
Package ‘batchmix’
July 22, 2025

Type Package

Title Semi-Supervised Bayesian Mixture Models Incorporating Batch
Correction

License GPL-3

Version 2.2.1

Description Semi-supervised and unsupervised Bayesian mixture models that
simultaneously infer the cluster/class structure and a batch correction.
Densities available are the multivariate normal and the multivariate t.
The model sampler is implemented in C++. This package is aimed at analysis of
low-dimensional data generated across several batches. See Coleman et al.
(2022) <doi:10.1101/2022.01.14.476352> for details of the model.

Imports Rcpp (>= 1.0.5), tidyr, ggplot2, salso

LinkingTo Rcpp, RcppArmadillo

Suggests xml2, knitr, rmarkdown

SystemRequirements GNU make

Encoding UTF-8

URL https://github.com/stcolema/batchmix

BugReports https://github.com/stcolema/batchmix/issues

RoxygenNote 7.3.1

VignetteBuilder knitr, rmarkdown

NeedsCompilation yes

Author Stephen Coleman [aut, cre],
Paul Kirk [aut],
Chris Wallace [aut]

Maintainer Stephen Coleman <stcolema@tcd.ie>

Repository CRAN

Date/Publication 2024-05-21 10:40:16 UTC

1

https://doi.org/10.1101/2022.01.14.476352
https://github.com/stcolema/batchmix
https://github.com/stcolema/batchmix/issues


2 Contents

Contents
batchmix-package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
batchSemiSupervisedMixtureModel . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
calcAllocProb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
checkDataGenerationInputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
checkProposalWindows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
collectAcceptanceRates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
continueChain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
continueChains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
createSimilarityMat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
gammaLogLikelihood . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
generateBatchData . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
generateBatchDataLogPoisson . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
generateBatchDataMVT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
generateBatchDataVaryingRepresentation . . . . . . . . . . . . . . . . . . . . . . . . . 21
generateGroupIDsInSimulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
generateInitialLabels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
getLikelihood . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
getSampledBatchScale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
getSampledBatchShift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
getSampledClusterMeans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
invGammaLogLikelihood . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
invWishartLogLikelihood . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
minVI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
plotAcceptanceRates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
plotLikelihoods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
plotSampledBatchMeans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
plotSampledBatchScales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
plotSampledClusterMeans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
plotSampledParameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
predictClass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
predictFromMultipleChains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
prepareInitialParameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
processMCMCChain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
processMCMCChains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
rStickBreakingPrior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
runBatchMix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
runMCMCChains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
sampleMVN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
sampleMVT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
samplePriorLabels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
sampleSemisupervisedMVN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
sampleSemisupervisedMVT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
VI.lb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
wishartLogLikelihood . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Index 62



batchmix-package 3

batchmix-package Bayesian Mixture Modelling for Joint Model-Based Cluster-
ing/Classification and Batch Correction

Description

Semi-supervised and unsupervised Bayesian mixture models that simultaneously infer the clus-
ter/class structure and a batch correction. Densities available are the multivariate normal and the
multivariate t. The model sampler is implemented in C++. This package is aimed at analysis of low-
dimensional data generated across several batches. See (Coleman et al. (2022))[https://doi.org/10.1101/2022.01.14.476352]
for details of the model.

Author(s)

Stephen Coleman <stcolema@tcd.ie>, Paul D.W. Kirk, Chris Wallace

See Also

Useful links:

• https://github.com/stcolema/batchmix

• Report bugs at https://github.com/stcolema/batchmix/issues

Examples

# Data in a matrix format
X <- matrix(c(rnorm(100, 0, 1), rnorm(100, 3, 1)), ncol = 2, byrow = TRUE)

# Initial labelling
labels <- c(

rep(1, 10),
sample(c(1, 2), size = 40, replace = TRUE),
rep(2, 10),
sample(c(1, 2), size = 40, replace = TRUE)

)

# Which labels are observed
fixed <- c(rep(1, 10), rep(0, 40), rep(1, 10), rep(0, 40))

# Batch
batch_vec <- sample(seq(1, 5), replace = TRUE, size = 100)

# Sampling parameters
R <- 1000
thin <- 50

# Classification
samples <- runBatchMix(X,

R,

https://github.com/stcolema/batchmix
https://github.com/stcolema/batchmix/issues
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thin,
batch_vec,
"MVN",
initial_labels = labels,
fixed = fixed,

)

# Clustering
samples <- runBatchMix(X, R, thin, batch_vec, "MVT")

batchSemiSupervisedMixtureModel

Batch semisupervised mixture model

Description

A Bayesian mixture model with batch effects.

