Package 'aIc'

July 22, 2025

Type Package

Title Testing for Compositional Pathologies in Datasets

Version 1.0

Date 2022-09-27

Author Greg Gloor

Maintainer Greg Gloor <ggloor@uwo.ca>

Description A set of tests for compositional pathologies. Tests for coherence of correlations with aIc.coherent() as sug-

gested by (Erb et al. (2020) <doi:10.1016/j.acags.2020.100026>), compositional dominance of distance with aIc.dominant(), compositional perturbation invariance with aIc.perturb() as suggested by (Aitchison (1992) <doi:10.1007/BF00891269>) and singularity of the covariation matrix with aIc.singular(). Currently tests five data transformations: prop, clr, TMM, TMMwsp, and RLE from the R packages 'ALDEx2', 'edgeR' and 'DE-Seq2' (Fernandes et al (2014) <doi:10.1186/2049-2618-2-15>, Anders et al. (2013)<doi:10.1038/nprot.2013.099>).

License GPL (>= 3)

Encoding UTF-8

URL https://github.com/ggloor/aIc

BugReports https://github.com/ggloor/aIc/issues

RoxygenNote 7.2.1

VignetteBuilder knitr

Imports matrixcalc, zCompositions, shiny, edgeR, ALDEx2, vegan

Suggests BiocStyle, knitr, rmarkdown

Depends R (>= 3.5.0),

NeedsCompilation no

Repository CRAN

Date/Publication 2022-10-04 23:40:04 UTC

Contents

aIc.coherent	2
aIc.dominant	3
aIc.perturb	4
aIc.plot	5
aIc.runExample	5
aIc.scale	7
aIc.singular	3
meta16S)
netaTscome)
selex)
singleCell	1
ranscriptome	1
12	2

Index

```
aIc.coherent
```

Calculate the subcompositional coherence of samples in a dataset for a given correction.

Description

'alc.coherent' compares the correlation coefficients of features in common of the full dataset and a subset of the dataset. This is expected to be false for all compositional datasets and transforms.

Usage

```
aIc.coherent(
   data,
   norm.method = "prop",
   zero.remove = 0.95,
   zero.method = "prior",
   log = FALSE,
   group = NULL,
   cor.test = "spearman"
)
```

Arguments

data	can be any dataframe or matrix with samples by column
norm.method	can be prop, clr, RLE, TMM, TMMwsp, lvha, iqlr
zero.remove	is a value. Filter data to remove features that are 0 across at least that proportion of samples: default 0.95
zero.method	can be any of NULL, prior, GBM or CZM. NULL will not impute or change 0 values, GBM and CZM are from the zCompositions R package, and prior will simply add 0.5 to all counts.

aIc.dominant

log	is a logical. log transform the prop, RLE or TMM outputs, default=FALSE
group	is a vector containing group information. Required for clr, RLE,
cor.test	is either the pearson or spearman method (default)

Value

Returns a list with the correlation in cor, a yes/no binary decision in is.coherent, the x and y values for a scatterplot of the correlations in the full and subcompositions, and the plot and axis labels in main xlab and ylab.

Author(s)

Greg Gloor

Examples

```
data(selex)
group = c(rep('N', 7), rep('S', 7))
x <- aIc.coherent(selex, group=group, norm.method='clr', zero.method='prior')
plot(x$plot[,1], x$plot[,2], main=x$main, ylab=x$ylab, xlab=x$xlab)</pre>
```

aIc.dominant	alc.dominant calculates the subcompositional dominance of a sample in a dataset for a given correction. This compares the distances of samples of the full dataset and a subset of the dataset. This is expected to be true if the transform is behaving rationally in compositional datasets.
	tional datasets.

Description

aIc.dominant calculates the subcompositional dominance of a sample in a dataset for a given correction. This compares the distances of samples of the full dataset and a subset of the dataset. This is expected to be true if the transform is behaving rationally in compositional datasets.

Usage

```
alc.dominant(
   data,
   norm.method = "prop",
   zero.remove = 0.95,
   zero.method = "prior",
   log = FALSE,
   distance = "euclidian",
   group = NULL
)
```

Arguments

data	can be any dataframe or matrix with samples by column
norm.method	can be prop, clr, RLE, TMM, TMMwsp
zero.remove	is a value. Filter data to remove features that are 0 across at least that proportion of samples: default 0.95
zero.method	can be any of NULL, prior, GBM or CZM. NULL will not impute or change 0 values, GBM (preferred) and CZM are from the zCompositions R package, and prior will simply add 0.5 to all counts.
log	is a logical. log transform the RLE or TMM outputs, default=FALSE
distance	can be euclidian, bray, or jaccard. euclidian on log-ratio transformed data is the same as the Aitchison distance. default=euclidian
group	is a vector containing group information. Required for clr, RLE, TMM, lvha, and iqlr based normalizations.

