
Package ‘aweek’
July 22, 2025

Title Convert Dates to Arbitrary Week Definitions
Version 1.0.3
Description Which day a week starts depends heavily on the either the local or

professional context. This package is designed to be a lightweight solution
to easily switching between week-based date definitions.

Depends R (>= 3.0)
License MIT + file LICENSE
Encoding UTF-8
Suggests testthat, stats, roxygen2, knitr, rmarkdown, covr, spelling
RoxygenNote 7.2.1

URL https://www.repidemicsconsortium.org/aweek/

BugReports https://github.com/reconhub/aweek/issues/

VignetteBuilder knitr
Language en-US
NeedsCompilation no
Author Zhian N. Kamvar [aut, cre]
Maintainer Zhian N. Kamvar <zkamvar@gmail.com>
Repository CRAN
Date/Publication 2022-10-06 03:20:11 UTC

Contents
aweek-package . 2
as.aweek . 4
as.data.frame.aweek . 6
as.Date.aweek . 7
change_week_start . 8
date2week . 9
factor_aweek . 12
get_aweek . 12
print.aweek . 15
set_week_start . 17

1

https://www.repidemicsconsortium.org/aweek/
https://github.com/reconhub/aweek/issues/

2 aweek-package

Index 19

aweek-package Convert dates to weeks and back again

Description

The aweek package is a lightweight solution for converting dates to weeks that can start on any
weekday. It implements the aweek class, which can easily be converted to date and weeks that start
on different days.

Before you begin

When you work with aweek, you will want to make sure that you set the default week_start
variable to indicate which day of the week your weeks should begin. This can be done with
set_week_start(). It will ensure that all of your weeks will begin on the same day.

• get_week_start() returns the global week_start option

• set_week_start() sets the global week_start option

Conversions

Dates to weeks:
This conversion is the simplest because dates are unambiguous.

• date2week() converts dates, datetimes, and characters that look like dates to weeks
• as.aweek() is a wrapper around date2week() that converts dates and datetimes

Week numbers to weeks or dates:
If you have separate columns for week numbers and years, then this is the option for you. This
allows you to specify a different start for each week element using the start argument.

• get_aweek() converts week numbers (with years and days) to aweek objects.
• get_date() converts week numbers (with years and days) to Dates.

ISO week strings (YYYY-Www-d or YYYY-Www) to weeks or dates:

• as.aweek() converts ISO-week formatted strings to aweek objects.
• week2date() converts ISO-week formatted strings to Date.

aweek objects to dates or datetimes:
This conversion is simple for aweek objects since their week_start is unambiguous

• as.Date() converts to Date.
• as.POSIXlt() converts to POSIXlt.

aweek objects to characters:
You can strip the week_start attribute of the aweek object by converting to a character with
as.character()

aweek-package 3

Manipulating aweek objects

• trunc() removes the weekday element of the ISO week string.

• factor_aweek() does the same thing as trunc(), but will create a factor with levels spanning
all the weeks from the first week to the last week. Useful for creating tables with zero counts
for unobserved weeks.

• change_week_start() will change the week_start attribute and adjust the weeks accordingly
so that the dates will always be consistent.

When you combine aweek objects, they must have the same week_start attribute. Characters can be
added to aweek objects as long as they are in ISO week format and you can safely assume that they
start on the same weekday. Dates are trivial to add to aweek objects. See the aweek documentation
for details.

Author(s)

Maintainer: Zhian N. Kamvar <zkamvar@gmail.com>

See Also

Useful links:

• https://www.repidemicsconsortium.org/aweek/

• Report bugs at https://github.com/reconhub/aweek/issues/

Examples

At the beginning of your analysis, set the week start to the weeks you want
to use for reporting
ow <- set_week_start("Sunday")

convert dates to weeks
d <- as.Date(c("2014-02-11", "2014-03-04"))
w <- as.aweek(d)
w

get the week numbers
date2week(d, numeric = TRUE)

convert back to date
as.Date(w)

convert to factor
factor_aweek(w)

append a week
w[3] <- as.Date("2014-10-31")
w

change week start variable (if needed)
change_week_start(w, "Monday")

https://www.repidemicsconsortium.org/aweek/
https://github.com/reconhub/aweek/issues/

4 as.aweek

note that the date remains the same
as.Date(change_week_start(w, "Monday"))

Don't forget to reset the week_start at the end
set_week_start(ow)

as.aweek Convert characters or dates to aweek objects

Description

Convert characters or dates to aweek objects

Usage

as.aweek(x, week_start = get_week_start(), ...)

