Package 'arete'

October 20, 2025

```
Title Automated REtrieval from TExt
Version 0.1
Date 2025-09-29
Author Vasco V. Branco [cre, aut] (ORCID:
                 <https://orcid.org/0000-0001-7797-3183>),
              Vaughn Shirey [ctb] (ORCID: <a href="https://orcid.org/0000-0002-3589-9699">https://orcid.org/0000-0002-3589-9699</a>),
              Thomas Merrien [ctb] (ORCID: <a href="https://orcid.org/0000-0002-0339-5656">https://orcid.org/0000-0002-0339-5656</a>),
              Pedro Cardoso [aut] (ORCID: <a href="https://orcid.org/0000-0001-8119-9960">https://orcid.org/0000-0001-8119-9960</a>)
Maintainer Vasco V. Branco <vasco.branco@helsinki.fi>
Description A Python based pipeline for extraction of species occurrence data through the us-
              age of large language models. Includes validation tools designed to handle model hallucina-
              tions for a scientific, rigorous use of LLM. Currently supports us-
              age of GPT with more planned, including local and non-proprietary models. For more de-
              tails on the methodology used please consult the references listed under each func-
              tion, such as Kent, A. et al. (1995) <doi:10.1002/asi.5090060209>, van Rijsber-
              gen, C.J. (1979, ISBN:978-0408709293, Levenshtein, V.I. (1966) < https://doi.org/10.1016/j.january.com/https://doi.org/10.1016/j.january.com/https://doi.org/10.1016/j.january.com/https://doi.org/10.1016/j.january.com/https://doi.org/10.1016/j.january.com/https://doi.org/10.1016/j.january.com/https://doi.org/10.1016/j.january.com/https://doi.org/10.1016/j.january.com/https://doi.org/10.1016/j.january.com/https://doi.org/10.1016/j.january.com/https://doi.org/10.1016/j.january.com/https://doi.org/10.1016/j.january.com/https://doi.org/10.1016/j.january.com/https://doi.org/10.1016/j.january.com/https://doi.org/10.1016/j.january.com/https://doi.org/10.1016/j.january.com/https://doi.org/10.1016/j.january.com/https://doi.org/10.1016/j.january.com/https://doi.org/10.1016/j.january.com/https://doi.org/10.1016/j.january.com/https://doi.org/10.1016/j.january.com/https://doi.org/10.1016/j.january.com/https://doi.org/10.1016/j.january.com/https://doi.org/10.1016/j.january.com/https://doi.org/10.1016/j.january.com/https://doi.org/10.1016/j.january.com/https://doi.org/10.1016/j.january.com/https://doi.org/10.1016/j.january.com/https://doi.org/10.1016/j.january.com/https://doi.org/10.1016/j.january.com/https://doi.org/10.1016/j.january.com/https://doi.org/10.1016/j.january.com/https://doi.org/10.1016/j.january.com/https://doi.org/10.1016/j.january.com/https://doi.org/10.1016/j.january.com/https://doi.org/10.1016/j.january.com/https://doi.org/10.1016/j.january.com/https://doi.org/10.1016/j.january.com/https://doi.org/10.1016/j.january.com/https://doi.org/10.1016/j.january.com/https://doi.org/10.1016/j.january.com/https://doi.org/10.1016/j.january.com/https://doi.org/10.1016/j.january.com/https://doi.org/10.1016/j.january.com/https://doi.org/10.1016/j.january.com/https://doi.org/10.1016/j.january.com/https://doi.org/10.1016/j.january.com/https://doi.org/10.1016/j.january.com/https://doi.org/10.1016/j.january.com/https://doi.org/10.1016/j.january.com/https://doi.org/10.1016/j.january.com/https://doi.org/10.1016/j.january.com/https
              //nymity.ch/sybilhunting/pdf/Levenshtein1966a.pdf> and Klaus Krippen-
              dorff (2011) <a href="https://repository.upenn.edu/handle/20.500.14332/2089">https://repository.upenn.edu/handle/20.500.14332/2089</a>>.
Depends R (>= 4.3.0)
Imports terra, cld2, stringr, reticulate, pdftools, fedmatch,
              kableExtra, dplyr, gecko, methods, ggplot2, jsonlite,
              googledrive, irr, rmarkdown
License GPL-3
Encoding UTF-8
RoxygenNote 7.3.2
NeedsCompilation no
Repository CRAN
Config/Needs/website rmarkdown
Suggests knitr
VignetteBuilder knitr
Date/Publication 2025-10-20 09:20:07 UTC
```