Value

Returns a list with the overlap between distances in the full and subcompositon in ol (expect 0), a yes/no binary decision in is.dominant and the table of distances for the whole and subcomposition in dist.all and dist.sub, a plot showing a histogram of the resulting overlap in distances in plot, and the plot and axis labels in main xlab and ylab

Author(s)

Greg Gloor

Examples

```
data(selex)
group = c(rep('N', 7), rep('S', 7))
x <- aIc.dominant(selex, group=group, norm.method='clr', distance='euclidian', zero.method='prior')
plot(x$plot, main=x$main, ylab=x$ylab, xlab=x$xlab)</pre>
```

aIc.perturb	alc.perturb calculates the perturbation invariance of distance for
	samples with a given correction. This compares the distances of sam-
	ples of the full dataset and a the perturbed dataset. This is expected
	to be true if the transform is behaving rationally in compositional
	datasets.

Description

aIc.perturb calculates the perturbation invariance of distance for samples with a given correction. This compares the distances of samples of the full dataset and a the perturbed dataset. This is expected to be true if the transform is behaving rationally in compositional datasets.

aIc.perturb

Usage

```
alc.perturb(
  data,
  norm.method = "prop",
  zero.remove = 0.95,
  zero.method = "prior",
  distance = "euclidian",
  log = FALSE,
  group = NULL
)
```

Arguments

data	can be any dataframe or matrix with samples by column
norm.method	can be prop, clr, RLE, TMM, TMMwsp
zero.remove	is a value. Filter data to remove features that are 0 across at least that proportion of samples: default 0.95
zero.method	can be any of NULL, prior, GBM or CZM. NULL will not impute or change 0 values, GBM (preferred) and CZM are from the zCompositions R package, and prior will simply add 0.5 to all counts.
distance	can be euclidian, bray, or jaccard. euclidian on log-ratio transformed data is the same as the Aitchison distance. default=euclidian
log	is a logical. log transform the RLE or TMM outputs, default=FALSE
group	is a vector containing group information. Required for clr, RLE, TMM, lvha, and iqlr based normalizations.

Value

Returns a list with the maximum proportional perturbation in ol (expect 0, but values up to 1 is.perturb, the table of distances for the whole and perturbation in dist.all and dist.perturb, the histogram of the perturbations in plot, and the plot and axis labels in main xlab and ylab.

Author(s)

Greg Gloor

Examples

```
data(selex)
group = c(rep('N', 7), rep('S', 7))
x <- aIc.perturb(selex, group=group, norm.method='clr', distance='euclidian', zero.method='prior')
plot(x$plot, main=x$main, ylab=x$ylab, xlab=x$xlab)</pre>
```

aIc.plot

Description

aIc.plot plots the result of the distance tests.

Usage

```
aIc.plot(test.out)
```

Arguments

test.out is the output from either alc.dominant, alc.scale, alc.perturb

Value

returns a plot of the density of the distance test results. test result.

Author(s)

Greg Gloor

Examples

```
data(selex)
group = c(rep('N', 7), rep('S', 7))
test.out <- aIc.dominant(selex, norm.method='prop', group=group)
aIc.plot(test.out)</pre>
```

aIc.runExample	aIc.runExample loads the associated shiny app This will load the
	selex example dataset with the default group sizes, the user can upload
	their own local dataset and adjust groups accordingly.

Description

alc.runExample loads the associated shiny app This will load the selex example dataset with the default group sizes, the user can upload their own local dataset and adjust groups accordingly.

Usage

aIc.runExample()

aIc.scale

Value

No return value, but instead opens a shiny connection to your default web browser with the selex dataset as an example.

Author(s)

Greg Gloor

Examples

library(aIc)
aIc.runExample()

aIc.scale	aIc.scale calculates the scaling invariance of a sample in a dataset
	for a given correction. This compares the distances of samples of the
	full dataset and a scaled version of the dataset. This is expected to be
	true if the transform is behaving rationally in compositional datasets.
	nae ij ne nansjonn is benavnig ranonanj in compositionar aaasets.

Description

aIc.scale calculates the scaling invariance of a sample in a dataset for a given correction. This compares the distances of samples of the full dataset and a scaled version of the dataset. This is expected to be true if the transform is behaving rationally in compositional datasets.

