returns a data frame with event names and row numbers to eventually be recombined with swimming
results inside swim_parse

See Also

event_parse is a helper function inside swim_parse

event_parse_ISL 19

event_parse_ISL Pulls out event labels from text

Description

Locates event labels in text of ’ISL’ results output from read_results and their associated row
numbers. The resulting data frame is joined back into results to include event names

Usage

event_parse_ISL(text)

Arguments

text output from read_results followed by add_row_numbers

Value

returns a data frame with event names and row numbers to eventually be recombined with swimming
results inside swim_parse_ISL

See Also

event_parse_ISL is a helper function inside swim_parse_ISL

fill_down Fills NA values with previous non-NA value

Description

This is a base approximation of tidyr::fill()

Usage

fill_down(x)

Arguments

x a list having some number of non-NA values

Value

a list where NA values have been replaced with the closest previous non-NA value

See Also

fill_down is a helper function inside lines_sort

20 fold

fill_left Shifts non-NA values to left in data frame

Description

Moves non-NA data left into NA spaces, then removes all columns that contain only NA values

Usage

fill_left(df)

Arguments

df a data frame having some ‘NA‘ values

Value

a data frame where all values have been pushed left, replacing ‘NA‘s, and all columns containing
only ‘NA‘s have been removed

See Also

fill_left is a helper function inside lines_sort and splits_parse

fold Fold a vector onto itself

Description

Fold a vector onto itself

Usage

fold(x, block.size = 1)

Arguments

x a vector
block.size the size of groups in which to block the data

Value

a new vector in the following order: first block, last block, second block, second-to-last block, ...

References

from the seemingly now defunct mRchmadness package by Eli Shayer and Saber Powers and used
per the terms of that package’s GPL-2 license

format_results 21

format_results Formats data for analysis within swim_parse

Description

Takes the output of read_results and, inside of swim_parse, removes "special" strings like DQ
and SCR from results, replacing them with NA. Also ensures that all athletes have a Finals, by
moving over Prelims. This makes later analysis much easier.

Usage

format_results(df)

Arguments

df a data frame of results at the end of swim_parse

Value

returns a formatted data frame

See Also

splits_parse runs inside swim_parse on the output of read_results with row numbers from
add_row_numbers

generate_row_to_add Create a one-line data frame containing an entry to be appended to an
in-progress data frame of all entries

Description

Create a one-line data frame containing an entry to be appended to an in-progress data frame of all
entries

Usage

generate_row_to_add(df_helper_2, e_rank_helper_2, k, e_helper)

Arguments

df_helper_2 a master data frame of athlete ranks by event
e_rank_helper_2

a data frame of candidate athlete entries to add to a given event
k an integer denoting which element of e_rank_helper is under evaluation for ad-

dition. Should be 1, 2, 3 or 4 depending on the minimum number of entries
e_helper the event for which entries are being evaluated

22 get_mode

Value

a one row data frame containing an improved entry

get_mode Find the mode (most commonly occurring) element of a list

Description

Determines which element of list appears most frequently. Based on base::which.max(), so if
multiple values appear with the same frequency will return the first one. Ignores NA values. In the
context of swimming data is often used to clean team names, as in the Lilly King example below.

Usage

get_mode(x, type = "first")

Arguments

x A list. NA elements will be ignored.

type a character string of either "first" or "all" which determines behavior for ties.
Setting type = "first" (the default) will return the element that appears most
often and appears first in list x. Setting type = "all" will return all elements
that appear most frequently.

Value

the element of x which appears most frequently. Ties go to the lowest index, so the element which
appears first.

Examples

a <- c("a", "a", "b", "c")
get_mode(a)
ab <- c("a", "a", "b", "b", "c") # returns "a", not "b"
get_mode(ab)
#' ab <- c("a", "a", "b", "b", "c") # returns "a" and "b"
get_mode(ab, type = "all")
a_na <- c("a", "a", NA, NA, "c")
get_mode(a_na)
numbs <- c(1, 1, 1, 2, 2, 2, 3, NA)
get_mode(numbs, type = "all")

Name <- c(rep("Lilly King", 5))
Team <- c(rep("IU", 2), "Indiana", "IUWSD", "Indiana University")
df <- data.frame(Name, Team, stringsAsFactors = FALSE)
df$Team <- get_mode(df$Team)

heat_parse_omega 23

heat_parse_omega Pulls out heat labels from text

Description

Locates heat labels in text of results output from read_results and their associated row numbers.
The resulting data frame is joined back into results to include heat numbers

Usage

heat_parse_omega(text)

Arguments

text output from read_results followed by add_row_numbers

Value

returns a data frame with heat names and row numbers to eventually be recombined with swimming
results inside swim_parse_omega

See Also

heat_parse_omega is a helper function inside swim_parse_omega

hy3_parse Parses Hy-Tek .hy3 files

Description

Helper function used inside ‘swim_parse‘ for dealing with Hy-Tek .hy3 files. Can have more
columns than other ‘swim_parse‘ outputs, because .hy3 files can contain more data

Usage

hy3_parse(
file,
avoid = avoid_minimal,
typo = typo_default,
replacement = replacement_default

)

24 hy3_places

Arguments

file output from read_results

avoid a list of strings. Rows in x containing these strings will not be included. For
example "Pool:", often used to label pool records, could be passed to avoid.
The default is avoid_default, which contains many strings similar to "Pool:",
such as "STATE:" and "Qual:". Users can supply their own lists to avoid.

typo a list of strings that are typos in the original results. swim_parse is particu-
larly sensitive to accidental double spaces, so "Central High School", with two
spaces between "Central" and "High" is a problem, which can be fixed. Pass
"Central High School" to typo. Unexpected commas as also an issue, for exam-
ple "Texas, University of" should be fixed using typo and replacement

replacement a list of fixes for the strings in typo. Here one could pass "Central High School"
(one space between "Central" and "High") and "Texas" to replacement fix the
issues described in typo

Value

returns a data frame with columns Name, Place, Age, Team, Prelims, Finals, & Event. May also
contain Seed_Time, USA_ID, and/or Birthdate. Note all swims will have a Finals, even if that
time was actually swam in the prelims (i.e. a swimmer did not qualify for finals). This is so that
final results for an event can be generated from just one column.

See Also

parse_hy3 must be run on the output of read_results

parse_hy3 runs inside of swim_parse

hy3_places Helper for reading prelims and finals places from Hy-Tek .hy3 files

Description

Used to pull prelims and finals places from .hy3 files as part of parsing them.

Usage

hy3_places(
file,
type = c("prelims", "relay_prelims", "finals", "relay_finals")

)

Arguments

file an output of read_results, from an .hy3 file

type type of times, either "prelims", "relay_prelims", "finals" or "relay_finals"

hy3_times 25

Value

a data frame where column 1 is times and column 2 is row number

See Also

hy3_places is run inside of hy3_parse

hy3_times Helper for reading prelims and finals times from Hy-Tek .hy3 files

Description

Used to pull prelims and finals times from .hy3 files as part of parsing them.

Usage

hy3_times(file, type = c("prelims", "relay_prelims", "finals", "relay_finals"))

Arguments

file an output of read_results, from an .hy3 file

type type of times, either "prelims", "relay_prelims", "finals" or "relay_finals"

Value

a data frame where column 1 is times and column 2 is row number

See Also

hy3_times is run inside of hy3_parse

hytek_clean_strings Cleans input strings

Description

Cleans input from read_results is passed to hytek_swim_parse to remove unnneded characters
and otherwise set it up for sorting. Input is in the form of character strings

Usage

hytek_clean_strings(x, time_score_string = Time_Score_String)

26 hytek_length_3_sort

Arguments

x a list of character strings
time_score_string

a regex string for matching results (times and scores) but not special strings like
DQ

Value

returns a list of character strings that have been cleaned in preparation for parsing/sorting

#’ @seealso hytek_clean_strings runs inside of hytek_parse_splash

hytek_length_3_DQ_sort

Sort data in DQ lists of length 3 within hytek_swim_parse

Description

Sort data in DQ lists of length 3 within hytek_swim_parse

Usage

hytek_length_3_DQ_sort(x)

Arguments

x a list of lists containing DQ results with all sub-lists having length 3 strings

Value

returns a formatted data frame to be combined with others to make the output of hytek_swim_parse

hytek_length_3_sort Sort data in lists of length 3 within hytek_swim_parse

Description

Sort data in lists of length 3 within hytek_swim_parse

Usage

hytek_length_3_sort(x)

Arguments

x a list of lists with all sub-lists having length 3 strings

hytek_length_4_DQ_sort 27

Value

returns a formatted data frame to be combined with others to make the output of hytek_swim_parse

hytek_length_4_DQ_sort

Sort data in DQ lists of length 4 within hytek_swim_parse

Description

Sort data in DQ lists of length 4 within hytek_swim_parse

Usage

hytek_length_4_DQ_sort(x)

Arguments

x a list of lists containing DQ results with all sub-lists having length 4 strings

Value

returns a formatted data frame to be combined with others to make the output of hytek_swim_parse

hytek_length_4_sort Sort data in lists of length 4 within hytek_swim_parse

Description

Sort data in lists of length 4 within hytek_swim_parse

Usage

hytek_length_4_sort(x, time_score_specials_string = Time_Score_Specials_String)