2 arete_data

Contents

	arete_data	2
	arete_package	3
	arete_setup	5
	aux_string_to_coords	ϵ
	check_lang	7
	compare_IUCN	
	create_training_data	
	file_comparison	
	gazetteer	
	get_geodata	
	install_OCR_packages	
	install_python_packages	
	labels	
	labels_unique	
	OCR_document	
	performance_report	
	process_document	
	process_species_names	
	string_to_coords	
	WebAnnoTSV-class	
	webanno_open	
	webanno_summary	22
Index		23

arete_data

Example data packaged with gecko

Description

Load data included in the package. This includes **holzapfelae**, a txt file of a paper describing Araneus holzapfelae (Dippenaar-Schoeman & Foord, 2020), **annotations**, two files of annotated data of the same paper describing two species, Sinlathrobium assingi and Sinlathrobium chenzhilini (Chen *et al.* 2024) and **annotations-highlights** a version of the same two files reduced to just those sections containing annotated data.

Usage

```
arete_data(data = NULL)
```

Arguments

data

character. String of one of the data names mentioned in the description, e.g.: "holzapfelae". If NULL, the example files will be returned.

arete_package 3

Value

depending on data either a character ("holzapfelae"), a WebAnnoTSV object ("holzapfelae-extract") or a list of WebAnnoTSV ("annotations", "annotations-highlights").

Source

This function is inspired by palmerpanguins::path_to_file() which in turn is based on readxl::readxl_example().

References

Dippenaar-Schoeman, A. S. & Foord, S. H. (2020a). First record of the orb-web spider Araneus holzapfelae Lessert, 1936 from South Africa (Arachnida: Araneidae). Sansa News 35: 19-21. Chen, X., Ye, J.-P. and Peng, Z. (2024) 'Two new species and additional records of Sinlathrobium Assing (Coleoptera, Staphylinidae, Paederinae) from southern China', ZooKeys, 1218, pp. 25–33. doi:10.3897/zookeys.1218.128973.

Examples

```
arete_data()
arete_data("holzapfelae")
```

arete_package

Summary of methods in the arete package

Description

Package arete seeks to provide easy Automated REtrieval of species data from TExt. To do this it processes user-supplied text, breaks it into API requests to LLM services and processes the output through a variety of machine learning and rule-based methods to deliever species data in a machine-readable format, ready for analysis. For a short and sweet use case of arete, try our vignette(package = "arete"). In broad terms, functions in arete can be placed in 6 different categories:

1. Setting up arete

arete_setup
install_python_packages
install_OCR_packages

Define a default virtual environment and install external dependencies Install or update python dependencies after setup Install or update the dependencies for our optional OCR utilities 4 arete_package

2. Prepare annotation data

labels
labels_unique
webanno_open
webanno_summary
create_training_data
file_comparison

Extract the labels and relations in a Webanno TSV 3.3 file to an easy, machine readable format rea Extract all unique labels and relations in a Webanno TSV 3.3 file

Read the contents of a WebAnno TSV 3.3 file and create a webanno object, a format for annotated Summarize the contents of a group of WebAnno tsv files by counting labels and relations present Open files with text and annotated data and build training data for large language models in a varied Detect differences between two WebAnno files of the same text for annotation monitoring