Default S3 method:
as.aweek(x, week_start = NULL, ...)

S3 method for class '`NULL`'
as.aweek(x, week_start = NULL, ...)

S3 method for class 'character'
as.aweek(x, week_start = get_week_start(), start = week_start, ...)

S3 method for class 'factor'
as.aweek(x, week_start = get_week_start(), ...)

S3 method for class 'Date'
as.aweek(x, week_start = get_week_start(), ...)

S3 method for class 'POSIXt'
as.aweek(x, week_start = get_week_start(), ...)

S3 method for class 'aweek'
as.aweek(x, week_start = NULL, ...)

Arguments

x a Date, POSIXct, POSIXlt, or a correctly formatted (YYYY-Www-d) character
string that represents the year, week, and weekday.

week_start a number indicating the start of the week based on the ISO 8601 standard from
1 to 7 where 1 = Monday OR an abbreviation of the weekdate in an English or
current locale. Note: using a non-English locale may render your code non-
portable. Defaults to the value of get_week_start()

... arguments passed on to date2week() and as.POSIXlt()

as.aweek 5

start an integer (or character) vector of days that the weeks start on for each corre-
sponding week. Defaults to the value of get_week_start(). Note that these
will not determine the final week.

Details

The as.aweek() will coerce character, dates, and datetime objects to aweek objects. Dates are
trivial to convert to weeks because there is only one correct way to convert them with any given
week_start.

There is a bit of nuance to be aware of when converting characters to aweek objects:

• The characters must be correctly formatted as YYYY-Www-d, where YYYY is the year relative
to the week, Www is the week number (ww) prepended by a W, and d (optional) is the day of
the week from 1 to 7 where 1 represents the week_start. This means that characters formatted
as dates will be rejected.

• By default, the week_start and start parameters are identical. If your data contains hetero-
geneous weeks (e.g. some dates will have the week start on Monday and some will have the
week start on Sunday), then you should use the start parameter to reflect this. Internally, the
weeks will first be converted to dates with their respective starts and then converted back to
weeks, unified under the week_start parameter.

Value

an aweek object

Note

factors are first converted to characters before they are converted to aweek objects.

See Also

"aweek-class" for details on the aweek object, get_aweek() for converting numeric weeks to weeks
or dates, date2week() for converting dates to weeks, week2date() for converting weeks to dates.

Examples

aweek objects can only be created from valid weeks:

as.aweek("2018-W10-5", week_start = 7) # works!
try(as.aweek("2018-10-5", week_start = 7)) # doesn't work :(

you can also convert dates or datetimes
as.aweek(Sys.Date())
as.aweek(Sys.time())

all functions get passed to date2week, so you can use any of its arguments:
as.aweek("2018-W10-5", week_start = 7, floor_day = TRUE, factor = TRUE)
as.aweek(as.Date("2018-03-09"), floor_day = TRUE, factor = TRUE)

If you have a character vector where different elements begin on different
days of the week, you can use the "start" argument to ensure they are

6 as.data.frame.aweek

correctly converted.
as.aweek(c(mon = "2018-W10-1", tue = "2018-W10-1"),

week_start = "Monday",
start = c("Monday", "Tuesday"))

you can convert aweek objects to aweek objects:
x <- get_aweek()
as.aweek(x)
as.aweek(x, week_start = 7)

as.data.frame.aweek Convert aweek objects to a data frame

Description

Convert aweek objects to a data frame

Usage

S3 method for class 'aweek'
as.data.frame(x, ...)

Arguments

x an aweek object

... unused

Value

a data frame with an aweek column

See Also

date2week() print.aweek()

Examples

d <- as.Date("2019-03-25") + 0:6
w <- date2week(d, "Sunday")
dw <- data.frame(date = d, week = w)
dw
dw$week

as.Date.aweek 7

as.Date.aweek Convert aweek objects to characters or dates

Description

Convert aweek objects to characters or dates

Usage

S3 method for class 'aweek'
as.Date(x, floor_day = FALSE, ...)

S3 method for class 'aweek'
as.POSIXlt(x, tz = "", floor_day = FALSE, ...)

S3 method for class 'aweek'
as.character(x, ...)

Arguments

x an object of class aweek.

floor_day when TRUE, the days will be set to the start of the week.