Usage

batchSemiSupervisedMixtureModel(
X,
R,
thin,
initial_labels,
fixed,
batch_vec,
type,
K_max = length(unique(initial_labels)),
alpha = NULL,
concentration = NULL,
mu_proposal_window = 0.5^2,
cov_proposal_window = 0.002,
m_proposal_window = 0.3^2,
S_proposal_window = 0.01,
t_df_proposal_window = 0.015,
m_scale = NULL,
rho = 3,
theta = 1,
initial_class_means = NULL,
initial_class_covariance = NULL,
initial_batch_shift = NULL,
initial_batch_scale = NULL,
initial_class_df = NULL,
verbose = TRUE

)
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Arguments

X Data to cluster as a matrix with the items to cluster held in rows.

R The number of iterations in the sampler.

thin The factor by which the samples generated are thinned, e.g. if “thin=50“ only
every 50th sample is kept.

initial_labels Initial clustering.

fixed Which items are fixed in their initial label.

batch_vec Labels identifying which batch each item being clustered is from.

type Character indicating density type to use. One of ’MVN’ (multivariate normal
distribution) or ’MVT’ (multivariate t distribution).

K_max The number of components to include (the upper bound on the number of clus-
ters in each sample). Defaults to the number of unique labels in “initial_labels“.

alpha The concentration parameter for the stick-breaking prior and the weights in the
model.

concentration Initial concentration vector for component weights.
mu_proposal_window

The proposal window for the cluster mean proposal kernel. The proposal density
is a Gaussian distribution, the window is the variance.

cov_proposal_window

The proposal window for the cluster covariance proposal kernel. The proposal
density is a Wishart distribution, this argument is the reciprocal of the degree of
freedom.

m_proposal_window

The proposal window for the batch mean proposal kernel. The proposal density
is a Gaussian distribution, the window is the variance.

S_proposal_window

The proposal window for the batch standard deviation proposal kernel. The
proposal density is a Gamma distribution, this argument is the reciprocal of the
rate.

t_df_proposal_window

The proposal window for the degrees of freedom for the multivariate t distribu-
tion (not used if type is not ’MVT’). The proposal density is a Gamma distribu-
tion, this argument is the reciprocal of the rate.

m_scale The scale hyperparameter for the batch shift prior distribution. This defines the
scale of the batch effect upon the mean and should be in (0, 1].

rho The shape of the prior distribution for the batch scale.

theta The scale of the prior distribution for the batch scale.
initial_class_means

A $P x K$ matrix of initial values for the class means. Defaults to draws from
the prior distribution.

initial_class_covariance

A $P x P x K$ array of initial values for the class covariance matrices. Defaults
to draws from the prior distribution.
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initial_batch_shift

A $P x B$ matrix of initial values for the batch shift effect Defaults to draws
from the prior distribution.

initial_batch_scale

A $P x B$ matrix of initial values for the batch scales Defaults to draws from
the prior distribution.

initial_class_df

A $K$ vector of initial values for the class degrees of freedom. Defaults to
draws from the prior distribution.

verbose Logiccal indicating if warning about proposal windows should be printed.

Value

A named list containing the sampled partitions, cluster and batch parameters, model fit measures
and some details on the model call.

Examples

# Data in a matrix format
X <- matrix(c(rnorm(100, 0, 1), rnorm(100, 3, 1)), ncol = 2, byrow = TRUE)

# Initial labelling
labels <- c(

rep(1, 10),
sample(c(1, 2), size = 40, replace = TRUE),
rep(2, 10),
sample(c(1, 2), size = 40, replace = TRUE)

)

fixed <- c(rep(1, 10), rep(0, 40), rep(1, 10), rep(0, 40))

# Batch
batch_vec <- sample(seq(1, 5), replace = TRUE, size = 100)

# Density choice
type <- "MVN"

# Sampling parameters
R <- 1000
thin <- 50

# MCMC samples and BIC vector
samples <- batchSemiSupervisedMixtureModel(

X,
R,
thin,
labels,
fixed,
batch_vec,
type

)
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# Given an initial value for the parameters
initial_class_means <- matrix(c(1, 1, 3, 4), nrow = 2)
initial_class_covariance <- array(c(1, 0, 0, 1, 1, 0, 0, 1),

dim = c(2, 2, 2)
)