3. Prepare text data

process_document
OCR_document Optional utilities based on tesseract and nougatOCR
check_lang

Extract text embedded in a .pdf or .txt file and prod

Check if a given string is mostly (75% of the docume

4. Clean data

string_to_coords
process_species_names

Rule-based conversion of character strings containing geographic coordinates to sets of numeric values function standardizes species names and fixes a number of common typos and mistakes that

5. Finetune and extract data

get_geodata
gazetteer

Call a Large Language Model (LLM) to extract species geographic data Extract geographic coordinates from strings containing location names, using an online index arete_setup 5

6. Evaluate model performance

performance_report
compare_IUCN

Produce a detailed report on the discrepancies between data extracted by a LLM and human annotate Calculate EOO for two sets of coordinates for a practical assessment of data proximity

Contributors

The methods and functions in this package were written by Vasco Branco, with code contribuitions by Vaughn Shirey, Thomas Merrien. Code revision by Pedro Cardoso.

arete_setup

Setup arete

Description

arete requires python to use most of its LLM utilities. OCR utilities will by default not be installed as they are not strictly necessary to the usage of the package. If interested please see install_OCR_packages(). We recommend that you install Python before running arete_setup. Usually performed through sudo apt install python3-venv python3-pip python3-dev on linux systems or reticulate::install_python() for other OS. Some external software might also be needed to successfully install arete's dependencies, including:

- GDAL, GEOS, PROJ, netcdf, sqlite3, tbb, see rspatial.github.io/terra
- poppler (rpm: poppler-cpp-devel (Fedora, CentOS, RHEL), brew: poppler (MacOS))
- kableExtra (fontconfig, deb:libfontconfig1-dev (Debian, Ubuntu, etc), rpm: fontconfig-devel (Fedora, EPEL), csw: fontconfig_dev (Solaris), brew: freetype (OSX))
- cmake

With some being covered by r-base-dev:

- gfortran, libgmp3-dev,
- harfbuzz freetype2 fribidi (deb:libharfbuzz-dev libfribidi-dev (Debian, Ubuntu, etc), rpm: harfbuzz-devel fribidi-devel (Fedora, EPEL), brew: harfbuzz fribidi (OSX))

Usage

```
arete_setup(python = NULL)
```

Arguments

python

character. Path to a python virtual environment in which to use arete.

6 aux_string_to_coords

Details

A custom virtual environment path may be passed to python but we recommend leaving it as NULL and using one of the paths found by reticulate. It is however useful if arete is already setup and you just wish to update its dependencies.

Value

character. Python path to the virtual environment created.

Examples

```
## Not run:
arete_setup()
## End(Not run)
```

Description

Mechanically convert character strings containing geographic coordinates and convert to sets of numeric values. Useful as most LLM experience better and more consistent results when asked to return a single string instead of two separate values.

Usage

```
aux_string_to_coords(coord_string)
```

Arguments

coord_string character. A string containg potential geographic coordinates.

Details

Will convert all strings to N, W for consistency's sake. Future updates will probably make it a toggle.

Value

list. Contain latitude and longitude as the first and second elements, respectively.

```
example = "19 ° 34 ' S 29 ° 10 ° E"
aux_string_to_coords(example)
```

check_lang 7

check_lang

Check if text is language-appropriate

Description

Many, if not all, large language models are biased to English terms and sentence constructions. This function performs a quick check with cld2 over every element of a string of characters and returns whether it is mostly (75

Usage

```
check_lang(strings, detailed = FALSE)
```

Arguments

strings character. Vector of strings containing document sentences.

detailed bool. If TRUE, the full cld2 report is returned as well.

Value

logical. If TRUE the language of the string is mostly English. If detailed is TRUE a list is instead returned for the full document.

Examples

```
# English
check_lang("Species Macrothele calpeiana is found in Alentejo.")
# Portuguese
check_lang("A espécie Macrothele calpeiana é encontrada no Alentejo.")
```

compare_IUCN

Check EOO differences between two sets of coordinates

Description

Calculate EOO for two sets of coordinates for a practical assessment of data proximity.