Arguments

x a list of lists with all sub-lists having length 4 strings
time_score_specials_string

a regex string for matching results - i.e. times, diving scores and ’specials’ like
DQ

Value

returns a formatted data frame to be combined with others to make the output of hytek_swim_parse

28 hytek_length_6_sort

hytek_length_5_sort Sort data in lists of length 5 within hytek_swim_parse

Description

Sort data in lists of length 5 within hytek_swim_parse

Usage

hytek_length_5_sort(
x,
name_string = Name_String,
age_string = Age_String,
para_string = Para_String,
time_score_specials_string = Time_Score_Specials_String

)

Arguments

x a list of lists with all sub-lists having length 5 strings
name_string a regex string for matching athlete names
age_string a regex string for matching athlete ages
para_string a regex string for matching Paralympics classification strings
time_score_specials_string

a regex string for matching results - i.e. times, diving scores and ’specials’ like
DQ

Value

returns a formatted data frame to be combined with others to make the output of hytek_swim_parse

hytek_length_6_sort Sort data in lists of length 6 within hytek_swim_parse

Description

Sort data in lists of length 6 within hytek_swim_parse

Usage

hytek_length_6_sort(
x,
name_string = Name_String,
age_string = Age_String,
para_string = Para_String,
time_score_specials_string = Time_Score_Specials_String

)

hytek_length_7_sort 29

Arguments

x a list of lists with all sub-lists having length 6 strings

name_string a regex string for matching athlete names

age_string a regex string for matching athlete ages

para_string a regex string for matching Paralympics classification strings
time_score_specials_string

a regex string for matching results - i.e. times, diving scores and ’specials’ like
DQ

Value

returns a formatted data frame to be combined with others to make the output of hytek_swim_parse

hytek_length_7_sort Sort data in lists of length 7 within hytek_swim_parse

Description

Sort data in lists of length 7 within hytek_swim_parse

Usage

hytek_length_7_sort(
x,
brit_id_string = Brit_ID_String,
para_string = Para_String,
age_string = Age_String,
time_score_specials_string = Time_Score_Specials_String

)

Arguments

x a list of lists with all sub-lists having length 7

brit_id_string a regex string for matching British swimming IDs

para_string a regex string for matching Paralympics classification strings

age_string a regex string for matching athlete ages
time_score_specials_string

a regex string for matching results - i.e. times, diving scores and ’specials’ like
DQ

Value

returns a formatted data frame to be combined with others to make the output of hytek_swim_parse

30 hytek_length_9_sort

hytek_length_8_sort Sort data in lists of length 8 within hytek_swim_parse

Description

Sort data in lists of length 8 within hytek_swim_parse

Usage

hytek_length_8_sort(
x,
brit_id_string = Brit_ID_String,
para_string = Para_String,
age_string = Age_String,
time_score_specials_string = Time_Score_Specials_String

)

Arguments

x a list of lists with all sub-lists having length 8
brit_id_string a regex string for matching British swimming IDs
para_string a regex string for matching Paralympics classification strings
age_string a regex string for matching athlete ages
time_score_specials_string

a regex string for matching results - i.e. times, diving scores and ’specials’ like
DQ

Value

returns a formatted data frame to be combined with others to make the output of hytek_swim_parse

hytek_length_9_sort Sort data in lists of length 9 within hytek_swim_parse

Description

Sort data in lists of length 9 within hytek_swim_parse

Usage

hytek_length_9_sort(
x,
brit_id_string = Brit_ID_String,
para_string = Para_String,
age_string = Age_String,
time_score_specials_string = Time_Score_Specials_String

)

interleave_results 31

Arguments

x a list of lists with all sub-lists having length 9

brit_id_string a regex string for matching British swimming IDs

para_string a regex string for matching Paralympics classification strings

age_string a regex string for matching athlete ages
time_score_specials_string

a regex string for matching results - i.e. times, diving scores and ’specials’ like
DQ

Value

returns a formatted data frame to be combined with others to make the output of hytek_swim_parse

interleave_results Helper for reading interleaving prelims and finals results

Description

Interleaves times or places based on row number ranges.

Usage

interleave_results(entries, results, type = c("individual", "relay"))

Arguments

entries a data frame containing columns for minimum and maximum row number (usu-
ally ‘Row_Min‘ and ‘Row_Max‘). Times or places will be interleaved into this
data frame.

results a data frame containing times (or places) in column 1 (or other values to be
interleaved) and row numbers in column 2 (usually ‘Row_Numb‘).

type either "individual" or "relay"

Value

a modified version of ‘entries‘ with values from ‘results‘ interleaved on the basis of row number

See Also

interleave_results is a helper function used in hy3_parse

32 King200Breast

is_link_broken Determines if a link is valid

Description

Used in testing links to external data, specifically inside of internal package tests. Attempts to
connect to link for the length of duration (in s). If it fails it returns FALSE

Usage

is_link_broken(link_to_test, duration = 1)

Arguments

link_to_test a link

duration the lowest row number

Value

TRUE if the link works, FALSE if it fails

King200Breast Results for Lilly King’s 200 Breaststrokes

Description

Lilly King’s 200 Breaststroke swims from her NCAA career

Usage

data(King200Breast)

Format

An object of class "data.frame"

Source

NCAA Times Database

https://www.usaswimming.org/times/ncaa/ncaa-division-i

lines_sort 33

lines_sort Sorts and collects lines by performance and row number

Description

Collects all lines, (for example containing splits or relay swimmers) associated with a particular
performance (a swim) into a data frame with the appropriate row number for that performance

Usage

lines_sort(x, min_row = minimum_row, to_wide = TRUE)

Arguments

x a list of character strings including performances, with tow numbers added by
add_row_numbers

min_row the lowest row number

to_wide should the data frame x be converted to wide format? Default is TRUE as used in
Hytek and Omega results. Use FALSE in Splash results

Value

a data frame with Row_Numb as the first column. Other columns are performance elements, like
splits or relay swimmers, both in order of occurrence left to right

See Also

lines_sort is a helper function inside splits_parse and swim_parse_ISL

list_breaker Breaks out lists of lists by sub-list length

Description

XXXXXX

Usage

list_breaker(x, len)

Arguments

x a list of lists, with at least some sub-lists having length len

len an numeric value for the length of sub-lists that list_breaker should break out.
Must be a whole number.

34 list_transform

Value

returns a list of lists, with all sub-lists having length len

list_to_list_names Initialize a named list of lists

Description

Convert a single list to a list of lists, with the names of the lists taken from the original list,
list_of_names. The new lists will all have a single value, initialized as value.

Usage

list_to_list_names(list_of_names, value = 0)

Arguments

list_of_names a list of values, likely strings, to be the names of sub-lists in a new list of lists

value a value to initialize elements of all sub-lists to. Defaults to 0. If value has
multiple elements those elements will become sub-list elements

Value

returns a list of lists with sub-list names from list_of_names and first elements from value. Used
inside determine_entries

list_transform Transform list of lists into data frame

Description

Converts list of lists, with all sub-lists having the same number of elements into a data frame where
each sub-list is a row and each element a column

Usage

list_transform(x)

Arguments

x a list of lists, with all sub-lists having the same length

Value

a data frame where each sub-list is a row and each element of that sub-list is a column

make_lineup 35

See Also

list_transform is a helper function used inside of swim_parse, swim_parse_ISL, event_parse
and event_parse_ISL

make_lineup Determine optimal entries against a given opponent lineup

Description

Determine optimal entries against a given opponent lineup

Usage

make_lineup(
df,
op_df,
point_values,
result_col,
events = NULL,
max_entries = NULL,
max_ind_entries = NULL

)

Arguments

df a data frame of times for the team to be entered. Must contain column Event
with the same event naming convention as op_df, a column with name match-
ing result_col containing times or diving scores, and a column called Name
containing athlete names

op_df a data frame containing the opponent lineup. Must contain column Event with
the same event naming convention as df, a column with name matching result_col
containing times or diving scores, and a column called Name containing athlete
names

point_values either a recognized string or a list of numeric values containing the points awarded
by place. Recognized strings are "hs_four_lane", "hs_six_lane", "ncaa_six_lane"

result_col the name of a column, present in both df and op_df that contains times and/or
diving scores

events a list of events. If no list is entered then events will be taken from unique(op_df$Event)

max_entries the number of entries a team is permitted per race. usually half the number of
lanes in the competition pool

max_ind_entries

the number of indivdual events a given athlete may enter

Value

a data frame of optimal entries based on df and op_df

36 make_lineup_helper

make_lineup_helper Determine optimal entries against a given opponent lineup

Description

Matches athletes into events. Each event is filled by the least capable (slowest) swimmer who can
win or place in that event. For example if Team A has six breaststrokers at 57.00, 58.00, 59.00 and
three 1:00.00s and Team B has three breaststrokers, all 1:01.00 then Team A’s entries will be the
three 1:00.00s because they’re sufficient to win.