... parameters passed to as.POSIXlt().

tz passed on to as.POSIXlt()

See Also

date2week() print.aweek()

Examples

w <- date2week(Sys.Date(), week_start = "Sunday")
w
convert to POSIX
as.POSIXlt(w)
as.POSIXlt(w, floor_day = TRUE)
as.POSIXlt(w, floor_day = TRUE, tz = "KST")

convert to date
as.Date(w)
as.Date(w, floor_day = TRUE)

convert to character (strip attributes)
as.character(w)

8 change_week_start

change_week_start Change the week start of an aweek object

Description

This will change the week_start attribute of an aweek object and adjust the observations accordingly.

Usage

change_week_start(x, week_start = NULL, ...)

Arguments

x a Date, POSIXt, character, or any data that can be easily converted to a date with
as.POSIXlt().

week_start a number indicating the start of the week based on the ISO 8601 standard from
1 to 7 where 1 = Monday OR an abbreviation of the weekdate in an English or
current locale. Note: using a non-English locale may render your code non-
portable. Unlike date2week(), this defaults to NULL, which will throw an
error unless you supply a value.

... arguments passed to as.POSIXlt(), unused in all other cases.

See Also

get_week_start() for accessing the global and local week_start attribute, as.aweek(), which
wraps this function.

Examples

New Year's 2019 is the third day of the week starting on a Sunday
s <- date2week(as.Date("2019-01-01"), week_start = "Sunday")
s

It's the second day of the week starting on a Monday
m <- change_week_start(s, "Monday")
m

When you compare the underlying dates, they are exactly the same
identical(as.Date(s), as.Date(m))

Since this will pass arguments to `date2week()`, you can modify other
aspects of the aweek object this way, but this is not advised.

change_week_start(s, "Monday", floor_day = TRUE)

date2week 9

date2week Convert date to a an arbitrary week definition

Description

Convert date to a an arbitrary week definition

Usage

date2week(
x,
week_start = get_week_start(),
floor_day = factor,
numeric = FALSE,
factor = FALSE,
...

)

week2date(x, week_start = get_week_start(), floor_day = FALSE)

Arguments

x a Date, POSIXt, character, or any data that can be easily converted to a date with
as.POSIXlt().

week_start a number indicating the start of the week based on the ISO 8601 standard from
1 to 7 where 1 = Monday OR an abbreviation of the weekdate in an English or
current locale. Note: using a non-English locale may render your code non-
portable. Defaults to the value of get_week_start()

floor_day when TRUE, the days will be set to the start of the week.

numeric if TRUE, only the numeric week be returned. If FALSE (default), the date in the
format "YYYY-Www-d" will be returned.

factor if TRUE, a factor will be returned with levels spanning the range of dates. This
should only be used with floor_day = TRUE to produce the sequence of weeks
between the first and last date as the factor levels. Currently, floor_date =
FALSE will still work, but will produce a message indicating that it is deprecated.
Take caution when using this with a large date range as the resulting factor can
contain all days between dates.

... arguments passed to as.POSIXlt(), unused in all other cases.

Details

Weeks differ in their start dates depending on context. The ISO 8601 standard specifies that Mon-
day starts the week (https://en.wikipedia.org/wiki/ISO_week_date) while the US CDC uses
Sunday as the start of the week (https://stacks.cdc.gov/view/cdc/22305). For example, MSF
has varying start dates depending on country in order to better coordinate response.

https://en.wikipedia.org/wiki/ISO_week_date
https://stacks.cdc.gov/view/cdc/22305

10 date2week

While there are packages that provide conversion for ISOweeks and epiweeks, these do not provide
seamless conversion from dates to epiweeks with non-standard start dates. This package provides a
lightweight utility to be able to convert each day.

Value

• date2week() an aweek object which represents dates in YYYY-Www-d format where YYYY is the
year (associated with the week, not necessarily the day), Www is the week number prepended
by a "W" that ranges from 01-53 and d is the day of the week from 1 to 7 where 1 represents
the first day of the week (as defined by the week_start attribute).

• week2date() a Date object.

Note

date2week() will initially convert the input with as.POSIXlt() and use that to calculate the week.
If the user supplies character input, it is expected that the input will be of the format yyyy-mm-dd
unless the user explicitly passes the "format" parameter to as.POSIXlt(). If the input is not in
yyyy-mm-dd and the format parameter is not passed, date2week() will result in an error.

