Title: | Alternating Optimization |
Version: | 1.2.1 |
Description: | An iterative process that optimizes a function by alternately performing restricted optimization over parameter subsets. Instead of joint optimization, it breaks the optimization problem down into simpler sub-problems. This approach can make optimization feasible when joint optimization is too difficult. |
URL: | https://loelschlaeger.de/ao/, https://github.com/loelschlaeger/ao/ |
BugReports: | https://github.com/loelschlaeger/ao/issues |
License: | GPL-3 |
Encoding: | UTF-8 |
RoxygenNote: | 7.3.2 |
Imports: | checkmate, cli, future.apply, oeli (≥ 0.7.3), progressr, R6, stats, utils |
Suggests: | devtools, ggplot2, knitr, rmarkdown, testthat (≥ 3.0.0) |
Config/testthat/edition: | 3 |
VignetteBuilder: | knitr |
Depends: | R (≥ 4.0.0), optimizeR (≥ 1.2.1) |
NeedsCompilation: | no |
Packaged: | 2025-06-26 16:07:19 UTC; Lennart Oelschläger |
Author: | Lennart Oelschläger
|
Maintainer: | Lennart Oelschläger <oelschlaeger.lennart@gmail.com> |
Repository: | CRAN |
Date/Publication: | 2025-06-26 16:20:02 UTC |
ao: Alternating Optimization
Description
An iterative process that optimizes a function by alternately performing restricted optimization over parameter subsets. Instead of joint optimization, it breaks the optimization problem down into simpler sub-problems. This approach can make optimization feasible when joint optimization is too difficult.
Author(s)
Maintainer: Lennart Oelschläger oelschlaeger.lennart@gmail.com (ORCID)
Other contributors:
Siddhartha Chib chib@wustl.edu [contributor]
See Also
Useful links:
Report bugs at https://github.com/loelschlaeger/ao/issues
Process Object
Description
This object specifies an AO process.
Active bindings
npar
[
integer(1)
]
The (total) length of the target argument(s).partition
[
character(1)
|list()
]
Defines the parameter partition, and can be either-
"sequential"
for treating each parameter separately, -
"random"
for a random partition in each iteration, -
"none"
for no partition (which is equivalent to joint optimization), or a
list
of vectors of parameter indices, specifying a custom partition for the AO process.
-
new_block_probability
[
numeric(1)
]
Only relevant ifpartition = "random"
.The probability for a new parameter block when creating a random partition.
Values close to 0 result in larger parameter blocks, values close to 1 result in smaller parameter blocks.
minimum_block_number
[
integer(1)
]
Only relevant ifpartition = "random"
.The minimum number of blocks in random partitions.
verbose
[
logical(1)
]
Print tracing details during the AO process?minimize
[
logical(1)
]
Minimize during the AO process?If
FALSE
, maximization is performed.iteration_limit
[
integer(1)
|Inf
]
The maximum number of iterations through the parameter partition before the AO process is terminated.Can also be
Inf
for no iteration limit.seconds_limit
[
numeric(1)
]
The time limit in seconds before the AO process is terminated.Can also be
Inf
for no time limit.Note that this stopping criteria is only checked after a sub-problem is solved and not within solving a sub-problem, so the actual process time can exceed this limit.
tolerance_value
[
numeric(1)
]
A non-negative tolerance value. The AO process terminates if the absolute difference between the current function value and the one beforetolerance_history
iterations is smaller thantolerance_value
.Can be
0
for no value threshold.tolerance_parameter
[
numeric(1)
]
A non-negative tolerance value. The AO process terminates if the distance between the current estimate and the beforetolerance_history
iterations is smaller thantolerance_parameter
.Can be
0
for no parameter threshold.By default, the distance is measured using the euclidean norm, but another norm can be specified via the
tolerance_parameter_norm
field.tolerance_parameter_norm
[
function
]
The norm that measures the distance between the current estimate and the one from the last iteration. If the distance is smaller thantolerance_parameter
, the AO process is terminated.It must be of the form
function(x, y)
for two vector inputsx
andy
, and return a singlenumeric
value. By default, the euclidean normfunction(x, y) sqrt(sum((x - y)^2))
is used.tolerance_history
[
integer(1)
]
The number of iterations to look back to determine whethertolerance_value
ortolerance_parameter
has been reached.add_details
[
logical(1)
]
Add details about the AO process to the output?iteration
[
integer(1)
]
The current iteration number.block
[
integer()
]
The currently active parameter block, represented as parameter indices.output
[
list()
, read-only]
The output of the AO process, which is alist
with the following elements:-
estimate
is the parameter vector at termination. -
value
is the function value at termination. -
details
is adata.frame
with full information about the AO process. For each iteration (columniteration
) it contains the function value (columnvalue
), parameter values (columns starting withp
followed by the parameter index), the active parameter block (columns starting withb
followed by the parameter index, where1
stands for a parameter contained in the active parameter block and0
if not), and computation times in seconds (columnseconds
). Only available ifadd_details = TRUE
. -
seconds
is the overall computation time in seconds. -
stopping_reason
is a message why the AO process has terminated.