Usage

```
alc.scale(
   data,
   norm.method = "prop",
   zero.remove = 0.95,
   zero.method = "prior",
   distance = "euclidian",
   log = FALSE,
   group = NULL
)
```

Arguments

data	can be any dataframe or matrix with samples by column
norm.method	can be prop, clr, iqlr, lvha, RLE, TMM, TMMwsp
zero.remove	is a value. Filter data to remove features that are 0 across at least that proportion of samples: default 0.95
zero.method	can be any of NULL, prior, GBM or CZM. NULL will not impute or change 0 values, GBM (preferred) and CZM are from the zCompositions R package, and prior will simply add 0.5 to all counts.

distance	can be euclidian, bray, or jaccard. euclidian on log-ratio transformed data is the same as the Aitchison distance. default=euclidian
log	is a logical. log transform the RLE or TMM outputs, default=FALSE
group	is a vector containing group information. Required for clr, RLE, TMM, lvha, and iqlr based normalizations.

Value

Returns a list with the overlap between distances in the full and scaled composition in ol (expect 0), a yes/no binary decision in is.scale and the table of distances for the whole and scaled composition in dist.all and dist.scale, a plot showing a histogram of the resulting overlap in distances in plot, and the plot and axis labels in main xlab and ylab

Author(s)

Greg Gloor

Examples

```
data(selex)
group = c(rep('N', 7), rep('S', 7))
x <- aIc.scale(selex, group=group, norm.method='clr', zero.method='prior')
plot(x$plot, main=x$main, ylab=x$ylab, xlab=x$xlab)</pre>
```

aIc.singular	aIc.singular tests for singular data. This is expected to be true if the
	transform is behaving rationally in compositional datasets and also
	true in the case of datasets with more features than samples.

Description

aIc.singular tests for singular data. This is expected to be true if the transform is behaving rationally in compositional datasets and also true in the case of datasets with more features than samples.

Usage

```
aIc.singular(
   data,
   norm.method = "prop",
   zero.remove = 0.95,
   zero.method = "prior",
   log = FALSE,
   group = NULL
)
```

meta16S

Arguments

data	can be any dataframe or matrix with samples by column
norm.method	can be prop, clr, RLE, TMM, TMMwsp
zero.remove	is a value. Filter data to remove features that are 0 across at least that proportion of samples: default 0.95
zero.method	can be any of NULL, prior, GBM or CZM. NULL will not impute or change 0 values, GBM (preferred) and CZM are from the zCompositions R package, and prior will simply add 0.5 to all counts.
log	is a logical. log transform the RLE or TMM outputs, default=FALSE
group	is a vector containing group information. Required for clr, RLE, TMM, lvha, and iqlr based normalizations.

Value

Returns a list with a yes/no binary decision in is.singular and the covariance matrix in cov.matrix

Author(s)

Greg Gloor

Examples

```
data(selex)
group = c(rep('N', 7), rep('S', 7))
x <- aIc.singular(selex, group=group, norm.method='clr', zero.method='prior')</pre>
```

meta16S

16S rRNA tag-sequencing data

Description

A count table of a 16S rRNA amplicon data Two groups, pupils and centenarians are represented with 198 and 161 samples per group respectively. samples are by column and OTU ids are by row.

Usage

```
data(meta16S)
```

Format

A data frame with 359 columns and 860 rows

Source

doi: 10.1128/mSphere.00327-17

metaTscome

Description

A count table of a mixed population or metatranscriptome experiment. Two groups, H and BV are represented with 7 and 10 samples per group respectively. samples are by column and functions are by row.

Usage

data(metaTscome)

Format

A data frame with 17 columns and 3647 rows

Source

doi:10.1007/978-3-030-71175-7_17 and doi:10.1007/978-1-4939-8728-3_13

selex

Selection-based differential sequence variant abundance dataset

Description

This data set gives the differential abundance of 1600 enzyme variants grown under selective (NS) and selective (S) conditions

Usage

data(selex)

Format

A data frame with 14 columns and 1600 rows

Source

DOI:10.1073/pnas.1322352111

Description

A count table of a single cell transcriptome data subset from the count table from doi:10.1038/s41592-019-0372-4. Two groups memory T cells, and cytotoxic T cells, 1000 cells per group. samples are by column and genes are by row.

Usage

```
data(singleCell)
```

Format

A data frame with 2000 columns and 1508 rows

Source

https://www.nature.com/articles/s41592-019-0372-4

transcriptome

Saccharomyces cerevisiae transcriptome

Description

A count table of a highly replicated RNA-seq experiment with samples by column and genes by row. Two groups composed of SNF2 knockout and WT, 48 samples in each.

Usage

data(transcriptome)

Format

A data frame with 96 columns and 5892 rows

Source

DOI: 10.1261/rna.053959.115 and PRJEB5348

Index

* datasets meta16S,9 metaTscome, 10selex, 10singleCell, 11 transcriptome, 11 aIc.coherent, 2 aIc.dominant, 3 aIc.perturb,4 aIc.plot,6 aIc.runExample, 6 aIc.scale,7 alc.singular,8meta16S,9 metaTscome, 10 selex, 10 singleCell, 11

transcriptome, 11