Author(s)

Zhian N. Kamvar

See Also

set_week_start(), as.Date.aweek(), print.aweek(), as.aweek(), get_aweek()

Examples

Dates to weeks ---

The same set of days will occur in different weeks depending on the start
date. Here we can define a week before and after today

print(dat <- as.Date("2018-12-31") + -6:7)

By default, the weeks are defined as ISO weeks, which start on Monday
print(iso_dat <- date2week(dat))

This can be changed by setting the global default with set_week_start()

set_week_start("Sunday")

date2week(dat)

If you want lubridate-style numeric-only weeks, you need look no further
than the "numeric" argument
date2week(dat, numeric = TRUE)

To aggregate weeks, you can use `floor_day = TRUE`
date2week(dat, floor_day = TRUE)

date2week 11

If you want aggregations into factors that include missing weeks, use
`floor_day = TRUE, factor = TRUE`:
date2week(dat[c(1, 14)], floor_day = TRUE, factor = TRUE)

Weeks to dates ---

The aweek class can be converted back to a date with `as.Date()`
as.Date(iso_dat)

If you don't have an aweek class, you can use week2date(). Note that the
week_start variable is set by the "aweek.week_start" option, which we will
set to Monday:

set_week_start("Monday")
week2date("2019-W01-1") # 2018-12-31

This can be overidden by the week_start argument;
week2date("2019-W01-1", week_start = "Sunday") # 2018-12-30

If you want to convert to the first day of the week, you can use the
`floor_day` argument
as.Date(iso_dat, floor_day = TRUE)

The same two week timespan starting on different days --------------------
ISO week definition: Monday -- 1
date2week(dat, 1)
date2week(dat, "Monday")

Tuesday -- 2
date2week(dat, 2)
date2week(dat, "Tuesday")

Wednesday -- 3
date2week(dat, 3)
date2week(dat, "W") # you can use valid abbreviations

Thursday -- 4
date2week(dat, 4)
date2week(dat, "Thursday")

Friday -- 5
date2week(dat, 5)
date2week(dat, "Friday")

Saturday -- 6
date2week(dat, 6)
date2week(dat, "Saturday")

Epiweek definition: Sunday -- 7
date2week(dat, 7)
date2week(dat, "Sunday")

12 get_aweek

factor_aweek Coerce an aweek object to factor to include missing weeks

Description

Coerce an aweek object to factor to include missing weeks

Usage

factor_aweek(x)

Arguments

x an aweek object

Value

an aweek object that inherits from factor() with levels that span the range of the weeks in the
object.

Note

when factored aweek objects are combined with other aweek objects, they are converted back to
characters.

Examples

w <- get_aweek(week = (1:2) * 5, year = 2019, day = c(7, 1))
w
wf <- factor_aweek(w)
wf

factors are destroyed if combined with aweek objects
c(w, wf)

get_aweek Convert week numbers to dates or aweek objects

Description

These are vectorized functions that take integer vectors and return Date or an aweek objects, making
it easier to convert bare weeks to dates.

get_aweek 13

Usage

get_aweek(
week = 1L,
year = format(Sys.Date(), "%Y"),
day = 1L,
start = week_start,
week_start = get_week_start(),
...

)

get_date(
week = 1L,
year = format(Sys.Date(), "%Y"),
day = 1L,
start = get_week_start()

)

Arguments

week an integer vector, defaults to 1, representing the first week of the year.

year an integer vector, defaults to the current year

day an integer vector, defaults to 1, representing the first day of the first week of the
year.

start an integer (or character) vector of days that the weeks start on for each corre-
sponding week. Defaults to the value of get_week_start(). Note that these
will not determine the final week.

week_start a number indicating the start of the week based on the ISO 8601 standard from
1 to 7 where 1 = Monday OR an abbreviation of the weekdate in an English or
current locale. Note: using a non-English locale may render your code non-
portable. Defaults to the value of get_week_start()

... parameters passed on to date2week()

Value

• get_aweek(): an aweek object

• get_date(): a Date object

Note

Any missing weeks, years, or start elements will result in a missing element in the resulting vector.
Any missing days will revert to the first day of the week.

