Type: Package
Title: Interactive Weibull Probability Plots
Version: 0.3.2
Description: Build interactive Weibull Probability Plots with 'WeibullR' by David Silkworth and Jurgen Symynck (2022) https://CRAN.R-project.org/package=WeibullR, an R package for Weibull analysis, and 'plotly' by Carson Sievert (2020) https://plotly-r.com, an interactive web-based graphing library.
URL: https://paulgovan.github.io/WeibullR.plotly/, https://github.com/paulgovan/WeibullR.plotly
BugReports: https://github.com/paulgovan/WeibullR.plotly/issues
License: Apache License version 1.1 | Apache License version 2.0 [expanded from: Apache License]
Imports: plotly, ReliaGrowR, WeibullR
Suggests: knitr, rmarkdown, spelling, testthat (≥ 3.0.0), WeibullR.learnr, WeibullR.shiny
Encoding: UTF-8
RoxygenNote: 7.3.3
Config/testthat/edition: 3
Language: en-US
NeedsCompilation: no
Packaged: 2025-09-24 02:28:37 UTC; paulgovan
Author: Paul Govan ORCID iD [aut, cre, cph]
Maintainer: Paul Govan <paul.govan2@gmail.com>
Repository: CRAN
Date/Publication: 2025-09-24 05:11:18 UTC

WeibullR.plotly: Interactive Weibull Probability Plots

Description

Build interactive Weibull Probability Plots with 'WeibullR' by David Silkworth and Jurgen Symynck (2022) https://CRAN.R-project.org/package=WeibullR, an R package for Weibull analysis, and 'plotly' by Carson Sievert (2020) https://plotly-r.com, an interactive web-based graphing library.

Author(s)

Maintainer: Paul Govan paul.govan2@gmail.com (ORCID) [copyright holder]

See Also

Useful links:


Interactive Contour Plot

Description

This function creates an interactive contour plot for one or more 'wblr' objects, each assumed to have confidence contours generated via ‘method.conf = ’lrb''. The function overlays all contours in a single plot and displays their respective MLE point estimates.

Usage

plotly_contour(
  wblr_obj,
  main = "Contour Plot",
  xlab = "Eta",
  ylab = "Beta",
  showGrid = TRUE,
  cols = NULL,
  gridCol = "lightgray",
  signif = 3
)

Arguments

wblr_obj

A single 'wblr' object or a list of 'wblr' objects. Each object must have contours generated using ‘method.conf = ’lrb''.

main

Main title for the plot.

xlab

X-axis label (typically Eta or Sigmalog).

ylab

Y-axis label (typically Beta or Mulog).

showGrid

Logical; whether to show grid lines (default TRUE).

cols

Optional vector of colors for each contour/estimate pair. If not provided, colors are chosen from a default palette.

gridCol

Color of the grid lines (default 'lightgray').

signif

Number of significant digits to display for estimates and contour coordinates. Defaults to 3.

Value

A 'plotly' object representing the interactive contour plot.

Examples

library(WeibullR)
library(WeibullR.plotly)

failures1 <- c(30, 49, 82, 90, 96)
failures2 <- c(20, 40, 60, 80, 100)
obj1 <- wblr.conf(wblr.fit(wblr(failures1), method.fit = 'mle'), method.conf = 'lrb')
obj2 <- wblr.conf(wblr.fit(wblr(failures2), method.fit = 'mle'), method.conf = 'lrb')
plotly_contour(list(obj1, obj2), main = "Overlayed Contours")


Interactive Duane Plot.

Description

This function creates an interactive Duane plot for a duane object. The plot includes options to customize the appearance, such as colors and grid visibility.

Usage

plotly_duane(
  duane_obj,
  showGrid = TRUE,
  main = "Duane Plot",
  xlab = "Cumulative Time",
  ylab = "Cumulative MTBF",
  pointCol = "black",
  fitCol = "black",
  gridCol = "lightgray"
)

Arguments

duane_obj

An object of class 'duane'. This object is created using the 'duane' function from the ReliaGrowR package.

showGrid

Show grid (TRUE) or hide grid (FALSE). Default is TRUE.

main

Main title. Default is "Duane Plot".

xlab

X-axis label. Default is "Cumulative Time".

ylab

Y-axis label. Default is "Cumulative MTBF".

pointCol

Color of the point values. Default is "black".

fitCol

Color of the model fit. Default is "black".

gridCol

Color of the grid. Default is "lightgray".

Value

The function returns no value. It generates an interactive Duane plot.

Examples

library(ReliaGrowR)
times<-c(100, 200, 300, 400, 500)
failures<-c(1, 2, 1, 3, 2)
fit<-duane(times, failures)
plotly_duane(fit)

Interactive Reliability Growth Plot.

Description

The function creates an interactive reliability growth plot for an 'rga' object. The plot includes cumulative failures over time, the model fit, and optional confidence bounds. Vertical lines indicate change points if breakpoints are specified in the rga object.