-
Methods
Public methods
Method new()
Creates a new object of this R6 class.
Usage
Process$new( npar = integer(), partition = "sequential", new_block_probability = 0.3, minimum_block_number = 1, verbose = FALSE, minimize = TRUE, iteration_limit = Inf, seconds_limit = Inf, tolerance_value = 1e-06, tolerance_parameter = 1e-06, tolerance_parameter_norm = function(x, y) sqrt(sum((x - y)^2)), tolerance_history = 1, add_details = TRUE )
Arguments
npar
[
integer(1)
]
The (total) length of the target argument(s).partition
[
character(1)
|list()
]
Defines the parameter partition, and can be either-
"sequential"
for treating each parameter separately, -
"random"
for a random partition in each iteration, -
"none"
for no partition (which is equivalent to joint optimization), or a
list
of vectors of parameter indices, specifying a custom partition for the AO process.
-
new_block_probability
[
numeric(1)
]
Only relevant ifpartition = "random"
.The probability for a new parameter block when creating a random partition.
Values close to 0 result in larger parameter blocks, values close to 1 result in smaller parameter blocks.
minimum_block_number
[
integer(1)
]
Only relevant ifpartition = "random"
.The minimum number of blocks in random partitions.
verbose
[
logical(1)
]
Print tracing details during the AO process?minimize
[
logical(1)
]
Minimize during the AO process?If
FALSE
, maximization is performed.iteration_limit
[
integer(1)
|Inf
]
The maximum number of iterations through the parameter partition before the AO process is terminated.Can also be
Inf
for no iteration limit.seconds_limit
[
numeric(1)
]
The time limit in seconds before the AO process is terminated.Can also be
Inf
for no time limit.Note that this stopping criteria is only checked after a sub-problem is solved and not within solving a sub-problem, so the actual process time can exceed this limit.
tolerance_value
[
numeric(1)
]
A non-negative tolerance value. The AO process terminates if the absolute difference between the current function value and the one beforetolerance_history
iterations is smaller thantolerance_value
.Can be
0
for no value threshold.tolerance_parameter
[
numeric(1)
]
A non-negative tolerance value. The AO process terminates if the distance between the current estimate and the beforetolerance_history
iterations is smaller thantolerance_parameter
.Can be
0
for no parameter threshold.By default, the distance is measured using the euclidean norm, but another norm can be specified via the
tolerance_parameter_norm
field.tolerance_parameter_norm
[
function
]
The norm that measures the distance between the current estimate and the one from the last iteration. If the distance is smaller thantolerance_parameter
, the AO process is terminated.It must be of the form
function(x, y)
for two vector inputsx
andy
, and return a singlenumeric
value. By default, the euclidean normfunction(x, y) sqrt(sum((x - y)^2))
is used.tolerance_history
[
integer(1)
]
The number of iterations to look back to determine whethertolerance_value
ortolerance_parameter
has been reached.add_details
[
logical(1)
]
Add details about the AO process to the output?
Method print_status()
Prints a status message.
Usage
Process$print_status(message, message_type = 8, verbose = self$verbose)
Arguments
message
[
character(1)
]
A status message.message_type
[
integer(1)
]
The message type, one of the following:-
1
forcli::cli_h1()
-
2
forcli::cli_h2()
-
3
forcli::cli_h3()
-
4
forcli::cli_alert_success()
-
5
forcli::cli_alert_info()
-
6
forcli::cli_alert_warning()
-
7
forcli::cli_alert_danger()
-
8
forcli::cat_line()
-
verbose
[
logical(1)
]
Print tracing details during the AO process?
Method initialize_details()
Initializes the details
part of the output.
Usage
Process$initialize_details(initial_parameter, initial_value)
Arguments
initial_parameter
[
numeric()
]
The starting parameter values for the AO process.initial_value
[
numeric(1)
]
The function value at the initial parameters.
Method update_details()
Updates the details
part of the output.
Usage
Process$update_details( value, parameter_block, seconds, error, error_message, block = self$block )
Arguments
value
[
numeric(1)
]
The updated function value.parameter_block
[
numeric()
]
The updated parameter values for the active parameter block.seconds
[
numeric(1)
]
The time in seconds for solving the sub-problem.error
[
logical(1)
]
Did solving the sub-problem result in an error?error_message
[
character(1)
]
An error message iferror = TRUE
.block
[
integer()
]
The currently active parameter block, represented as parameter indices.
Method get_partition()
Get a parameter partition.
Usage
Process$get_partition()
Method get_details()
Get the details
part of the output.