Usage

make_lineup_helper(
i,
df_helper,
op_df_helper,
end_seq,
max_ind_entries_helper = 2,
result_col_helper = result_col

)

Arguments

i a sequential list of numbers incremented by 1. Used to index function.

df_helper a data frame of times for the team to be entered. Must contain column Event
with the same event naming convention as op_df, a column with name match-
ing result_col containing times or diving scores, and a column called Name
containing athlete names

op_df_helper a data frame containing the opponent lineup. Must contain column Event with
the same event naming convention as df, a column with name matching result_col
containing times or diving scores, and a column called Name containing athlete
names

end_seq how many events score
max_ind_entries_helper

a numeric value denoting the maximum number of individual events that may
be entered by a single athlete

result_col_helper

name of column with results in it

Value

a data frame containing athletes entered into events

make_lineup_helper_2 37

make_lineup_helper_2 Assign overpowered entries

Description

Matches athletes into events again, this time vs. the output of make_lineup_helper. For example
if Team A has six breaststrokers at 57.00, 58.00, 59.00 and three 1:00.00s and Team B has three
breaststrokers, all 1:01.00 then following make_lineup_helper Team A’s entries will be the three
1:00.00s because they’re sufficient to win.

Usage

make_lineup_helper_2(
i,
df_helper,
in_progress_entries_df,
events_competed_helper = Events_Competed,
max_entries_helper = max_entries,
max_ind_entries_helper = max_ind_entries

)

Arguments

i a sequential list of numbers incremented by 1. Used to index function.

df_helper a data frame of all times to be entered for a given team. Must contain column
Event with the same event naming convention as op_df, a column with name
matching result_col containing times or diving scores, and a column called
Name containing athlete names

in_progress_entries_df

a data frame containing the output of make_lineup_helper, which is the mini-
mum power set of entries

events_competed_helper

a list of lists containing all the events a given athlete is competing in. Sub-lists
are named with the athlete name.

max_entries_helper

a numeric value denoting the maximum number of athletes a team may enter in
a given event

max_ind_entries_helper

a numeric value denoting the maximum number of individual events that may
be entered by a single athlete

Details

Here though Team A’s three 1:00.00s will be replaced by their 57.00, 58.00 and 59.00 breast-
strokers. These entries are "overpowered" but better reflect an actual set of entries. Not using
make_lineup_helper_2 often results in a team’s best athletes not competing

38 mmss_format

Value

a data frame containing entries updated to be as powerful as possible

mmss_format Formatting seconds as mm:ss.hh

Description

Takes a numeric item or list of numeric items representing seconds (e.g. 95.37) and converts to a
character string or list of strings in swimming format ("1:35.37").

Usage

mmss_format(x)

Arguments

x A number of seconds to be converted to swimming format

Value

the number of seconds x converted to conventional swimming format mm:ss.hh

See Also

sec_format mmss_format is the reverse of sec_format

Examples

mmss_format(95.37)
mmss_format(200.95)
mmss_format(59.47)
mmss_format(c(95.37, 200.95, 59.47, NA))

name_reorder 39

name_reorder Orders all names as "Firstname Lastname"

Description

Names are sometimes listed as Firstname Lastname, and sometimes as Lastname, Firstname. The
names_reorder function converts all names to Firstname Lastname based on comma position. The
reverse, going to Lastname, Firstname is not possible because some athletes have multiple first
names or multiple last names and without the comma to differentiate between the two a distinction
cannot be made.

Usage

name_reorder(x, verbose = FALSE)

Arguments

x a data frame output from swim_parse containing a column called Name with
some names as Lastname, Firstname

verbose defaults to FALSE. If set to TRUE and if x is a data frame then returned data frame
will include columns First_Name and Last_Name extracted as best as possible
from Name

Value

a data frame with a column Name_Reorder, or a list, containing strings reordered as Firstname
Lastname in addition to all other columns in input df. Can also contain columns First_Name and
Last_Name depending on value of verbose argument

Examples

name_reorder(
data.frame(
Name = c("King, Lilly",
"Lilly King",
NA,
"Richards Ross, Sanya",
"Phelps, Michael F")),

verbose = TRUE
)
name_reorder(c("King, Lilly", "Lilly King", NA, "Richards Ross, Sanya"))

40 place

na_pad Pads shorter lists in a list-of-lists with NAs such that all lists are the
same length

Description

Adds NA values to the end of each list in a list of lists such that they all become the length of the
longest list. The longest list will not have any NAs added to it.

Usage

na_pad(x, y)

Arguments

x a list of lists, with sub-lists having different lengths

y a list of the number of NA values to append to each sub-list

Value

a list of lists with each sub-list the same length

place Add places to results

Description

Places are awarded on the basis of time, with fastest (lowest) time winning. For diving places are
awarded on the basis of score, with the highest score winning. Ties are placed as ties (both athletes
get 2nd etc.)

Usage

place(
df,
result_col = Finals,
max_place = NULL,
event_type = "ind",
max_relays_per_team = 1,
keep_nonscoring = TRUE,
verbose = TRUE

)

place 41

Arguments

df a data frame with results from swim_parse, including swimming and/or diving
results. df must contain a column called Event

result_col the name of a column in df containing times and/or scores on which to place
(order) performances. Default is Finals

max_place highest place value that scores

event_type either "ind" for individual or "relay" for relays
max_relays_per_team

an integer value denoting the number of relays a team may score (usually 1)
keep_nonscoring

are athletes in places greater than max_place be retained in the data frame. Ei-
ther TRUE or FALSE

verbose should warning messages be posted. Default is TRUE and should rarely be
changed.

Value

a data frame modified so that places have been appended based on swimming time and/or diving
score

See Also

swim_place is a helper function used inside of results_score

Examples

df <- data.frame(Place = c(1, 1, 1, 1, 1, 1), Name = c("Sally Swimfast",
"Bonnie Bubbles", "Kylie Kicker", "Riley Ripit", "Nathan Nosplash", "Tim
Tuck"), Team = c("KVAC", "UBAM", "MERC", "Upstate Diving", "Nickel City
Splash", "Finger Lakes Diving"), Event = c(rep("Women 200 Freestyle", 3),
rep("Boys 1 mtr Diving", 3)), Prelims = c("2:00.00", "1:59.99", "2:01.50",
"300.00", "305.00", "200.00"), Finals = c("1:58.00", "1:59.50", "2:00.50",
"310.00", "307.00", "220.00"), Meet = c("Summer 2021", "Fall 2020", "Champs
2020","Regional Champs 2021", "Other Regional Champs 2021", "City Champs
2021"))

df %>%
place() %>%
dplyr::arrange(Event)

df %>%
place(result_col = Prelims) %>%
dplyr::arrange(Event)

df %>%
place(result_col = "Prelims") %>%
dplyr::arrange(Event)

42 read_htm

reaction_times_parse Pulls out reaction times from text

Description

Locates reaction times in text of results output from read_results and their associated row num-
bers. The resulting data frame is joined back into results to include reaction times

Usage

reaction_times_parse(text)

Arguments

text output from read_results followed by add_row_numbers

Value

returns a data frame with reaction times and row numbers to eventually be recombined with swim-
ming results inside swim_parse

See Also

reaction_times_parse is a helper function inside swim_parse

read_htm Read in html files of swimming results

Description

Read in html files of swimming results

Usage

read_htm(x, node_helper)

Arguments

x an .html, .htm or .aspx location containing swimming results. Must be formatted
in a "normal" fashion - see vignette

node_helper receives node from read_results

Value

returns a list of results, with "read_results_flag" added as the first element of the list

read_hy3 43

read_hy3 Read in hy3 files of swimming results

Description

Read in hy3 files of swimming results

Usage

read_hy3(x)

Arguments

x an unzipped hy3 file containing swimming results. Must be formatted in a "nor-
mal" fashion - see vignette

Value

returns a list of results, with "read_results_flag" added as the first element of the list

read_pdf Read in pdf files of swimming results

Description

Based on pdftools, this function can be temperamental

Usage

read_pdf(x)

Arguments

x a .pdf or .aspx location containing swimming results. Must be formatted in a
"normal" fashion - see vignette

Value

returns a list of results, with "read_results_flag" added as the first element of the list

44 Read_Results

Read_Results Reads swimming and diving results into a list of strings in preparation
for parsing with swim_parse

Description

Outputs list of strings to be processed by swim_parse

Usage

Read_Results(file, node = "pre")

read_results(file, node = "pre")

Arguments

file a pdf, url or Hytek .hy3 file containing swimming results. Must be formatted in
a "normal" fashion - see vignette

node a CSS node where html results are stored. Required for html results. Default is
"pre", which nearly always works.

Value

returns a list of strings containing the information from file. Should then be parsed with swim_parse

See Also

read_results is meant to be followed by swim_parse

Examples

Not run:
link <-

"http://www.nyhsswim.com/Results/Boys/2008/NYS/Single.htm", node = "pre"
read_results(link)
End(Not run)

read_results_flag 45

read_results_flag used to indicate that results have been read in with read_results
prior to being parsed by swim_parse

Description

Used to insure that read_results has been run on a data source prior to running swim_parse

Usage

read_results_flag(x)

Arguments

x a list of results, line by line

Value

returns list x, with "read_results_flag" added as the first element of the list

replacement_entries Replaces superseded rows

Description

Replaces superseded rows

Usage

replacement_entries(x, j_helper, row_to_add_replacement, e_df_replacement)

Arguments

x a data frame of entries, either df_helper_2 or Entries

j_helper an integer denoting which element of e_df_replacement is under test for re-
moval. Should be 1, 2, 3 or 4 depending on the minimum number of entries

row_to_add_replacement

a row containing an improved entry that should be added to x
e_df_replacement

a data frame of entries that may be replaced

Value

a data frame containing entries updated to include new rows from row_to_add_replacement and to
not contain rows from e_df_replacement, based on j_helper

46 results_score

results_score Scores a swim meet

Description

Used to add a Points column with point values for each place. Can either score "timed finals"
type meets where any athlete can get any place, or "prelims-finals", type meets, where placing is
restricted by prelim performance.