# We can use values from a previous chain
initial_batch_shift <- samples$batch_shift[, , R / thin]
initial_batch_scale <- matrix(

c(1.2, 1.3, 1.7, 1.1, 1.4, 1.3, 1.2, 1.2, 1.1, 2.0),
nrow = 2

)

samples <- batchSemiSupervisedMixtureModel(X,
R,
thin,
labels,
fixed,
batch_vec,
type,
initial_class_means = initial_class_means,
initial_class_covariance = initial_class_covariance,
initial_batch_shift = initial_batch_shift,
initial_batch_scale = initial_batch_scale

)

calcAllocProb Calculate allocation probabilities

Description

Calculate the empirical allocation probability for each class based on the sampled allocation prob-
abilities.

Usage

calcAllocProb(mcmc_samples, burn = 0, method = "median")

Arguments

mcmc_samples Output from “batchSemiSupervisedMixtureModel“.
burn The number of samples to discard.
method The point estimate to use. “method = ’mean’“ or “method = ’median’“. “’me-

dian’“ is the default.

Value

An N x K matrix of class probabilities.
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Examples

# Data in matrix format
X <- matrix(c(rnorm(100, 0, 1), rnorm(100, 3, 1)), ncol = 2, byrow = TRUE)

# Initial labelling
labels <- c(

rep(1, 10),
sample(c(1, 2), size = 40, replace = TRUE),
rep(2, 10),
sample(c(1, 2), size = 40, replace = TRUE)

)

fixed <- c(rep(1, 10), rep(0, 40), rep(1, 10), rep(0, 40))

# Batch
batch_vec <- sample(seq(1, 5), replace = TRUE, size = 100)

# Sampling parameters
R <- 1000
thin <- 50

# MCMC samples and BIC vector
samples <- batchSemiSupervisedMixtureModel(X, R, thin, labels, fixed, batch_vec, "MVN")

# Burn in
burn <- 20
eff_burn <- burn / thin

# Probability across classes
probs <- calcAllocProb(samples, burn = burn)

checkDataGenerationInputs

Check data generation inputs

Description

Checks that the inputs for the “generateBatchData“ function are correct. For internal use only.

Usage

checkDataGenerationInputs(
N,
P,
group_means,
group_std_devs,
batch_shift,
batch_scale,
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group_weights,
batch_weights,
type,
group_dfs,
frac_known,
permute_variables,
scale_data

)

Arguments

N The number of items (rows) to generate.

P The number of columns in the generated dataset.

group_means A vector of the group means for a column.

group_std_devs A vector of group standard deviations for a column.

batch_shift A vector of batch means in a column.

batch_scale A vector of batch standard deviations within a column.

group_weights A K x B matrix of the expected proportion of N in each group in each batch.

batch_weights A vector of the expected proportion of N in each batch.

type A string indicating if data should be generated from multivariate normal ("MVN")
or multivariate t ("MVT") densities.

group_dfs A K-vector of the group specific degrees of freedom.

frac_known The number of items with known labels.
permute_variables

Logical indicating if group and batch means and standard deviations should be
permuted in each column or not.

scale_data Logical indicating if data should be mean centred and standardised.

Value

No return value, called for side effects.

Examples

N <- 500
P <- 2
K <- 2
B <- 5
mean_dist <- 4
batch_dist <- 0.3
group_means <- seq(1, K) * mean_dist
batch_shift <- rnorm(B, mean = batch_dist, sd = batch_dist)
group_std_devs <- rep(2, K)
batch_scale <- rep(1.2, B)
group_weights <- rep(1 / K, K)
batch_weights <- rep(1 / B, B)
type <- "MVT"
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group_dfs <- c(4, 7)
frac_known <- 0.3
permute_variables <- TRUE
scale_data <- FALSE

checkDataGenerationInputs(
N,
P,
group_means,
group_std_devs,
batch_shift,
batch_scale,
group_weights,
batch_weights,
type,
group_dfs,
frac_known,
permute_variables,
scale_data

)

checkProposalWindows Check proposal windows

Description

Checks the proposal windows are acceptable.