Usage

```
compare_IUCN(x, y, plots = TRUE, verbose = TRUE)
```

8 create_training_data

Arguments

X	data.frame. With two columns containing latitude and longitude. Considered during reporting as data from a LLM.
У	data.frame. With the same formatting as \boldsymbol{x} . Considered during reporting as the ground truth.
plots	logical. Determines if plots should be printed.
verbose	logical. Determines if output should be printed.

Details

Extent of occurrence (EOO) is defined as "the area contained within the shortest continuous imaginary boundary which can be drawn to encompass all the known, inferred or projected sites of present occurrence of a taxon, excluding cases of vagrancy"

Value

list with two values, the percentage of y that is part of the intersection with x and y and the percentage of x that is part of the intersection with x and y

Examples

```
set_a = matrix(
    c(54.30379, -25.48098, 54.21251, -25.47146, 59.53277, -20.37448, 55.59712,
    -22.39599, 55.47244, -26.30330, 61.39205, -21.12364, 56.24010, -24.40347),
    ncol = 2, byrow = TRUE
)

set_b = matrix(
    c(54.30379, -25.48098, 111.42100, -19.00400, 54.21251, -25.47146, 59.53277,
        -20.37448, 55.59125, -22.39599, 55.47244, -26.30330, 61.39205, -21.12364,
        56.24010, -24.40347),
        ncol = 2, byrow = TRUE
)

compare_IUCN(set_a, set_b)
```

create_training_data Create training data for GPT

Description

Open WebAnnoTSV files following RECODE structure and build training data for large language models in a variety of formats.

file_comparison 9

Usage

```
create_training_data(
  input,
  prompt = NULL,
  service = "GPT",
  aggregate = TRUE,
  export_type = "jsonl",
  out_path = NULL
)
```

Arguments

input character or list. Either a set of paths to WebAnno TSV 3.3 files from which the text and annotated data are taken or a list with two terms, 1) paths to .txt or .pdf files e.g: "./folder/file.pdf" from which text data will be taken from and 2) paths to WebAnno TSV 3.3 files from which to take annotation data.

prompt character. Custom prompt to be attached to each text during construction of the training data. Default prompt used otherwise.

service character. Service to be used. Right now, only GPT is available.

aggregate boolean. If TRUE and prompt is "csv", a single csv is created.

export_type character. Either "jsonl" or "csv". If "jsonl", a single file is created in which

each line is a json specifying the input (prompt and text) and expected output

(data).

out_path character. Path to where the training data will be saved.

Value

matrix / data.frame

Examples

```
example = system.file(paste0("extdata/insecta_annot_1.tsv"), package = "arete")
create_training_data(input = example, service = "GPT", export_type = "jsonl")
```

file_comparison

Compare the contents of two WebAnno tsv files.

Description

Detect differences between two WebAnno files of the same text for annotation monitoring.

10 file_comparison

Usage

```
file_comparison(
  input,
  method = "kripp",
  null_category = TRUE,
  log = NULL,
  verbose = TRUE
)
```

Arguments

input list of character or WebAnnoTSV. The contents of WebAnno TSV v3.3 files as

created by webanno_open or a set of paths leading to them.

method character. A choice of "absolute" and "kripp".

null_category logical. In cases where one annotator labels something and the remaining do

not, should it be assigned a category or be set as NA?

log character. Optional path to save the

verbose boolean. Print the output of the function at the end.

Details

Right now, finds out the total sum of differences between all aspects of a given text. Method kripp calculates the Krippendorf Alpha, "a reliability coefficient developed to measure the agreement among observers, coders, judges, raters, or measuring instruments drawing distinctions among typically unstructured phenomena or assign computable values to them. alpha emerged in content analysis but is widely applicable wherever two or more methods of generating data are applied to the same set of objects, units of analysis, or items and the question is how much the resulting data can be trusted to represent something real" (Krippendorf, 2011).