Usage

results_score(
results,
events = NULL,
meet_type = c("timed_finals", "prelims_finals"),
lanes = c(4, 6, 8, 10),
scoring_heats = c(1, 2, 3),
point_values,
max_relays_per_team = 1

)

Arguments

results an output from swim_parse

events list of events

meet_type how to score based on timed_finals, where any place is possible, or prelims_finals
where athletes are locked into heats for scoring purposes

lanes number of lanes in to the pool, for purposes of heat

scoring_heats number of heats which score (if 1 only A final scores, if 2 A and B final score
etc.)

point_values Either a list of point values for each scoring place or one of the following recog-
nized strings: "hs_four_lane", "hs_six_lane", "ncaa_six_lane", "championship_8_lane_2_heat"
or "championship_8_lane_3_heat"

max_relays_per_team

the number of relays a team is allowed to score (usually 1)

Value

results with point values in a column called Points

Examples

Not run:
file <-
system.file("extdata", "BigTen_WSWIM_2018.pdf", package = "SwimmeR")
BigTenRaw <- read_results(file)

sec_format 47

BigTen <- swim_parse(
BigTenRaw,
typo = c(
"^\\s{1,}*",
"^\\s{1,}(\\d{1,2})\\s{2,}",
",\\s{1,}University\\s{1,}of",
"University\\s{1,}of\\s{1,}",
"\\s{1,}University",
"SR\\s{2,}",
"JR\\s{2,}",
"SO\\s{2,}",
"FR\\s{2,}"

),
replacement = c(" ",

" \\1 ",
"", "", "",
"SR ",
"JR ",
"SO ",
"FR "),

avoid = c("B1G", "Pool")
)

BigTen <- BigTen %>%
dplyr::filter(

stringr::str_detect(Event, "Time Trial") == FALSE,
stringr::str_detect(Event, "Swim-off") == FALSE

) %>%
dplyr::mutate(Team = dplyr::case_when(Team == "Wisconsin, Madi" ~ "Wisconsin",

TRUE ~ Team))

begin results_score portion
df <- BigTen %>%

results_score(
events = unique(BigTen$Event),
meet_type = "prelims_finals",
lanes = 8,
scoring_heats = 3,
point_values = c(

32, 28, 27, 26, 25, 24, 23, 22, 20, 17, 16, 15, 14, 13, 12, 11, 9, 7,
6, 5, 4, 3, 2, 1)

)

End(Not run)

sec_format Formatting mm:ss.tt times as seconds

48 sec_format_helper

Description

Takes a character string (or list) representing time in swimming format (e.g. 1:35.37) and converts
it to a numeric value (95.37) or a list of values representing seconds.

Usage

sec_format(x)

Arguments

x A character vector of time(s) in swimming format (e.g. 1:35.93) to be converted
to seconds (95.93)

Value

returns the value of the string x which represents a time in swimming format (mm:ss.hh) and con-
verts it to seconds

See Also

sec_format is the reverse of mmss_format

Examples

sec_format("1:35.93")
sec_format("16:45.19")
sec_format("25.43")
sec_format(c("1:35.93", "16:45.19", "25.43"))
sec_format(c("1:35.93", "16:45.19", NA, "25.43", ":55.23"))

sec_format_helper Helper function for formatting mm:ss.hh times as seconds, used to en-
able vectorized operation of sec_format

Description

Helper function for formatting mm:ss.hh times as seconds, used to enable vectorized operation of
sec_format

Usage

sec_format_helper(x)

Arguments

x A character vector of time(s) in swimming format (e.g. 1:35.93) to be converted
to seconds (95.93)

splash_clean_strings 49

splash_clean_strings Cleans input strings

Description

Cleans input from read_results is passed to splash_swim_parse to remove unnneded characters
and otherwise set it up for sorting. Input is in the form of character strings

Usage

splash_clean_strings(
x,
indent_length = Indent_Length,
time_score_string = Time_Score_String,
record_string = Record_String,
header_string = Header_String,
sponsorship_string = Sponsorship_String,
reaction_string = Reaction_String,
rule_string = Rule_String

)

Arguments

x a list of character strings

indent_length a numeric value denoting the number of spaces some results are indented by.
indent_length is determined by splash_determine_indent_length. Must
be a whole number.

time_score_string

a regex string for matching results (times and scores) but not special strings like
DQ

record_string a regex string for matching denoted records, rather than results

header_string a regex string from matching splash headers/footers included in result docu-
ments

sponsorship_string

a regex string for matching sponsorship text within result documents
reaction_string

a regex string for matching reaction times

rule_string a regex string for matching rule text e.g. ’Rule 4.24’ that sometimes accompa-
nies DQs

Value

returns a list of character strings that have been cleaned in preparation for parsing/sorting

#’ @seealso splash_clean_strings runs inside of swim_parse_splash

50 splash_determine_indent_length

splash_collect_splits Collects Splash format splits

Description

Collects splits and breaks them into a distance and a time, with a corresponding row number

Usage

splash_collect_splits(df)

Arguments

df a data frame containing two columns, V1 is row numbers and Dummy as a string
combining split distance and split time

Value

a data frame with three columns, V1, Split_Distance and Split

splash_determine_indent_length

Determines indent length for data within swim_parse_splash

Description

In Splash results there are two line types that are of interest and don’t begin with either a place or a
special string (DNS, DSQ etc.). These are ties and relays swimmers. Relay swimmers are indented
further than ties. This function determines the number of spaces, called indent length, prior to a tie
row, plus a pad of four spaces.

Usage

splash_determine_indent_length(x, time_score_string)

Arguments

x output from read_results followed by add_row_numbers
time_score_string

a regular expression as a string that describes swimming times and diving scores

Value

returns a number indicating the number of spaces preceding an athlete’s name in a tie row

See Also

splash_determine_indent_length runs inside of swim_parse_splash

splash_length_10_sort 51

splash_length_10_sort Sort data in lists of length 10 within splash_swim_parse

Description

Sort data in lists of length 10 within splash_swim_parse

Usage

splash_length_10_sort(
x,
time_score_string = Time_Score_String,
time_score_specials_string = Time_Score_Specials_String

)

Arguments

x a list of lists with all sub-lists having length 10
time_score_string

a regex string for matching results (times and scores) but not special strings like
DQ

time_score_specials_string

a regex string for matching results - i.e. times, diving scores and ’specials’ like
DQ

Value

returns a formatted data frame to be combined with others to make the output of splash_swim_parse

splash_length_11_sort Sort data in lists of length 11 within splash_swim_parse

Description

Sort data in lists of length 11 within splash_swim_parse

Usage

splash_length_11_sort(
x,
time_score_specials_string = Time_Score_Specials_String

)

52 splash_length_4_sort

Arguments

x a list of lists with all sub-lists having length 11
time_score_specials_string

a regex string for matching results - i.e. times, diving scores and ’specials’ like
DQ

Value

returns a formatted data frame to be combined with others to make the output of splash_swim_parse

splash_length_12_sort Sort data in lists of length 12 within splash_swim_parse

Description

Sort data in lists of length 12 within splash_swim_parse

Usage

splash_length_12_sort(x)

Arguments

x a list of lists with all sub-lists having length 12

Value

returns a formatted data frame to be combined with others to make the output of splash_swim_parse

splash_length_4_sort Sort data in lists of length 4 within spash_swim_parse

Description

Sort data in lists of length 4 within spash_swim_parse

Usage

splash_length_4_sort(
x,
name_string = Name_String,
time_score_specials_string = Time_Score_Specials_String

)

splash_length_5_sort 53

Arguments

x a list of lists with all sub-lists having length 4

name_string a regex string for matching athlete names

time_score_specials_string

a regex string for matching results - i.e. times, diving scores and ’specials’ like
DQ

Value

returns a formatted data frame to be combined with others to make the output of splash_swim_parse

splash_length_5_sort Sort data in lists of length 5 within spash_swim_parse

Description

Sort data in lists of length 5 within spash_swim_parse

Usage

splash_length_5_sort(
x,
name_string = Name_String,
time_score_specials_string = Time_Score_Specials_String

)

Arguments

x a list of lists with all sub-lists having length 5

name_string a regex string for matching athlete names

time_score_specials_string

a regex string for matching results - i.e. times, diving scores and ’specials’ like
DQ

Value

returns a formatted data frame to be combined with others to make the output of splash_swim_parse

54 splash_length_7_sort

splash_length_6_sort Sort data in lists of length 6 within spash_swim_parse

Description

Sort data in lists of length 6 within spash_swim_parse

Usage

splash_length_6_sort(
x,
time_score_specials_string = Time_Score_Specials_String

)

Arguments

x a list of lists with all sub-lists having length 6

time_score_specials_string

a regex string for matching results - i.e. times, diving scores and ’specials’ like
DQ

Value

returns a formatted data frame to be combined with others to make the output of splash_swim_parse

splash_length_7_sort Sort data in lists of length 7 within spash_swim_parse

Description

Sort data in lists of length 7 within spash_swim_parse

Usage

splash_length_7_sort(
x,
time_score_string = Time_Score_String,
time_score_specials_string = Time_Score_Specials_String