Usage

checkProposalWindows(
mu_proposal_window,
cov_proposal_window,
m_proposal_window,
S_proposal_window,
t_df_proposal_window,
verbose = TRUE

)

Arguments

mu_proposal_window

The proposal window for the cluster mean proposal kernel. The proposal density
is a Gaussian distribution, the window is the variance.

cov_proposal_window

The proposal window for the cluster covariance proposal kernel. The proposal
density is a Wishart distribution, this argument is the reciprocal of the degree of
freedom.
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m_proposal_window

The proposal window for the batch mean proposal kernel. The proposal density
is a Gaussian distribution, the window is the variance.

S_proposal_window

The proposal window for the batch standard deviation proposal kernel. The
proposal density is a Gamma distribution, this argument is the reciprocal of the
rate.

t_df_proposal_window

The proposal window for the degrees of freedom for the multivariate t distribu-
tion (not used if type is not ’MVT’). The proposal density is a Gamma distribu-
tion, this argument is the reciprocal of the rate.

verbose Logical indicating if a warning should be printed if proposal windows are out-
side their expected scale.

Value

No return value, called for side effects

Examples

checkProposalWindows(0.1, 0.2, 0.3, 0.1, 0.4, 0.3)

collectAcceptanceRates

Collect acceptance rate

Description

Collects the acceptance rates for each parameter into a data.frame

Usage

collectAcceptanceRates(samples)

Arguments

samples The output of “runBatchMix“.

Value

A wide data.frame of all the sampled parameters and the iteration.
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Examples

# Data in a matrix format
X <- matrix(c(rnorm(100, 0, 1), rnorm(100, 3, 1)), ncol = 2, byrow = TRUE)

# Initial labelling
labels <- c(

rep(1, 10),
sample(c(1, 2), size = 40, replace = TRUE),
rep(2, 10),
sample(c(1, 2), size = 40, replace = TRUE)

)

fixed <- c(rep(1, 10), rep(0, 40), rep(1, 10), rep(0, 40))

# Batch
batch_vec <- sample(seq(1, 5), replace = TRUE, size = 100)

# Sampling parameters
R <- 1000
thin <- 50

# MCMC samples
samples <- runBatchMix(X, R, thin, batch_vec, "MVN",

initial_labels = labels,
fixed = fixed

)

# Acceptance rates
collectAcceptanceRates(samples)

continueChain Continue chain

Description

Continues sampling from a previous position for a given chain.

Usage

continueChain(mcmc_output, X, fixed, batch_vec, R, keep_old_samples = TRUE)

Arguments

mcmc_output Chain to be continued.

X Data to cluster as a matrix with the items to cluster held in rows.

fixed The indicator vector for which labels are observed.

batch_vec The vector of the batch labels for the data.
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R The number of iterations to run in this continuation (thinning factor is the same
as initial chain).

keep_old_samples

Logical indicating if the original samples should be kept or only the new samples
returned. Defaults to TRUE.

Value

A named list containing the sampled partitions, cluster and batch parameters, model fit measures
and some details on the model call.

Examples

# Data in a matrix format
X <- matrix(c(rnorm(100, 0, 1), rnorm(100, 3, 1)), ncol = 2, byrow = TRUE)

# Initial labelling
labels <- c(

rep(1, 10),
sample(c(1, 2), size = 40, replace = TRUE),
rep(2, 10),
sample(c(1, 2), size = 40, replace = TRUE)

)

fixed <- c(rep(1, 10), rep(0, 40), rep(1, 10), rep(0, 40))

# Batch
batch_vec <- sample(seq(1, 5), replace = TRUE, size = 100)

# Density choice
type <- "MVT"

# Sampling parameters
R <- 1000
thin <- 50

# MCMC samples and BIC vector
mcmc_output <- runBatchMix(

X,
R,
thin,
batch_vec,
type,
initial_labels = labels,
fixed = fixed

)

# Given an initial value for the parameters
mcmc_output <- continueChain(

mcmc_output,
X,
fixed,
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batch_vec,
R,

)

continueChains Continue chains

Description

Continues sampling from a list of previous chains.

Usage

continueChains(mcmc_output, X, fixed, batch_vec, R, keep_old_samples = TRUE)

Arguments

mcmc_output Chains to be continued.