Usage

plotly_rga(
  rga_obj,
  showConf = TRUE,
  showGrid = TRUE,
  main = "Reliability Growth Plot",
  xlab = "Cumulative Time",
  ylab = "Cumulative Failures",
  pointCol = "black",
  fitCol = "black",
  confCol = "black",
  gridCol = "lightgray",
  breakCol = "black"
)

Arguments

rga_obj

An object of class 'rga'. This object is created using the 'rga()' function from the 'ReliaGrowR' package.

showConf

Show the confidence bounds (TRUE) or not (FALSE).

showGrid

Show grid (TRUE) or hide grid (FALSE).

main

Main title.

xlab

X-axis label.

ylab

Y-axis label.

pointCol

Color of the point values.

fitCol

Color of the model fit.

confCol

Color of the confidence bounds.

gridCol

Color of the grid.

breakCol

Color of the breakpoints.

Value

The function returns no value. It generates an interactive plotly plot.

Examples

library(ReliaGrowR)
times<-c(100, 200, 300, 400, 500)
failures<-c(1, 2, 1, 3, 2)
rga<-rga(times, failures)
plotly_rga(rga)

times <- c(100, 200, 300, 400, 500, 600, 700, 800, 900, 1000)
failures <- c(1, 2, 1, 1, 1, 2, 3, 1, 2, 4)
breakpoints <- 400
rga2 <- rga(times, failures, model_type = "Piecewise NHPP", breaks = breakpoints)
plotly_rga(rga2, fitCol = "blue", confCol = "blue", breakCol = "red")

Interactive Probability Plot.

Description

This function creates an interactive probability plot for a wblr object. It can include confidence bounds, suspension data, and a results table.

Usage

plotly_wblr(
  wblr_obj,
  susp = NULL,
  showConf = TRUE,
  showSusp = TRUE,
  showRes = TRUE,
  showGrid = TRUE,
  main = "Probability Plot",
  xlab = "Time to Failure",
  ylab = "Probability",
  probCol = "black",
  fitCol = "black",
  confCol = "black",
  intCol = "black",
  gridCol = "lightgray",
  signif = 3
)

Arguments

wblr_obj

An object of class 'wblr'. This is a required argument.

susp

An optional numeric vector of suspension data. Default is NULL.

showConf

Show the confidence bounds (TRUE) or not (FALSE). Default is TRUE if confidence bounds are available in the wblr object.

showSusp

Show the suspensions plot (TRUE) or not (FALSE). Default is TRUE if susp is provided.

showRes

Show the results table (TRUE) or not (FALSE). Default is TRUE.

showGrid

Show grid (TRUE) or hide grid (FALSE). Default is TRUE.

main

Main title. Default is 'Probability Plot'.

xlab

X-axis label. Default is 'Time to Failure'.

ylab

Y-axis label. Default is 'Probability'.

probCol

Color of the probability values. Default is 'black'.

fitCol

Color of the model fit. Default is 'black'.

confCol

Color of the confidence bounds. Default is 'black'.

intCol

Color of the intervals for interval censored models. Default is 'black'.

gridCol

Color of the grid. Default is 'lightgray'.

signif

Significant digits of results. Default is 3. Must be a positive integer.

Value

The function returns no value. It creates an interactive probability plot.

Examples

library(WeibullR)
library(WeibullR.plotly)
failures<-c(30, 49, 82, 90, 96)
obj<-wblr.conf(wblr.fit(wblr(failures)))
plotly_wblr(obj)

suspensions<-c(100, 45, 10)
obj<-wblr.conf(wblr.fit(wblr(failures, suspensions)))
plotly_wblr(obj, suspensions, fitCol = 'blue', confCol
= 'blue')
inspection_data <- data.frame(left=c(0, 6.12, 19.92, 29.64, 35.4, 39.72, 45.32, 52.32),
                           right=c(6.12, 19.92, 29.64, 35.4, 39.72, 45.32, 52.32, 63.48),
                           qty=c(5, 16, 12, 18, 18, 2, 6, 17))
suspensions <- data.frame(time = 63.48, event = 0, qty = 73)
obj <- wblr(suspensions, interval = inspection_data)
obj <- wblr.fit(obj, method.fit = "mle")
obj <- wblr.conf(obj, method.conf = "fm", lty = 2)
suspensions <- as.vector(suspensions$time)
plotly_wblr(obj, susp = suspensions, fitCol = 'red', confCol = 'red', intCol = 'blue',
        main = 'Parts Cracking Inspection Interval Analysis',
        ylab =  'Cumulative % Cracked', xlab='Inspection Time')
failures <- c(25, 30, 42, 49, 55, 67, 73, 82, 90, 96, 101, 110, 120, 132, 145)
fit <- wblr.conf(wblr.fit(wblr(failures), dist = "weibull3p"))
plotly_wblr(fit, fitCol='darkgreen', confCol = 'darkgreen')