See Also

as.aweek() date2week() week2date()

14 get_aweek

Examples

The default results in the first week of the year using the default
default week_start (from get_week_start())

get_aweek()
get_date() # this is equivalent to as.Date(get_week()), but faster

Some years, like 2015, have 53 weeks

get_aweek(53, 2015)

If you specify 53 weeks for a year that doesn't have 53 weeks, aweek will
happily correct it for you

get_aweek(53, 2014) # this will be 2015-W01-1

you can use this to quickly make a week without worrying about formatting
here, you can define an observation interval of 20 weeks

obs_start <- get_date(week = 10, year = 2018)
obs_end <- get_date(week = 29, year = 2018, day = 7)
c(obs_start, obs_end)

If you have a data frame of weeks, you can use it to convert easily

mat <- matrix(c(
2019, 11, 1, 7, # 2019-03-10
2019, 11, 2, 7,
2019, 11, 3, 7,
2019, 11, 4, 7,
2019, 11, 5, 7,
2019, 11, 6, 7,
2019, 11, 7, 7

), ncol = 4, byrow = TRUE)

colnames(mat) <- c("year", "week", "day", "start")
m <- as.data.frame(mat)
m
sun <- with(m, get_date(week, year, day, start))
sun
as.aweek(sun) # convert to aweek starting on the global week_start
as.aweek(sun, week_start = "Sunday") # convert to aweek starting on Sunday

You can also change starts
mon <- with(m, get_aweek(week, year, day, "Monday", week_start = "Monday"))
mon
as.Date(mon)

If you use multiple week starts, it will convert to date and then to
the correct week, so it won't appear to match up with the original
data frame.

print.aweek 15

sft <- with(m, get_aweek(week, year, day, 7:1, week_start = "Sunday"))
sft
as.Date(sft)

print.aweek The aweek class

Description

The aweek class is a character or factor in the format YYYY-Www(-d) with a "week_start" attribute
containing an integer specifying which day of the ISO 8601 week each week should begin.

Usage

S3 method for class 'aweek'
print(x, ...)

S3 method for class 'aweek'
x[i]

S3 method for class 'aweek'
x[[i]]

S3 replacement method for class 'aweek'
x[i] <- value

S3 method for class 'aweek'
as.list(x, ...)

S3 method for class 'aweek'
trunc(x, ...)

S3 method for class 'aweek'
rep(x, ...)

S3 method for class 'aweek'
c(..., recursive = FALSE, use.names = TRUE)

Arguments

x an object of class aweek

... a series of aweek objects, characters, or Dates, (unused in print.aweek())

i index for subsetting an aweek object.

value a value to add or replace in an aweek object
recursive, use.names

parameters passed on to unlist()

16 print.aweek

Details

Weeks differ in their start dates depending on context. The ISO 8601 standard specifies that Mon-
day starts the week (https://en.wikipedia.org/wiki/ISO_week_date) while the US CDC uses
Sunday as the start of the week (https://stacks.cdc.gov/view/cdc/22305). For example, MSF
has varying start dates depending on country in order to better coordinate response.

While there are packages that provide conversion for ISOweeks and epiweeks, these do not provide
seamless conversion from dates to epiweeks with non-standard start dates. This package provides a
lightweight utility to be able to convert each day.

Calculation of week numbers:
Week numbers are calculated in three steps:

1. Find the day of the week, relative to the week_start (d). The day of the week (d) relative to
the week start (s) is calculated using the ISO week day (i) via d = 1L + ((i + (7L - s)) %%
7L).

2. Find the date that represents midweek (m). The date that represents midweek is found by
subtracting the day of the week (d) from 4 and adding that number of days to the current
date: m = date + (4 - d).

3. Find the week number (w) by counting the number of days since 1 January to (m), and use
integer division by 7: w = 1L + ((m - yyyy-01-01) %/% 7)

For the weeks around 1 January, the year is determined by the week number. If the month is
January, but the week number is 52 or 53, then the year for the week (YYYY) is the calendar year
(yyyy) minus 1. However, if the month is December, but the week number is 1, then the year for
the week (YYYY) is the calendar year (yyyy) plus 1.

Structure of the aweek object:
The aweek object is a character vector in either the precise ISO week format (YYYY-Www-d)
or imprecise ISO week format (YYYY-Www) with a week_start attribute indicating which ISO
week day the week begins. The precise ISO week format can be broken down like this:

• YYYY is an ISO week-numbering year, which is the year relative to the week, not the day.
For example, the date 2016-01-01 would be represented as 2015-W53-5 (ISO week), because
while the date is in the year 2016, the week is still part of the final week of 2015.

• Www is the week number, prefixed by the character "W". This ranges from 01 to 52 or 53,
depending on whether or not the year has 52 or 53 weeks.