X Data to cluster as a matrix with the items to cluster held in rows.

fixed The indicator vector for which labels are observed.

batch_vec The vector of the batch labels for the data.

R The number of iterations to run in this continuation (thinning factor is the same
as initial chain).

keep_old_samples

Logical indicating if the original samples should be kept or only the new samples
returned. Defaults to TRUE.

Value

A named list containing the sampled partitions, cluster and batch parameters, model fit measures
and some details on the model call.

Examples

# Data in a matrix format
X <- matrix(c(rnorm(100, 0, 1), rnorm(100, 3, 1)), ncol = 2, byrow = TRUE)

# Initial labelling
labels <- c(

rep(1, 10),
sample(c(1, 2), size = 40, replace = TRUE),
rep(2, 10),
sample(c(1, 2), size = 40, replace = TRUE)

)

fixed <- c(rep(1, 10), rep(0, 40), rep(1, 10), rep(0, 40))
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# Batch
batch_vec <- sample(seq(1, 5), replace = TRUE, size = 100)

# Density choice
type <- "MVT"

# Sampling parameters
R <- 1000
thin <- 50
n_chains <- 4

# MCMC samples
mcmc_output <- runMCMCChains(

X,
n_chains,
R,
thin,
batch_vec,
type,
initial_labels = labels,
fixed = fixed

)

# Given an initial value for the parameters
new_output <- continueChains(

mcmc_output,
X,
fixed,
batch_vec,
R,
keep_old_samples = TRUE

)

createSimilarityMat Create Similarity Matrix

Description

Constructs a similarity matrix of the pairwise coclustering rate.

Usage

createSimilarityMat(allocations)

Arguments

allocations Matrix of sampled partitions. Columns correspond to items/samples being clus-
tered, each row is a sampled partition.//’
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Value

A symmetric n x n matrix (for n rows in cluster record) describing the fraction of iterations for
which each pairwise combination of points are assigned the same label.

gammaLogLikelihood Gamma log-likelihood

Description

Used in calculating model probability in Metropolis-Hastings algorithm when proposals are from
the Gamma distribution.

Usage

gammaLogLikelihood(x, shape, rate)

Arguments

x - double; the value to calculate the unnormalised likelihood of.

shape - double; the shape of the Gamma distribution.

rate - double; the rate of the Gamma distribution

Value

the unnormalised log-likelihood of x in a Gamma with parameters shape and rate.

generateBatchData Generate batch data

Description

Generate data from K multivaraite normal or multivariate t distributions with additional noise from
batches. Assumes independence across columns. In each column the parameters are randomly
permuted for both the groups and batches.

Usage

generateBatchData(
N,
P,
group_means,
group_std_devs,
batch_shift,
batch_scale,
group_weights,
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batch_weights,
type = "MVN",
group_dfs = NULL,
frac_known = 0.2,
permute_variables = TRUE,
scale_data = FALSE

)

Arguments

N The number of items (rows) to generate.

P The number of columns in the generated dataset.

group_means A vector of the group means for a column.

group_std_devs A vector of group standard deviations for a column.

batch_shift A vector of batch means in a column.

batch_scale A vector of batch standard deviations within a column.

group_weights One of either a K x B matrix of the expected proportion of each batch in each
group or a K-vector of the expected proportion of the entire dataset in each
group.

batch_weights A vector of the expected proportion of N in each batch.

type A string indicating if data should be generated from multivariate normal ("MVN")
or multivariate t ("MVT") densities (defaults to "MVN").

group_dfs A K-vector of the group specific degrees of freedom.

frac_known The number of items with known labels.
permute_variables

Logical indicating if group and batch means and standard deviations should be
permuted in each column or not (defaults to “TRUE“).

scale_data Logical indicating if data should be mean centred and standardised (defaults to
“FALSE“).

Value

A list of 5 objects; the data generated from the groups with and without batch effects, the label
indicating the generating group, the batch label and the vector indicating training versus test.