Value

list. Later should be a dataframe with differences per block in the text.

References

Klaus Krippendorff (2011). Computing Krippendorff's Alpha-Reliability. Departmental Papers (ASC). University of Pennsylvania. https://repository.upenn.edu/handle/20.500.14332/2089

```
example = arete_data("annotations")
file_comparison(example)
```

gazetteer 11

gazetteer

Get geographic coordinates from localities

Description

Extract geographic coordinates from strings containing location names, using an online index. through usage of a gazetteer for Python.

Usage

```
gazetteer(locality)
```

Arguments

locality

vector of characters. A vector of location names to process with a gazetteer.

Details

Gazetteers are geographical indexes, with the one used for arete being Nominatim which is accessible through the GeoPy client.

Value

matrix.

See Also

```
arete_setup
```

```
## Not run:
example = c("Lisbon", "London")
gazzetteer(example)
## End(Not run)
```

12 get_geodata

get_geodata	Call a Large Language Model (LLM) to extract species geographic data

Description

Send an API request to extract species data from a document. For now only service = "GPT" is supported but more are planned including both proprietary and open source models. Uses the API...

Usage

```
get_geodata(
  path,
  user_key,
  service = "GPT",
  model = "gpt-3.5",
  tax = NULL,
  outpath = NULL,
  outliers = FALSE,
  verbose = TRUE
)
```

Arguments

path	character. string of a file with species data in either pdf or txt format, e.g: "./folder/file.pdf"
user_key	list. Two elements, first element is a character with the user's API key, second element is a logical Bool determining whether the user's account has access to premium features. Both free keys and premium keys are allowed.
service	character. Model to be used. Right now, only requests using OpenAI's chatGPT are available.
model	character. Model name from given service to be used. You may use any of the models listed on OpenAI's developer platform. If you are unsure which model to use, we recommend picking "gpt-3.5" (default) or "gpt-40", as these will pick our recommended model from that version.
tax	character. Binomial name of the species to specify extraction to. Most often increases performance of the model.
outpath	Character string of a path to save output to in the format "path/to/file/file_prefix".
outliers	logical. Whether or not results should be processed using the methods described in gecko::outliers.detect()
verbose	logical determining if output should be printed.

Value

matrix. Containing the extracted information.

See Also

```
arete_setup
```

Examples

```
## Not run:
file_path = arete_data("holzapfelae")

get_geodata(
   path = file_path,
   user_key = list(key = "your key here", premium = TRUE),
   model = "gpt-4o",
   outpath = "./out"
)
## End(Not run)
```

install_OCR_packages Update OCR dependencies

Description

Install python dependencies needed to run the optional OCR utilities in arete.

Usage

```
install_OCR_packages(envname = "arete", verbose = TRUE, ...)
```

Arguments

envname character. Name or path to the Python virtual environment being used for arete.

verbose logical. Determines if output should be printed.

Other parameters to pass to the installation function as per the documentation of py_install

Value

NULL. If any packages failed to install, a character listing which.

See Also

```
arete_setup
```

```
## Not run:
install_OCR_packages("./path/to/venv")
## End(Not run)
```

14 labels

```
install_python_packages
```

Update python dependencies

Description

Install python dependencies needed to run arete.

Usage

```
install_python_packages(envname, verbose = TRUE, ...)
```

Arguments

envname character. Name or path to the Python virtual environment being used for arete.

verbose logical. Determines if output should be printed.

... Other parameters to pass to the installation function as per the documentation of

py_install

Value

NULL. If any packages failed to install, a character listing which.