)

splash_length_8_sort 55

Arguments

x a list of lists with all sub-lists having length 7
time_score_string

a regex string for matching results (times and scores) but not special strings like
DQ

time_score_specials_string

a regex string for matching results - i.e. times, diving scores and ’specials’ like
DQ

Value

returns a formatted data frame to be combined with others to make the output of splash_swim_parse

splash_length_8_sort Sort data in lists of length 8 within spash_swim_parse

Description

Sort data in lists of length 8 within spash_swim_parse

Usage

splash_length_8_sort(
x,
time_score_string = Time_Score_String,
time_score_specials_string = Time_Score_Specials_String

)

Arguments

x a list of lists with all sub-lists having length 8
time_score_string

a regex string for matching results (times and scores) but not special strings like
DQ

time_score_specials_string

a regex string for matching results - i.e. times, diving scores and ’specials’ like
DQ

Value

returns a formatted data frame to be combined with others to make the output of splash_swim_parse

56 splits_parse

splash_length_9_sort Sort data in lists of length 9 within spash_swim_parse

Description

Sort data in lists of length 9 within spash_swim_parse

Usage

splash_length_9_sort(
x,
heat_lane_string = Heat_Lane_String,
time_score_string = Time_Score_String,
time_score_specials_string = Time_Score_Specials_String

)

Arguments

x a list of lists with all sub-lists having length 9
heat_lane_string

a regex string for matching heat-lane pairs
time_score_string

a regex string for matching results (times and scores) but not special strings like
DQ

time_score_specials_string

a regex string for matching results - i.e. times, diving scores and ’specials’ like
DQ

Value

returns a formatted data frame to be combined with others to make the output of splash_swim_parse

splits_parse Collects splits within swim_parse

Description

Takes the output of read_results and, inside of swim_parse, extracts split times and associated
row numbers

Usage

splits_parse(text, split_len = split_length)

splits_parse_ISL 57

Arguments

text output of read_results with row numbers appended by add_row_numbers

split_len length of pool at which splits are measured - usually 25 or 50

Value

returns a data frame with split times and row numbers

See Also

splits_parse runs inside swim_parse on the output of read_results with row numbers from
add_row_numbers

splits_parse_ISL Collects splits within swim_parse_ISL

Description

Takes the output of read_results and, inside of swim_parse_ISL, extracts split times and associ-
ated row numbers

Usage

splits_parse_ISL(text)

Arguments

text output of read_results with tow numbers appended by add_row_numbers

Value

returns a data frame with split times and row numbers

See Also

splits_parse_ISL runs inside swim_parse_ISL on the output of read_results with row num-
bers from add_row_numbers

58 splits_parse_splash

splits_parse_omega_relays

Collects splits for relays within swim_parse_omega

Description

Takes the output of read_results and, inside of swim_parse_omega, extracts split times and as-
sociated row numbers

Usage

splits_parse_omega_relays(text, split_len = split_length_omega)

Arguments

text output of read_results with row numbers appended by add_row_numbers

split_len length of pool at which splits are measured - usually 25 or 50

Value

returns a data frame with split times and row numbers

See Also

splits_parse runs inside swim_parse_omega on the output of read_results with row numbers
from add_row_numbers

splits_parse_splash Collects splits within swim_parse_splash for Splash results

Description

Takes the output of read_results and, inside of swim_parse_splash, extracts split times and
associated row numbers

Usage

splits_parse_splash(raw_results)

Arguments

raw_results output of read_results with row numbers appended by add_row_numbers

Value

returns a data frame with split times and row numbers

splits_parse_splash_helper_1 59

See Also

splits_parse runs inside swim_parse_splash on the output of read_results with row numbers
from add_row_numbers

splits_parse_splash_helper_1

Produces data frames of splits within swim_parse_splash for Splash
results

Description

Converts strings of splits and row numbers into data frames with a row number column (V1) and a
splits column (Split_XX)

Usage

splits_parse_splash_helper_1(data)

Arguments

data a list of lists containing splits and row numbers

Value

returns a data frame with split times and row numbers

See Also

splits_parse_splash_helper_1 runs inside splits_parse_splash

splits_parse_splash_helper_2

Produces data frames of splits within swim_parse_splash for Splash
results

Description

Converts strings of splits and row numbers into data frames with a row number column (V1) and a
splits column (Split_XX)

Usage

splits_parse_splash_helper_2(data, split_distances, i)

60 splits_parse_splash_relays

Arguments

data a list of lists containing splits and row numbers

split_distances

a list of distances for splits, e.g. "50m", "100m"

i a number between 1 and the length of split_distances

Value

returns a data frame with split times and row numbers

See Also

splits_parse_splash_helper_2 runs inside splits_parse_splash

splits_parse_splash_relays

Collects splits for relays within swim_parse_splash

Description

Takes the output of read_results and, inside of swim_parse_splash, extracts split times and
associated row numbers

Usage

splits_parse_splash_relays(text, split_len = split_length_splash)

Arguments

text output of read_results with row numbers appended by add_row_numbers

split_len length of pool at which splits are measured - usually 25 or 50

Value

returns a dataframe with split times and row numbers

See Also

splits_parse runs inside swim_parse_splash on the output of read_results with row numbers
from add_row_numbers

splits_reform 61

splits_reform Adds together splits and compares to listed finals time to see if they
match.

Description

Used in testing the workings for split_parse inside test-splits.R. Note that even properly handled
splits may not match the finals time due to issues in the source material. Sometimes splits aren’t
fully recorded in the source. Some relays also will not match due to the convention of reporting
splits by swimmer (see vignette for more details).

Usage

splits_reform(df)

Arguments

df a data frame output from swim_parse created with splits = TRUE

Value

a data frame with a column not_matching containing TRUE if the splits for that swim match the
finals time and FALSE if they do not

splits_rename_omega Advances split names by one split_length

Description

Used to adjust names of splits inside swim_parse_omega to account for 50 split not being correctly
captured

Usage

splits_rename_omega(x, split_len = split_length_omega)

Arguments

x a string to rename, from columns output by splits_parse

split_len distance for each split

Value

returns string iterated up by split_length

See Also

splits_rename_omega runs inside swim_parse_omega on the output of splits_parse

62 splits_to_cumulative

splits_to_cumulative Converts splits from lap to cumulative format

Description

Cumulative splits are when each split is the total elapsed time at a given distance. For example,
if an athlete swims the first 50 of a 200 yard race in 25.00 seconds (lap and cumulative split), and
the second 50 (i.e. the 100 lap split) in 30.00 seconds the cumulative 100 split is 25.00 + 30.00 =
55.00. Some swimming results are reported with lap splits (preferred), but others use cumulative
splits. This function converts lap splits to cumulative splits.

Usage

splits_to_cumulative(df, threshold = Inf)

Arguments

df a data frame containing results with splits in lap format. Must be formatted in a
"normal" SwimmeR fashion - see vignette

threshold a numeric value above which a split is taken to be cumulative. Default is Inf

Value

a data frame with all splits in lap form

See Also

splits_to_cumulative is the reverse of splits_to_lap

Examples

Not run:
df <- data.frame(Place = rep(1, 2),

Name = c("Lenore Lap", "Casey Cumulative"),
Team = rep("KVAC", 2),
Event = rep("Womens 200 Freestyle", 2),
Finals = rep("1:58.00", 2),
Split_50 = rep("28.00", 2),
Split_100 = c("31.00", "59.00"),
Split_150 = c("30.00", "1:29.00"),
Split_200 = c("29.00", "1:58.00")
)

since one entry is in lap time and the other is cumulative, need to
set threshold value

not setting threshold will produce bad results by attempting to convert
Casey Cumulative's splits, which are already in cumulative
format, into cumulative format again

splits_to_cumulative_helper_recalc 63

df %>%
splits_to_cumulative()

df %>%
splits_to_cumulative(threshold = 20)

End(Not run)

splits_to_cumulative_helper_recalc

Helper function for converting lap splits to cumulative splits

Description

Helper function for converting lap splits to cumulative splits

Usage

splits_to_cumulative_helper_recalc(
df,
i,
split_cols = split_cols,
threshold = threshold

)

Arguments

df a data frame containing splits in lap format

i list of values to iterate along

split_cols list of columns containing splits

threshold a numeric value below which a split is taken to be lap

Value

a list of data frames with all splits in cumulative format for a particular event, each with a single
split column converted to cumulative format

64 splits_to_lap

splits_to_lap Converts splits from cumulative to lap format

Description

Cumulative splits are when each split is the total elapsed time at a given distance. For example,
if an athlete swims the first 50 of a 200 yard race in 25.00 seconds (lap and cumulative split), and
the second 50 (i.e. the 100 lap split) in 30.00 seconds the cumulative 100 split is 25.00 + 30.00 =
55.00. Some swimming results are reported with lap splits (preferred), but others use cumulative
splits. This function converts cumulative splits to lap splits.