Examples

N <- 500
P <- 2
K <- 2
B <- 5
mean_dist <- 4
batch_dist <- 0.3
group_means <- seq(1, K) * mean_dist
batch_shift <- rnorm(B, mean = batch_dist, sd = batch_dist)
std_dev <- rep(2, K)
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batch_var <- rep(1.2, B)
group_weights <- rep(1 / K, K)
batch_weights <- rep(1 / B, B)
dfs <- c(4, 7)
my_data <- generateBatchData(

N,
P,
group_means,
std_dev,
batch_shift,
batch_var,
group_weights,
batch_weights,
type = "MVT",
group_dfs = dfs

)

generateBatchDataLogPoisson

Generate batch data

Description

Generate data from K multivaraite normal or multivariate t distributions with additional noise from
batches. Assumes independence across columns. In each column the parameters are randomly
permuted for both the groups and batches.

Usage

generateBatchDataLogPoisson(
N,
P,
group_rates,
batch_rates,
group_weights,
batch_weights,
frac_known = 0.2,
permute_variables = TRUE,
scale_data = FALSE

)

Arguments

N The number of items (rows) to generate.

P The number of columns in the generated dataset.

group_rates A vector of the group rates for the classes within a column.
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batch_rates A vector of the batch rates for the classes within a column. This is used to create
a variable which has the sum of the appropriate batch and class rate, it might be
better interpreted as the batch effect on the observed rate.

group_weights One of either a K x B matrix of the expected proportion of each batch in each
group or a K-vector of the expected proportion of the entire dataset in each
group.

batch_weights A vector of the expected proportion of N in each batch.

frac_known The number of items with known labels.
permute_variables

Logical indicating if group and batch means and standard deviations should be
permuted in each column or not (defaults to “TRUE“).

scale_data Logical indicating if data should be mean centred and standardised (defaults to
“FALSE“).

Value

A list of 5 objects; the data generated from the groups with and without batch effects, the label
indicating the generating group, the batch label and the vector indicating training versus test.

generateBatchDataMVT Generate batch data from a multivariate t distribution

Description

Generate data from K multivariate t distributions with additional noise from batches. Assumes
independence across columns. In each column the parameters are randomly permuted for both the
groups and batches.

Usage

generateBatchDataMVT(
N,
P,
group_means,
group_std_devs,
batch_shift,
batch_scale,
group_weights,
batch_weights,
dfs,
frac_known = 0.2

)
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Arguments

N The number of items (rows) to generate.

P The number of columns in the generated dataset.

group_means A vector of the group means for a column.

group_std_devs A vector of group standard deviations for a column.

batch_shift A vector of batch means in a column.

batch_scale A vector of batch standard deviations within a column.

group_weights A K x B matrix of the expected proportion of N in each group in each batch.

batch_weights A vector of the expected proportion of N in each batch.

dfs A K-vector of the group specific degrees of freedom.

frac_known The number of items with known labels.

Value

A list of 5 objects; the data generated from the groups with and without batch effects, the label
indicating the generating group, the batch label and the vector indicating training versus test.

Examples

N <- 500
P <- 2
K <- 2
B <- 5
mean_dist <- 4
batch_dist <- 0.3
group_means <- seq(1, K) * mean_dist
batch_shift <- rnorm(B, mean = batch_dist, sd = batch_dist)
std_dev <- rep(2, K)
batch_var <- rep(1.2, B)
group_weights <- rep(1 / K, K)
batch_weights <- rep(1 / B, B)
dfs <- c(4, 7)
my_data <- generateBatchDataMVT(

N,
P,
group_means,
std_dev,
batch_shift,
batch_var,
group_weights,
batch_weights,
dfs

)
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generateBatchDataVaryingRepresentation

Generate batch data

Description

Generate data from groups across batches. Assumes independence across columns. In each column
the parameters are randomly permuted for both the groups and batches.

Usage

generateBatchDataVaryingRepresentation(
N,
P,
group_means,
group_std_dev,
batch_shift,
batch_scale,
group_weights,
batch_weights,
frac_known = 0.2

)

Arguments

N The number of items (rows) to generate.

P The number of columns in the generated dataset.

group_means A vector of the group means for a column.

group_std_dev A vector of group standard deviations for a column.

batch_shift A vector of batch means in a column.

batch_scale A vector of batch standard deviations within a column.

group_weights A K x B matrix of the expected proportion of N in each group in each batch.

batch_weights A vector of the expected proportion of N in each batch.

frac_known The expected fraction of observed labels. Used to generate a “fixed“ vector to
feed into the “batchSemiSupervisedMixtureModel“ function.