Usage
Process$get_details( which_iteration = NULL, which_block = NULL, which_column = c("iteration", "value", "parameter", "block", "seconds") )
Arguments
which_iteration
[
integer()
]
Selects the iteration(s).Can also be
NULL
to select all iterations.which_block
[
character(1)
|integer()
]
Selects the parameter block in the partition and can be one of-
"first"
for the first parameter block, -
"last"
for the last parameter block, an
integer
vector of parameter indices,or
NULL
for all parameter blocks.
-
which_column
[
character()
]
Selects the columns in thedetails
part of the output and can be one or more of-
"iteration"
, -
"value"
, -
"parameter"
, -
"block"
, and
"seconds"
.
-
Method get_value()
Get the function value in different steps of the AO process.
Usage
Process$get_value( which_iteration = NULL, which_block = NULL, keep_iteration_column = FALSE, keep_block_columns = FALSE )
Arguments
which_iteration
[
integer()
]
Selects the iteration(s).Can also be
NULL
to select all iterations.which_block
[
character(1)
|integer()
]
Selects the parameter block in the partition and can be one of-
"first"
for the first parameter block, -
"last"
for the last parameter block, an
integer
vector of parameter indices,or
NULL
for all parameter blocks.
-
keep_iteration_column
[
logical(1)
]
Keep the column containing the information about the iteration in the output?keep_block_columns
[
logical(1)
]
Keep the column containing the information about the active parameter block in the output?
Method get_value_latest()
Get the function value in the latest step of the AO process.
Usage
Process$get_value_latest()
Method get_value_best()
Get the optimum function value in the AO process.
Usage
Process$get_value_best()
Method get_parameter()
Get the parameter values in different steps of the AO process.
Usage
Process$get_parameter( which_iteration = self$iteration, which_block = NULL, keep_iteration_column = FALSE, keep_block_columns = FALSE )
Arguments
which_iteration
[
integer()
]
Selects the iteration(s).Can also be
NULL
to select all iterations.which_block
[
character(1)
|integer()
]
Selects the parameter block in the partition and can be one of-
"first"
for the first parameter block, -
"last"
for the last parameter block, an
integer
vector of parameter indices,or
NULL
for all parameter blocks.
-
keep_iteration_column
[
logical(1)
]
Keep the column containing the information about the iteration in the output?keep_block_columns
[
logical(1)
]
Keep the column containing the information about the active parameter block in the output?
Method get_parameter_latest()
Get the parameter value in the latest step of the AO process.
Usage
Process$get_parameter_latest(parameter_type = "full")
Arguments
parameter_type
[
character(1)
]
Selects the parameter type and can be one of-
"full"
(default) to get the full parameter vector, -
"block"
to get the parameter values for the current block, i.e., the parameters with the indicesself$block
-
"fixed"
to get the parameter values which are currently fixed, i.e., all except for those with the indicesself$block
-
Method get_parameter_best()
Get the optimum parameter value in the AO process.
Usage
Process$get_parameter_best(parameter_type = "full")
Arguments
parameter_type
[
character(1)
]
Selects the parameter type and can be one of-
"full"
(default) to get the full parameter vector, -
"block"
to get the parameter values for the current block, i.e., the parameters with the indicesself$block
-
"fixed"
to get the parameter values which are currently fixed, i.e., all except for those with the indicesself$block
-
Method get_seconds()
Get the optimization time in seconds in different steps of the AO process.
Usage
Process$get_seconds( which_iteration = NULL, which_block = NULL, keep_iteration_column = FALSE, keep_block_columns = FALSE )
Arguments
which_iteration
[
integer()
]
Selects the iteration(s).Can also be
NULL
to select all iterations.which_block
[
character(1)
|integer()
]
Selects the parameter block in the partition and can be one of-
"first"
for the first parameter block, -
"last"
for the last parameter block, an
integer
vector of parameter indices,or
NULL
for all parameter blocks.
-
keep_iteration_column
[
logical(1)
]
Keep the column containing the information about the iteration in the output?keep_block_columns
[
logical(1)
]
Keep the column containing the information about the active parameter block in the output?
Method get_seconds_total()
Get the total optimization time in seconds of the AO process.
Usage
Process$get_seconds_total()
Method check_stopping()
Checks if the AO process can be terminated.
Usage
Process$check_stopping()
Alternating Optimization
Description
Alternating optimization (AO) is an iterative process for optimizing a real-valued function jointly over all its parameters by alternating restricted optimization over parameter partitions.