Usage

splits_to_lap(df, threshold = -Inf)

Arguments

df a data frame containing results with splits in cumulative format. Must be for-
matted in a "normal" SwimmeR fashion - see vignette

threshold a numeric value below which a split is taken to be cumulative. Default is -Inf

Value

a data frame with all splits in lap form

See Also

splits_to_lap is the reverse of splits_to_cumulative

Examples

Not run:
df <- data.frame(Place = 1,

Name = "Sally Swimfast",
Team = "KVAC",
Event = "Womens 200 Freestyle",
Finals_Time = "1:58.00",
Split_50 = "28.00",
Split_100 = "59.00",
Split_150 = "1:31.00",
Split_200 = "1:58.00")

df %>%
splits_to_lap

df <- data.frame(Place = rep(1, 2),
Name = c("Lenore Lap", "Casey Cumulative"),
Team = rep("KVAC", 2),
Event = rep("Womens 200 Freestyle", 2),

splits_to_lap_helper_recalc 65

Finals_Time = rep("1:58.00", 2),
Split_50 = rep("28.00", 2),
Split_100 = c("31.00", "59.00"),
Split_150 = c("30.00", "1:29.00"),
Split_200 = c("29.00", "1:58.00")
)

since one entry is in lap time and the other is cumulative, need to
set threshold value

not setting threshold will produce bad results by attempting to convert
Lenore Lap's splits, which are already in lap format, into lap format
again

df %>%
splits_to_lap()

df %>%
splits_to_lap(threshold = 35)

End(Not run)

splits_to_lap_helper_recalc

Helper function for converting cumulative splits to lap splits

Description

Helper function for converting cumulative splits to lap splits

Usage

splits_to_lap_helper_recalc(
df,
i,
split_cols = split_cols,
threshold = threshold

)

Arguments

df a data frame containing splits in cumulative format

i list of values to iterate along

split_cols list of columns containing splits

threshold a numeric value above which a split is taken to be cumulative

66 Swim_Parse

Value

a list of data frames with all splits in lap format for a particular event, each with a single split column
converted to lap format

SwimmeR-defunct Defunct functions in SwimmeR

Description

These functions have been made defunct (removed) from SwimmeR.

Details

• course_convert_DF: This function is defunct, and has been removed from SwimmeR. Instead
please use course_convert(verbose = TRUE)

SwimmeR-deprecated Deprecated functions in SwimmeR

Description

These functions still work but will be removed (defunct) in upcoming versions.

Swim_Parse Formats swimming and diving data read with read_results into a
data frame

Description

Takes the output of read_results and cleans it, yielding a data frame of swimming (and diving)
results

Usage

Swim_Parse(
file,
avoid = NULL,
typo = typo_default,
replacement = replacement_default,
format_results = TRUE,
splits = FALSE,
split_length = 50,
relay_swimmers = FALSE

Swim_Parse 67

)

swim_parse(
file,
avoid = NULL,
typo = typo_default,
replacement = replacement_default,
format_results = TRUE,
splits = FALSE,
split_length = 50,
relay_swimmers = FALSE

)

Arguments

file output from read_results

avoid a list of strings. Rows in file containing these strings will not be included. For
example "Pool:", often used to label pool records, could be passed to avoid. The
default is avoid_default, which contains many strings similar to "Pool:", such
as "STATE:" and "Qual:". Users can supply their own lists to avoid. avoid is
handled before typo and replacement.

typo a list of strings that are typos in the original results. swim_parse is particu-
larly sensitive to accidental double spaces, so "Central High School", with two
spaces between "Central" and "High" is a problem, which can be fixed. Pass
"Central High School" to typo. Unexpected commas as also an issue, for exam-
ple "Texas, University of" should be fixed using typo and replacement

replacement a list of fixes for the strings in typo. Here one could pass "Central High School"
(one space between "Central" and "High") and "Texas" to replacement fix the
issues described in typo

format_results should the results be formatted for analysis (special strings like "DQ" replaced
with NA, Finals as definitive column)? Default is TRUE

splits either TRUE or the default, FALSE - should swim_parse attempt to include splits.
split_length either 25 or the default, 50, the length of pool at which splits are recorded. Not

all results are internally consistent on this issue - some have races with splits by
50 and other races with splits by 25.

relay_swimmers either TRUE or the default, FALSE - should relay swimmers be reported. Relay
swimmers are reported in separate columns named Relay_Swimmer_1 etc.

Value

returns a data frame with columns Name, Place, Age, Team, Prelims, Finals, Points, Event &
DQ. Note all swims will have a Finals, even if that time was actually swam in the prelims (i.e. a
swimmer did not qualify for finals). This is so that final results for an event can be generated from
just one column.

See Also

swim_parse must be run on the output of read_results

68 swim_parse_hytek

Examples

Not run:
swim_parse(read_results("http://www.nyhsswim.com/Results/Boys/2008/NYS/Single.htm", node = "pre"),
typo = c("-1NORTH ROCKL"), replacement = c("1-NORTH ROCKL"),
splits = TRUE,
relay_swimmers = TRUE)

End(Not run)
Not run:
swim_parse(read_results("inst/extdata/Texas-Florida-Indiana.pdf"),
typo = c("Indiana University", ", University of"), replacement = c("Indiana University", ""),
splits = TRUE,
relay_swimmers = TRUE)

End(Not run)

swim_parse_hytek Formats Hytek style swimming and diving data read with
read_results into a data frame

Description

Takes the output of read_results and cleans it, yielding a data frame of swimming (and diving)
results

Usage

swim_parse_hytek(
file_hytek,
avoid_hytek = avoid,
typo_hytek = typo,
replacement_hytek = replacement,
format_results = TRUE,
splits = FALSE,
split_length_hytek = split_length,
relay_swimmers_hytek = relay_swimmers

)

Arguments

file_hytek output from read_results

avoid_hytek a list of strings. Rows in file_hytek containing these strings will not be in-
cluded. For example "Pool:", often used to label pool records, could be passed to
avoid_hytek. The default is avoid_default, which contains many strings sim-
ilar to "Pool:", such as "STATE:" and "Qual:". Users can supply their own lists to
avoid_hytek. avoid_hytek is handled before typo_hytek and replacement_hytek.

swim_parse_ISL 69

typo_hytek a list of strings that are typos in the original results. swim_parse is partic-
ularly sensitive to accidental double spaces, so "Central High School", with
two spaces between "Central" and "High" is a problem, which can be fixed.
Pass "Central High School" to typo_hytek. Unexpected commas as also an is-
sue, for example "Texas, University of" should be fixed using typo_hytek and
replacement_hytek

replacement_hytek

a list of fixes for the strings in typo_hytek. Here one could pass "Central High
School" (one space between "Central" and "High") and "Texas" to replacement_hytek
fix the issues described in typo_hytek

format_results should the results be formatted for analysis (special strings like "DQ" replaced
with NA, Finals as definitive column)? Default is TRUE

splits either TRUE or the default, FALSE - should swim_parse attempt to include splits.
split_length_hytek

either 25 or the default, 50, the length of pool at which splits are recorded. Not
all results are internally consistent on this issue - some have races with splits by
50 and other races with splits by 25.

relay_swimmers_hytek

should names of relay swimmers be captured? Default is FALSE

Value

returns a data frame with columns Name, Place, Age, Team, Prelims, Finals, Points, Event &
DQ. Note all swims will have a Finals, even if that time was actually swam in the prelims (i.e. a
swimmer did not qualify for finals). This is so that final results for an event can be generated from
just one column.

See Also

swim_parse_hytek must be run on the output of read_results

swim_parse_ISL Formats swimming results from the International Swim League (’ISL’)
read with read_results into a data frame

Description

Takes the output of read_results and cleans it, yielding a data frame of ’ISL’ swimming results

Usage

swim_parse_ISL(file, splits = FALSE, relay_swimmers = FALSE)

Swim_Parse_ISL(file, splits = FALSE, relay_swimmers = FALSE)

70 swim_parse_old

Arguments

file output from read_results

splits should splits be included, default is FALSE

relay_swimmers should relay swimmers be included as separate columns, default is FALSE

Value

returns a data frame of ISL results

Author(s)

Greg Pilgrim <gpilgrim2670@gmail.com>

See Also

swim_parse_ISL must be run on the output of read_results

Examples

Not run:
swim_parse_ISL(
read_results(
"https://isl.global/wp-content/uploads/2019/11/isl_college_park_results_day_2.pdf"),
splits = TRUE,
relay_swimmers = TRUE)

End(Not run)

swim_parse_old Formats swimming and diving data read with read_results into a
data frame

Description

Takes the output of read_results and cleans it, yielding a data frame of swimming (and diving)
results. Old version, retired in dev build on Dec 21, 2020 and release version 0.7.0

Usage

swim_parse_old(
file,
avoid = avoid_default,
typo = typo_default,
replacement = replacement_default,
splits = FALSE,
split_length = 50,
relay_swimmers = FALSE

)

swim_parse_old 71

Arguments

file output from read_results

avoid a list of strings. Rows in file containing these strings will not be included. For
example "Pool:", often used to label pool records, could be passed to avoid.
The default is avoid_default, which contains many strings similar to "Pool:",
such as "STATE:" and "Qual:". Users can supply their own lists to avoid.

typo a list of strings that are typos in the original results. swim_parse_old is par-
ticularly sensitive to accidental double spaces, so "Central High School", with
two spaces between "Central" and "High" is a problem, which can be fixed.
Pass "Central High School" to typo. Unexpected commas as also an issue, for
example "Texas, University of" should be fixed using typo and replacement

replacement a list of fixes for the strings in typo. Here one could pass "Central High School"
(one space between "Central" and "High") and "Texas" to replacement fix the
issues described in typo

splits either TRUE or the default, FALSE - should swim_parse_old attempt to include
splits.

split_length either 25 or the default, 50, the length of pool at which splits are recorded. Not
all results are internally consistent on this issue - some have races with splits by
50 and other races with splits by 25.

relay_swimmers either TRUE or the default, FALSE - should relay swimmers be reported. Relay
swimmers are reported in separate columns named Relay_Swimmer_1 etc.