See Also

```
arete_setup
```

Examples

```
## Not run:
install_python_packages("./path/to/venv")
## End(Not run)
```

labels

Labels for model training

Description

Extract the labels and relations in a webanno file to an easy, machine readable format ready for machine learning projects.

labels 15

Usage

```
labels(
  data,
  label,
  relations = NULL,
  show_type = FALSE,
  show_tag = FALSE,
  show_ID = FALSE,
  handle_multiple = "duplicate"
)
```

Arguments

data character or WebAnnoTSV. The contents of a WebAnnoTSV v3.3 file as created

by webanno_open or a path leading to it.

label character. The main label. The relations must go FROM this term.

relations character. The set of relations you'd like to extract.

show_type logical. Add a column with the type of relation of the related terms.

show_tag logical. Add a column with the tags of the related terms.

show_ID logical. Add a column with the positional ID of the related terms.

handle_multiple

character. If there are multiple relations connecting to the same label, i.e. multiples locations, show should it be handled? Should duplicate rows be created or the content be merge'd?

Value

A list of dataframes, organized with columns for the corresponding line in the text, label and relations (if relations != NULL)

```
example = arete_data("annotations")[[1]]
labels(data = example, label = "Species", relations = "OCCURS")

labels(data = example,
label = c("TraitVal"), relations = c("meas_Sex"))

labels(data = example,
label = c("TraitVal"), relations = c("meas_trait", "meas_Sex", "meas_Unit"))

labels(data = example,
label = c("TraitVal"), relations = c("meas_trait", "meas_Sex", "meas_Unit"),
handle_multiple = "merge")
```

OCR_document

labels_unique Get the unique labels of a WebAnno document	labels_unique	Get the unique labels of a WebAnno document
---	---------------	---

Description

Returns the unique classifications in the document

Usage

```
labels_unique(data, info = "all")
```

Arguments

data character or WebAnnoTSV. The contents of a WebAnnoTSV v3.3 file as created

by webanno_open or a path leading to it.

info character. A choice of "labels", "relations" and "all" on what to extract.

Value

list. With up to two elements, \$labels and \$relations, containing the respective elements.

Examples

```
example = arete_data("annotations")[[1]]
labels_unique(example, info = "all")
```

OCR_document

Scan PDF with optical character recognition (OCR)

Description

Extract text contained under image form in a PDF through the use of optical character recognition software (OCR). Currently two options are available, method = "nougat" and method = "tesseract".

Usage

```
OCR_document(in_path, out_path, method = "nougat", verbose = TRUE)
```

Arguments

in_path	character. string of a file with species data in either pdf or txt format, e.g/folder/file.pdf
out_path	character. Binomial name of the species used with applicable type.
method	character. Method used for the OCR. Currently it defaults to the only available method, nougatOCR.
verbose	logical. Print output after finish.

performance_report 17

Details

For now OCR processing of documents is only supported on linux systems.

Value

character. Containing the extracted information.

See Also

```
arete_setup
```

Examples

```
## Not run:
OCR_document("path/to/file.pdf", "path/to/dir")
## End(Not run)
```

performance_report

Evaluate the performance of a LLM

Description

Produce a detailed report on the discrepancies between LLM extracted data and human annotated data for the same collection of files.

Usage

```
performance_report(
  human_data,
  model_data,
  full_locations = "coordinates",
  string_distance = "levenshtein",
  verbose = TRUE,
  rmds = TRUE,
  path = NULL
)
```

Arguments

human_data matrix. Ground truth dataset to compare the data extracted by a LLM.

model_data matrix. Dataset of location data, following the description under human_data.

full_locations character. Defines dataset structure. If "locations" then structure follows Species, Location, File. if "coordinates" then structure follows Species, Long, Lat, File. if "both" then structure follows Species, Location, Long, Lat, File.

18 performance_report

string_distance

character. Selects the method through which the proximity between two strings

is calculated, from those available under utils::adist().

verbose logical. Determines if output should be printed.

logical. Determines if more extensive R Markdown files should be created at rmds

path character. Directory to which the output of the function is saved.