Usage
ao(
f,
initial,
target = NULL,
npar = NULL,
gradient = NULL,
hessian = NULL,
...,
partition = "sequential",
new_block_probability = 0.3,
minimum_block_number = 1,
minimize = TRUE,
lower = NULL,
upper = NULL,
iteration_limit = Inf,
seconds_limit = Inf,
tolerance_value = 1e-06,
tolerance_parameter = 1e-06,
tolerance_parameter_norm = function(x, y) sqrt(sum((x - y)^2)),
tolerance_history = 1,
base_optimizer = Optimizer$new("stats::optim", method = "L-BFGS-B"),
verbose = FALSE,
hide_warnings = TRUE,
add_details = TRUE
)
Arguments
f |
[ The first argument of If |
initial |
[ This can also be a |
target |
[ This can only be Can be |
npar |
[ Must be specified if more than two target arguments are specified via
the Can be |
gradient |
[ The function call of Ignored if |
hessian |
[ The function call of Ignored if |
... |
Additional arguments to be passed to |
partition |
[
This can also be a |
new_block_probability |
[ The probability for a new parameter block when creating a random partition. Values close to 0 result in larger parameter blocks, values close to 1 result in smaller parameter blocks. |
minimum_block_number |
[ The minimum number of blocks in random partitions. |
minimize |
[ If |
lower , upper |
[ Ignored if |
iteration_limit |
[ Can also be |
seconds_limit |
[ Can also be Note that this stopping criteria is only checked after a sub-problem is solved and not within solving a sub-problem, so the actual process time can exceed this limit. |
tolerance_value |
[ Can be |
tolerance_parameter |
[ Can be By default, the distance is measured using the euclidean norm, but another
norm can be specified via the |
tolerance_parameter_norm |
[ It must be of the form |
tolerance_history |
[ |
base_optimizer |
[ By default, the This can also be a |
verbose |
[ Not supported when using multiple processes, see details. |
hide_warnings |
[ |
add_details |
[ |
Details
Multiple processes
AO can suffer from local optima. To increase the likelihood of reaching the global optimum, you can specify:
multiple starting parameters
multiple parameter partitions
multiple base optimizers
Use the initial
, partition
, and/or base_optimizer
arguments to provide
a list
of possible values for each parameter. Each combination of initial
values, parameter partitions, and base optimizers will create a separate AO
process.
Output value
In the case of multiple processes, the output values refer to the optimal (with respect to function value) AO processes.
If add_details = TRUE
, the following elements are added:
-
estimates
is alist
of optimal parameters in each process. -
values
is alist
of optimal function values in each process. -
details
combines details of the single processes and has an additional columnprocess
with an index for the different processes. -
seconds_each
gives the computation time in seconds for each process. -
stopping_reasons
gives the termination message for each process. -
processes
give details how the different processes were specified.
Parallel computation
By default, processes run sequentially. However, since they are independent,
they can be parallelized. To enable parallel computation, use the
{future}
framework. For example, run the
following before the ao()
call:
future::plan(future::multisession, workers = 4)
Progress updates
When using multiple processes, setting verbose = TRUE
to print tracing
details during AO is not supported. However, you can still track the progress
using the {progressr}
framework.
For example, run the following before the ao()
call:
progressr::handlers(global = TRUE) progressr::handlers( progressr::handler_progress(":percent :eta :message") )
Value
A list
with the following elements:
-
estimate
is the parameter vector at termination. -
value
is the function value at termination. -
details
is adata.frame
with information about the AO process: For each iteration (columniteration
) it contains the function value (columnvalue
), parameter values (columns starting withp
followed by the parameter index), the active parameter block (columns starting withb
followed by the parameter index, where1
stands for a parameter contained in the active parameter block and0
if not), and computation times in seconds (columnseconds
). Only available ifadd_details = TRUE
. -
seconds
is the overall computation time in seconds. -
stopping_reason
is a message why the AO process has terminated.
In the case of multiple processes, the output changes slightly, see details.
Examples
# Example 1: Minimization of Himmelblau's function --------------------------
himmelblau <- function(x) (x[1]^2 + x[2] - 11)^2 + (x[1] + x[2]^2 - 7)^2
ao(f = himmelblau, initial = c(0, 0))
# Example 2: Maximization of 2-class Gaussian mixture log-likelihood --------
# target arguments:
# - class means mu (2, unrestricted)
# - class standard deviations sd (2, must be non-negative)
# - class proportion lambda (only 1 for identification, must be in [0, 1])
normal_mixture_llk <- function(mu, sd, lambda, data) {
c1 <- lambda * dnorm(data, mu[1], sd[1])
c2 <- (1 - lambda) * dnorm(data, mu[2], sd[2])
sum(log(c1 + c2))
}
set.seed(123)
ao(
f = normal_mixture_llk,
initial = runif(5),
target = c("mu", "sd", "lambda"),
npar = c(2, 2, 1),
data = datasets::faithful$eruptions,
partition = list("sequential", "random", "none"),
minimize = FALSE,
lower = c(-Inf, -Inf, 0, 0, 0),
upper = c(Inf, Inf, Inf, Inf, 1),
add_details = FALSE
)