• d is a digit representing the weekday where 1 represents the first day of the week and 7
represents the last day of the week. #’ The attribute week_start represents the first day of
the week as an ISO week day. This defaults to 1, which is Monday. If, for example, an
aweek object represented weeks starting on Friday, then the week_start attribute would be
5, which is Friday of the ISO week.

Imprecise formats (YYYY-Www) are equivalent to the first day of the week. For example, 2015-
W53 and 2015-W53-1 will be identical when converted to date.

Value

an object of class aweek

https://en.wikipedia.org/wiki/ISO_week_date
https://stacks.cdc.gov/view/cdc/22305

set_week_start 17

Note

when combining aweek objects together, you must ensure that they have the same week_start at-
tribute. You can use change_week_start() to adjust it.

See Also

date2week(), get_aweek(), as.Date.aweek(), change_week_start()

Examples

d <- as.Date("2018-12-20") + 1:40
w <- date2week(d, week_start = "Sunday")
print(w)

subsetting acts as normal
w[1:10]

Combining multiple aweek objects will only work if they have the same
week_start day
c(w[1], w[3], w[5], as.aweek(as.Date("2018-12-01"), week_start = "Sunday"))

differing week_start days will throw an error
mon <- date2week(as.Date("2018-12-01"), week_start = "Monday")
mon
try(c(w, mon))

combining Dates will be coerced to aweek objects under the same rules
c(w, Sys.Date())

truncated aweek objects will be un-truncated
w2 <- date2week(d[1:5], week_start = "Sunday", floor_day = TRUE)
w2
c(w[1:5], w2)

set_week_start Get and set the global week_start variable

Description

This is a convenience wrapper around options() and getOption(), which allows users to input
both numeric and character week start values

Usage

set_week_start(x = 1L)

get_week_start(w = NULL)

18 set_week_start

Arguments

x a character or integer specifying the day of the week for conversion between
dates and weeks.

w if NULL, the global option "aweek.week_start" is returned. If w is an aweek
object, then the "week_start" attribute is returned.

Value

for set_week_start, the old value of week_start is returned, invisibly. For get_week_start, the
current value of week_start is returned.

See Also

change_week_start() for changing the week_start attribute of an aweek object, date2week(),
week2date()

Examples

get the current definition of the week start
get_week_start() # defaults to Monday (1)
getOption("aweek.week_start", 1L) # identical to above

set the week start
mon <- set_week_start("Sunday") # set week start to Sunday (7)
get_week_start()
print(set_week_start(mon)) # reset the default
get_week_start()

Get the week_start of a specific aweek object.
w <- date2week("2019-05-04", week_start = "Sunday")
get_week_start(w)

Index

[.aweek (print.aweek), 15
[<-.aweek (print.aweek), 15
[[.aweek (print.aweek), 15

as.aweek, 4
as.aweek(), 2, 8, 10, 13
as.character(), 2
as.character.aweek (as.Date.aweek), 7
as.data.frame.aweek, 6
as.Date(), 2
as.Date.aweek, 7
as.Date.aweek(), 10, 17
as.list.aweek (print.aweek), 15
as.POSIXlt(), 2, 4, 7–10
as.POSIXlt.aweek (as.Date.aweek), 7
aweek, 2, 3, 5, 7, 10
aweek (aweek-package), 2
aweek class, 2
aweek objects, 2
aweek-class (print.aweek), 15
aweek-package, 2

c.aweek (print.aweek), 15
change_week_start, 8
change_week_start(), 3, 17, 18
character, 8, 9

Date, 2, 4, 8–10
date2week, 9
date2week(), 2, 4–8, 13, 17, 18
Dates, 2

factor(), 12
factor_aweek, 12
factor_aweek(), 3

get_aweek, 12
get_aweek(), 2, 5, 10, 17
get_date (get_aweek), 12
get_date(), 2
get_week_start (set_week_start), 17

get_week_start(), 2, 4, 5, 8, 9, 13
getOption(), 17

options(), 17

POSIXct, 4
POSIXlt, 2, 4
POSIXt, 8, 9
print.aweek, 15
print.aweek(), 6, 7, 10

rep.aweek (print.aweek), 15

set_week_start, 17
set_week_start(), 2, 10

trunc(), 3
trunc.aweek (print.aweek), 15

unlist(), 15

week2date (date2week), 9
week2date(), 2, 5, 13, 18

19

	aweek-package
	as.aweek
	as.data.frame.aweek
	as.Date.aweek
	change_week_start
	date2week
	factor_aweek
	get_aweek
	print.aweek
	set_week_start
	Index