Details

Four main metrics are calculated to report on the performance of the model for coordinates. These

• Accuracy, $\frac{TP}{TP+FP+FN}$, here defined as such in a system without True Negatives.

• Recall, $\frac{TP}{TP+FN}$, Kent et al. (1955)

• Precision, $\frac{TP}{TP+FP}$, Kent *et al.* (1955) • F1 score, $\frac{2}{\frac{1}{Precision} + \frac{1}{Sensitivity}}$, van Rijsbergen(1979).

Additional metrics are calculated, including: 1) a distance-weighed confusion matrix where the sum of each type of error (False Negatives and False Positives) is done by weights, calculated to be inverse to the mean euclidean distance of that data point to all others. This way errors that are close to existing data for that species will count less than those further way, i.e. a data point was hallucinated that was close to existing data or, a data point was missed that is already represented in the data. This adjusted confusion matrix is also presented along with versions of the four main metrics calculated with these values. To report on the performance of locations, by default the minimum Levenshtein distance (Levenshtein, 1966) between a term and all other terms is calculated. Which is defined as:

$$lev(a,b) = \begin{cases} |a| & if |b| = 0, \\ |b| & if |a| = 0, \\ lev(tail(a), tail(b)) & if head(a) = head(b), \\ 1 + min \begin{cases} lev(tail(a), b) \\ lev(a, tail(b)) & otherwise \\ lev(tail(a), tail(b)) \end{cases}$$

In short, the number of edits needed to turn one string a into string b.

Value

list. A confusion matrix is returned for every species per document, plus one for the entire process.

References

- Kent, A. et al. (1955). "Machine literature searching VIII. Operational criteria for designing information retrieval systems", American Documentation, 6(2), pp. 93-101. doi:10.1002/asi.5090060209.
- van Rijsbergen, C.J. (1979). "Information Retrieval", Architectural Press. ISBN: 978-0408709293.
- Levenshtein, V.I. (1966). "Binary codes capable of correcting deletions, insertions, and reversals", Soviet Physics-Doklady, 10(8), pp. 707-710 [Translated from Russian].

19 process_document

Examples

```
trial_data = arete::arete_data("holzapfelae-extract")
trial_data = cbind(trial_data[,1:2], arete::string_to_coords(trial_data[,3])[2:1], trial_data[,4:5])
trial_data = list(
  GT = trial_data[trial_data$Type == "Ground truth", 1:5],
  MD = trial_data[trial_data$Type == "Model", 1:5]
)
# make sure you run arete_setup() beforehand!
performance_report(
  trial_data$GT,
  trial_data$MD,
  full_locations = "both",
  verbose = FALSE,
  rmds = FALSE
)
```

process_document

Extract and process text from a document

Description

This function extracts text embedded in a .pdf or .txt file and processes it so it can be safely used by LLM API's.

Usage

```
process_document(path, extra_measures = NULL)
```

Arguments

path

character. Path leading to the desired PDF file.

extra_measures character. To be implemented. Some documents are especially difficult for LLM to process due to a variety of issues such as size and formatting. extra_measures tries to improve future performance by cropping the document given to only the central passage mentioning a specific species. "header" and, by extension, "both" require an mmd file that is the output of nougatOCR.

Value

character. Fully processed text.

```
path = arete_data("holzapfelae")
process_document(path)
extra_measures = list("mention", "Tricholathys spiralis")
```

20 string_to_coords

Description

This function standardizes species names and fixes a number of common typos and mistakes that commonly occur due to OCR.

Usage

```
process_species_names(species, processing = "all", enforce = FALSE)
```

Arguments

species character. String with the name of the species to be processed.

processing character. One of "trim", "sp nov", "hyphen broken", "abbreviate", "spacing"

and "all". By default set to "all", performing every edit.

enforce boolean. Remove non-conforming entries before returning.

Value

character. A string with the standardized species name.