Value

returns a data frame with columns Name, Place, Age, Team, Prelims_Time, Finals_Time, Points,
Event & DQ. Note all swims will have a Finals_Time, even if that time was actually swam in the
prelims (i.e. a swimmer did not qualify for finals). This is so that final results for an event can be
generated from just one column.

See Also

swim_parse_old must be run on the output of read_results

Examples

Not run:
swim_parse_old(
read_results("http://www.nyhsswim.com/Results/Boys/2008/NYS/Single.htm", node = "pre"),
typo = c("-1NORTH ROCKL"), replacement = c("1-NORTH ROCKL"),
splits = TRUE,
relay_swimmers = TRUE)

End(Not run)
Not run:
swim_parse_old(read_results("inst/extdata/Texas-Florida-Indiana.pdf"),
typo = c("Indiana University", ", University of"), replacement = c("Indiana University", ""),
splits = TRUE,
relay_swimmers = TRUE)

72 swim_parse_omega

End(Not run)

swim_parse_omega Formats Omega style swimming and diving data read with
read_results into a data frame

Description

Takes the output of read_results and cleans it, yielding a data frame of swimming (and diving)
results

Usage

swim_parse_omega(
file_omega,
avoid_omega = avoid,
typo_omega = typo,
replacement_omega = replacement,
format_results = TRUE,
splits = FALSE,
split_length_omega = split_length,
relay_swimmers_omega = relay_swimmers

)

Arguments

file_omega output from read_results

avoid_omega a list of strings. Rows in file_omega containing these strings will not be in-
cluded. For example "Pool:", often used to label pool records, could be passed to
avoid_omega. The default is avoid_default, which contains many strings sim-
ilar to "Pool:", such as "STATE:" and "Qual:". Users can supply their own lists to
avoid_omega. avoid_omega is handled before typo_omega and replacement_omega.

typo_omega a list of strings that are typos in the original results. swim_parse is partic-
ularly sensitive to accidental double spaces, so "Central High School", with
two spaces between "Central" and "High" is a problem, which can be fixed.
Pass "Central High School" to typo_omega. Unexpected commas as also an is-
sue, for example "Texas, University of" should be fixed using typo_omega and
replacement_omega

replacement_omega

a list of fixes for the strings in typo_omega. Here one could pass "Central High
School" (one space between "Central" and "High") and "Texas" to replacement_omega
fix the issues described in typo_omega

format_results should the results be formatted for analysis (special strings like "DQ" replaced
with NA, Finals as definitive column)? Default is TRUE

splits either TRUE or the default, FALSE - should swim_parse attempt to include splits.

swim_parse_samms 73

split_length_omega

either 25 or the default, 50, the length of pool at which splits are recorded. Not
all results are internally consistent on this issue - some have races with splits by
50 and other races with splits by 25.

relay_swimmers_omega

should names of relay swimmers be captured? Default is FALSE

Value

returns a data frame with columns Name, Place, Age, Team, Prelims, Finals, Points, Event &
DQ. Note all swims will have a Finals, even if that time was actually swam in the prelims (i.e. a
swimmer did not qualify for finals). This is so that final results for an event can be generated from
just one column.

See Also

swim_parse_omega must be run on the output of read_results

swim_parse_samms Formats swimming and diving data read with read_results into a
dataframe

Description

Takes the output of read_results of S.A.M.M.S. results and cleans it, yielding a dataframe of
swimming (and diving) results

Usage

swim_parse_samms(
file_samms,
avoid_samms = avoid,
typo_samms = typo,
replacement_samms = replacement,
format_samms = format_results

)

Arguments

file_samms output from read_results of S.A.M.M.S. style results

avoid_samms a list of strings. Rows in file containing these strings will not be included. For
example "Pool:", often used to label pool records, could be passed to avoid.
The default is avoid_default, which contains many strings similar to "Pool:",
such as "STATE:" and "Qual:". Users can supply their own lists to avoid.

74 swim_parse_splash

typo_samms a list of strings that are typos in the original results. swim_parse is particu-
larly sensitive to accidental double spaces, so "Central High School", with two
spaces between "Central" and "High" is a problem, which can be fixed. Pass
"Central High School" to typo. Unexpected commas as also an issue, for exam-
ple "Texas, University of" should be fixed using typo and replacement

replacement_samms

a list of fixes for the strings in typo. Here one could pass "Central High School"
(one space between "Central" and "High") and "Texas" to replacement fix the
issues described in typo

format_samms should the data be formatted for analysis (special strings like "DQ" replaced with
NA, Finals as definitive column)? Default is TRUE

Value

returns a data frame with columns Name, Place, Age, Team, Prelims, Finals, Event & DQ. Note
all swims will have a Finals, even if that time was actually swam in the prelims (i.e. a swimmer
did not qualify for finals). This is so that final results for an event can be generated from just one
column.

See Also

swim_parse must be run on the output of read_results

swim_parse_splash Formats Splash style swimming and diving data read with
read_results into a data frame

Description

Takes the output of read_results and cleans it, yielding a data frame of swimming (and diving)
results

Usage

swim_parse_splash(
file_splash,
avoid_splash = avoid,
typo_splash = typo,
replacement_splash = replacement,
format_results = TRUE,
splits = FALSE,
split_length_splash = split_length,
relay_swimmers_splash = relay_swimmers

)

swim_place 75

Arguments

file_splash output from read_results

avoid_splash a list of strings. Rows in file_splash containing these strings will not be in-
cluded. For example "Pool:", often used to label pool records, could be passed
to avoid_splash. The default is avoid_default, which contains many strings
similar to "Pool:", such as "STATE:" and "Qual:". Users can supply their own
lists to avoid_splash. avoid_splash is handled before typo_splash and
replacement_splash.

typo_splash a list of strings that are typos in the original results. swim_parse is particu-
larly sensitive to accidental double spaces, so "Central High School", with two
spaces between "Central" and "High" is a problem, which can be fixed. Pass
"Central High School" to typo_splash. Unexpected commas as also an is-
sue, for example "Texas, University of" should be fixed using typo_splash and
replacement_splash

replacement_splash

a list of fixes for the strings in typo_splash. Here one could pass "Central High
School" (one space between "Central" and "High") and "Texas" to replacement_splash
fix the issues described in typo_splash

format_results should the results be formatted for analysis (special strings like "DQ" replaced
with NA, Finals as definitive column)? Default is TRUE

splits either TRUE or the default, FALSE - should swim_parse attempt to include splits.
split_length_splash

either 25 or the default, 50, the length of pool at which splits are recorded. Not
all results are internally consistent on this issue - some have races with splits by
50 and other races with splits by 25.

relay_swimmers_splash

should names of relay swimmers be captured? Default is FALSE

Value

returns a data frame with columns Name, Place, Age, Team, Prelims, Finals, Points, Event &
DQ. Note all swims will have a Finals, even if that time was actually swam in the prelims (i.e. a
swimmer did not qualify for finals). This is so that final results for an event can be generated from
just one column.

See Also

swim_parse_splash must be run on the output of read_results

swim_place Add places to swimming results

Description

Places are awarded on the basis of time, with fastest (lowest) time winning. Ties are placed as ties
(both athletes get 2nd etc.)

76 swim_place

Usage

swim_place(
df,
time_col = Finals,
max_place = NULL,
event_type = "ind",
max_relays_per_team = 1,
keep_nonscoring = TRUE,
verbose = TRUE

)

Arguments

df a data frame with results from swim_parse, including only swimming results
(not diving)

time_col the name of a column in df containing times on which to place (order) perfor-
mances. Default is Finals

max_place highest place value that scores

event_type either "ind" for individual or "relay" for relays
max_relays_per_team

an integer value denoting the number of relays a team may score (usually 1)
keep_nonscoring

are athletes in places greater than max_place be retained in the data frame. Ei-
ther TRUE or FALSE

verbose should warning messages be posted. Default is TRUE and should rarely be
changed.

Value

a data frame modified so that places have been appended based on swimming time

See Also

swim_place is a helper function used inside of results_score

Examples

df <- data.frame(Place = c(1, 1, 1),
Name = c("Sally Swimfast", "Bonnie Bubbles", "Kylie Kicker"),
Team = c("KVAC", "UBAM", "MERC"),
Event = rep("Women 200 Freestyle", 3),
Prelims = c("2:00.00", "1:59.99", "2:01.50"),
Finals = c("1:58.00", "1:59.50", "2:00.50"),
Meet = c("Summer 2021", "Fall 2020", "Champs 2020"))

df %>%
swim_place()

tie_rescore 77

df %>%
swim_place(time_col = Prelims)

df %>%
swim_place(time_col = "Prelims")

tie_rescore Rescore to account for ties

Description

Rescoring to average point values for ties. Ties are placed as ties (both athletes get 2nd etc.)