Examples

```
process_species_names("macro - thele calpeiana sp. nov.")
```

string_to_coords

Convert strings to numerical coordinates

Description

Convert character strings containing geographic coordinates to sets of numeric values through a rule-based method. Useful as most LLM experience better and more consistent results when asked to return a single string instead of two separate values.

Usage

```
string_to_coords(coord_vector, verbose = TRUE)
```

Arguments

coord_vector character. A string containing potential geographic coordinates.

verbose logical. Whether or not to print the overall success of the function upon end.

WebAnnoTSV-class 21

Details

Will convert all strings to N, W for consistency's sake. In a future update the user will be able to specify the outcome format, e.g: "39°S 42°E".

Value

list. Contain latitude and longitude as the first and second elements, respectively.

Examples

```
example = c('N 39degrees05'53" E 26degrees21'57"', "39 ° 80 ' N , 32 ° 78 ' E", "30 ° 20'54.32 \" N , 78 ° 0'53.37 \" E", "19 ° 34 ' S 29 ° 10 ° E", "- 25.05012 S ; - 65.49622 W", "S 12 ° 06 ' , W 76 ° 57 '", "19 ° 34 ' S 29 ° 10 ° E", "19 ° 32 ' S 29 ° 08 ° E") string_to_coords(example)
```

WebAnnoTSV-class

WebAnno TSV v3.3 class creator.

Description

Crop raster layers to minimum size possible and uniformize NA values across layers.

webanno_open

Open a WebAnno TSV v3.3 file.

Description

Read the contents of a WebAnno TSV 3.3 file, a format for annotated text containing named entities and relations.

Usage

```
webanno_open(path, cut_to_content = FALSE)
```

Arguments

path character. A path to a WebAnno TSV v3.3 file.

cut_to_content logical. Restrict the output file to those sentences containing annotated labels and relations.

Details

One of the format types under use at https://inception-project.github.io/.

22 webanno_summary

Value

WebAnnoTSV. A list of dataframes, each named after the corresponding paragraph in the text.

Examples

```
example = system.file(paste0("extdata/insecta_annot_1.tsv"), package = "arete")
webanno_open(example)
```

webanno_summary

Summarize the contents of a group of WebAnno tsv files

Description

Returns

Usage

```
webanno_summary(input, goal = "relations", collected = TRUE, verbose = TRUE)
```

Arguments

input list of character or WebAnnoTSV. The contents of WebAnno TSV v3.3 files as

created by webanno_open or a set of paths leading to them.

goal character. One of "labels", "relations" or "all" determining what is summarized.
collected boolean. Organize the summary under a single dataframe, otherwise a list is

returned.

verbose boolean. Print the final output.

Value

dataframe.

```
example = arete_data("annotations")
webanno_summary(example)
```

Index

```
* large language models
    arete_package, 3
* package
    arete_package, 3
arete (arete_package), 3
arete_data, 2
arete_package, 3
arete_setup, 3, 5, 11, 13, 14, 17
aux_string_to_coords, 6
check_lang, 4, 7
cld2, 7
compare_IUCN, 5, 7
create_training_data, 4, 8
file_comparison, 4, 9
gazetteer, 4, 11
gecko::outliers.detect(), 12
get_geodata, 4, 12
install_OCR_packages, 3, 13
install_python_packages, 3, 14
labels, 4, 14
labels_unique, 4, 16
OCR_document, 4, 16
palmerpanguins::path_to_file(), 3
performance_report, 5, 17
process_document, 4, 19
process_species_names, 4, 20
py_install, 13, 14
readxl::readxl_example(), 3
string_to_coords, 4, 20
utils::adist(), 18
```

```
\label{eq:webanno_creator} \mbox{ (WebAnnoTSV-class), 21 } \\ \mbox{ webanno\_open, 4, 10, 15, 16, 21, 22 } \\ \mbox{ webanno\_summary, 4, 22 } \\ \mbox{ WebAnnoTSV-class, 21 } \\ \mbox{ } \mbox{
```