Usage

tie_rescore(df, point_values, lanes)

Arguments

df a data frame with results from swim_parse, with places from swim_place and/or
dive_place

point_values a named list of point values for each scoring place

lanes number of scoring lanes in the pool

Value

df modified so that places have been appended based on swimming time

See Also

tie_rescore is a helper function used inside of results_score

toptimes_parse_hytek Formats Hytek style swimming and diving Top Times reports read with
read_results into a data frame

Description

Takes the output of read_results and cleans it, yielding a data frame of swimming (and diving)
top times

78 undo_interleave

Usage

toptimes_parse_hytek(
file_hytek_toptimes,
avoid_hytek_toptimes = avoid,
typo_hytek_toptimes = typo,
replacement_hytek_toptimes = replacement

)

Arguments

file_hytek_toptimes

output from read_results

avoid_hytek_toptimes

a list of strings. Rows in file_hytek_toptimes containing these strings will
not be included. For example "Pool:", often used to label pool records, could
be passed to avoid_hytek_toptimes. The default is avoid_default, which
contains many strings similar to "Pool:", such as "STATE:" and "Qual:". Users
can supply their own lists to avoid_hytek_toptimes. avoid_hytek_toptimes
is handled before typo_hytek_toptimes and replacement_hytek_toptimes.

typo_hytek_toptimes

a list of strings that are typos in the original results. swim_parse is particularly
sensitive to accidental double spaces, so "Central High School", with two spaces
between "Central" and "High" is a problem, which can be fixed. Pass "Central
High School" to typo_hytek_toptimes. Unexpected commas as also an issue,
for example "Texas, University of" should be fixed using typo_hytek_toptimes
and replacement_hytek_toptimes

replacement_hytek_toptimes

a list of fixes for the strings in typo_hytek. Here one could pass "Central High
School" (one space between "Central" and "High") and "Texas" to replacement_hytek_toptimes
fix the issues described in typo_hytek_toptimes

Value

returns a data frame with columns Rank, Result, Name, Age, Date Meet & Event. Top Times reports
do not designate Team.

See Also

toptimes_parse_hytek must be run on the output of read_results

undo_interleave Undoes interleaving of lists

Description

If two lists have been interleaved this function will return the lists separated and then concatenated

update_rank_helper 79

Usage

undo_interleave(x)

Arguments

x a list to be un-interleaved

Value

a list comprising the interleaved components of x joined into one list

Examples

l <- c("A", "D", "B", "E", "C", "F")
undo_interleave(l)

update_rank_helper Create a one-line data frame containing an entry to be appended to an
in-progress data frame of all entries

Description

Create a one-line data frame containing an entry to be appended to an in-progress data frame of all
entries

Usage

update_rank_helper(
rank_helper_2,
e_rank_helper_2,
k,
e_helper,
events_remaining_helper

)

Arguments

rank_helper_2 a master data frame of athlete ranks by event
e_rank_helper_2

a data frame of candidate athlete entries to add to a given event

k an integer denoting which element of e_rank_helper is under evaluation for ad-
dition. Should be 1, 2, 3 or 4 depending on the minimum number of entries

e_helper the event for which entries are being evaluated
events_remaining_helper

a data frame with two columns, Name and Events_Remaining

80 %notin%

Value

a one row data frame containing an improved entry

%notin% "Not in" function

Description

The opposite of ‘ ‘FALSE‘ otherwise.

Usage

x %notin% y

x %!in% y

Arguments

x a value

y a list of values

Value

a ‘TRUE‘ or ‘FALSE‘

Examples

"a" %!in% c("a", "b", "c")
"a" %notin% c("b", "c")

Index

∗ datasets
King200Breast, 32

%!in% (%notin%), 80
%notin%, 80

add_event_dummy_row, 4
add_row_numbers, 4, 21, 57–60
age_format, 5
age_format_helper, 5, 6

clean_events, 6
coalesce_many, 7, 7, 8
coalesce_many_helper, 7
collect_relay_swimmers, 8
collect_relay_swimmers_old, 8
collect_relay_swimmers_omega, 9
collect_relay_swimmers_splash, 10
correct_split_distance, 10
correct_split_distance_helper, 11
correct_split_length

(correct_split_distance), 10
course_convert, 12, 15
course_convert_DF, 13, 66
course_convert_df (course_convert_DF),

13
course_convert_helper, 14

discard_errors, 15
dive_place, 16
draw_bracket, 17

event_parse, 18
event_parse_ISL, 19

fill_down, 19
fill_left, 20
fold, 20
format_results, 21

generate_row_to_add, 21
get_mode, 22

heat_parse_omega, 23
hy3_parse, 23, 25, 31
hy3_places, 24
hy3_times, 25
hytek_clean_strings, 25
hytek_length_3_DQ_sort, 26
hytek_length_3_sort, 26
hytek_length_4_DQ_sort, 27
hytek_length_4_sort, 27
hytek_length_5_sort, 28
hytek_length_6_sort, 28
hytek_length_7_sort, 29
hytek_length_8_sort, 30
hytek_length_9_sort, 30

interleave_results, 31
is_link_broken, 32

King200Breast, 32

lines_sort, 33
list_breaker, 33
list_to_list_names, 34
list_transform, 34

make_lineup, 35
make_lineup_helper, 36
make_lineup_helper_2, 37
mmss_format, 38, 48

na_pad, 40
name_reorder, 39

place, 40

reaction_times_parse, 42
read_htm, 42
read_hy3, 43
read_pdf, 43
Read_Results, 44

81

82 INDEX

read_results, 21, 24, 57–60, 67, 69–71,
73–75, 78

read_results (Read_Results), 44
read_results_flag, 45
replacement_entries, 45
results_score, 46

sec_format, 38, 47
sec_format_helper, 48
splash_clean_strings, 49
splash_collect_splits, 50
splash_determine_indent_length, 50
splash_length_10_sort, 51
splash_length_11_sort, 51
splash_length_12_sort, 52
splash_length_4_sort, 52
splash_length_5_sort, 53
splash_length_6_sort, 54
splash_length_7_sort, 54
splash_length_8_sort, 55
splash_length_9_sort, 56
splits_parse, 56, 61
splits_parse_ISL, 57
splits_parse_omega_relays, 58
splits_parse_splash, 58, 59, 60
splits_parse_splash_helper_1, 59
splits_parse_splash_helper_2, 59
splits_parse_splash_relays, 60
splits_reform, 61
splits_rename_omega, 61
splits_to_cumulative, 62, 64
splits_to_cumulative_helper_recalc, 63
splits_to_lap, 62, 64
splits_to_lap_helper_recalc, 65
Swim_Parse, 66
swim_parse, 5, 18, 21, 24, 42, 44, 57
swim_parse (Swim_Parse), 66
swim_parse_hytek, 68
Swim_Parse_ISL (swim_parse_ISL), 69
swim_parse_ISL, 19, 57, 69
swim_parse_old, 70
swim_parse_omega, 23, 58, 61, 72
swim_parse_samms, 73
swim_parse_splash, 7, 59, 60, 74
swim_place, 75
SwimmeR-defunct, 66
SwimmeR-deprecated, 66

tie_rescore, 77

toptimes_parse_hytek, 77

undo_interleave, 78
update_rank_helper, 79

	add_event_dummy_row
	add_row_numbers
	age_format
	age_format_helper
	clean_events
	coalesce_many
	coalesce_many_helper
	collect_relay_swimmers
	collect_relay_swimmers_old
	collect_relay_swimmers_omega
	collect_relay_swimmers_splash
	correct_split_distance
	correct_split_distance_helper
	course_convert
	course_convert_DF
	course_convert_helper
	discard_errors
	dive_place
	draw_bracket
	event_parse
	event_parse_ISL
	fill_down
	fill_left
	fold
	format_results
	generate_row_to_add
	get_mode
	heat_parse_omega
	hy3_parse
	hy3_places
	hy3_times
	hytek_clean_strings
	hytek_length_3_DQ_sort
	hytek_length_3_sort
	hytek_length_4_DQ_sort
	hytek_length_4_sort
	hytek_length_5_sort
	hytek_length_6_sort
	hytek_length_7_sort
	hytek_length_8_sort
	hytek_length_9_sort
	interleave_results
	is_link_broken
	King200Breast
	lines_sort
	list_breaker
	list_to_list_names
	list_transform
	make_lineup
	make_lineup_helper
	make_lineup_helper_2
	mmss_format
	name_reorder
	na_pad
	place
	reaction_times_parse
	read_htm
	read_hy3
	read_pdf
	Read_Results
	read_results_flag
	replacement_entries
	results_score
	sec_format
	sec_format_helper
	splash_clean_strings
	splash_collect_splits
	splash_determine_indent_length
	splash_length_10_sort
	splash_length_11_sort
	splash_length_12_sort
	splash_length_4_sort
	splash_length_5_sort
	splash_length_6_sort
	splash_length_7_sort
	splash_length_8_sort
	splash_length_9_sort
	splits_parse
	splits_parse_ISL
	splits_parse_omega_relays
	splits_parse_splash
	splits_parse_splash_helper_1
	splits_parse_splash_helper_2
	splits_parse_splash_relays
	splits_reform
	splits_rename_omega
	splits_to_cumulative
	splits_to_cumulative_helper_recalc
	splits_to_lap
	splits_to_lap_helper_recalc
	SwimmeR-defunct
	SwimmeR-deprecated
	Swim_Parse
	swim_parse_hytek
	swim_parse_ISL
	swim_parse_old
	swim_parse_omega
	swim_parse_samms
	swim_parse_splash
	swim_place
	tie_rescore
	toptimes_parse_hytek
	undo_interleave
	update_rank_helper
	notin
	Index