Value

A list of 4 objects; the data generated from the groups with and without batch effects, the label
indicating the generating group and the batch label.
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Examples

N <- 500
P <- 2
K <- 2
B <- 5
mean_dist <- 4
batch_dist <- 0.3
group_means <- seq(1, K) * mean_dist
batch_shift <- rnorm(B, mean = batch_dist, sd = batch_dist)
std_dev <- rep(2, K)
batch_var <- rep(1.2, B)
group_weights <- matrix(

c(
0.8, 0.6, 0.4, 0.2, 0.2,
0.2, 0.4, 0.6, 0.8, 0.8

),
nrow = K, ncol = B, byrow = TRUE

)
batch_weights <- rep(1 / B, B)

my_data <- generateBatchDataVaryingRepresentation(
N,
P,
group_means,
std_dev,
batch_shift,
batch_var,
group_weights,
batch_weights

)

generateGroupIDsInSimulator

Generate group IDs

Description

Generate group IDs within “generateBatchData“.

Usage

generateGroupIDsInSimulator(
N,
K,
B,
batch_IDs,
group_weights,
varying_group_within_batch

)
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Arguments

N The number of items (rows) to generate.

K The number of groups to genetare.

B The number of batches present in “batch_IDs“.

batch_IDs The batch membership of each item.

group_weights One of either a K x B matrix of the expected proportion of each batch in each
group or a K-vector of the expected proportion of the entire dataset in each
group.

varying_group_within_batch

Flag indicating if the groups are vvarying across batches.

Value

A N-vector of group membership.

Examples

N <- 500
K <- 2
B <- 5
group_weights <- rep(1 / K, K)
batch_weights <- rep(1 / B, B)
batch_IDs <- sample(seq(1, B), N, replace = TRUE, prob = batch_weights)
varying_group_within_batch <- FALSE
group_IDs <- generateGroupIDsInSimulator(

N,
K,
B,
batch_IDs,
group_weights,
varying_group_within_batch

)

generateInitialLabels Generate initial labels

Description

For simulated data, generates an initial labelling for sampling.

Usage

generateInitialLabels(alpha, K, fixed, labels = NULL)
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Arguments

alpha The mass in the stick breaking prior

K The number of classes available.

fixed The vector of 0s and 1s indicating which labels are to be held fixed.

labels The initial labelling. Defaults to NULL.

Value

An N vector of labels.

Examples

N <- 500
P <- 2
K <- 2
B <- 5
mean_dist <- 4
batch_dist <- 0.3
cluster_means <- seq(1, K) * mean_dist
batch_shift <- rnorm(B, mean = batch_dist, sd = batch_dist)
std_dev <- rep(2, K)
batch_var <- rep(1.2, B)
cluster_weights <- rep(1 / K, K)
batch_weights <- rep(1 / B, B)

my_data <- generateBatchData(
N,
P,
cluster_means,
std_dev,
batch_shift,
batch_var,
cluster_weights,
batch_weights

)

initial_labels <- generateInitialLabels(1, K, my_data$fixed)

getLikelihood Get likelihood

Description

Extracts the model fit score from the mixture model output.

Usage

getLikelihood(mcmc_output, choice = "complete_likelihood")
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Arguments

mcmc_output The output from the mixture model.

choice The model fit score to use. Must be one of “’observed_likelihood’“, “’com-
plete_likelihood’“ or “’BIC’“. Defaults to “’complete_likelihood’“.

Value

A data.frame containing the model fit score of choice and the iteration.

Examples

# Data in a matrix format
X <- matrix(c(rnorm(100, 0, 1), rnorm(100, 3, 1)), ncol = 2, byrow = TRUE)

# Batch
batch_vec <- sample(seq(1, 5), replace = TRUE, size = 100)

# Sampling parameters
R <- 100
thin <- 5

# MCMC samples and BIC vector
samples <- runBatchMix(X, R, thin, batch_vec, "MVN")

lkl_df <- getLikelihood(samples)

getSampledBatchScale Get sampled batch shift

Description

Given an array of sampled batch scales from the “mixtureModel“ function, acquire a tidy version
ready for “ggplot2“ use.

Usage

getSampledBatchScale(
sampled_batch_scale,
B = dim(sampled_batch_scale)[2],
P = dim(sampled_batch_scale)[1],
R = dim(sampled_batch_scale)[3],
thin = 1

)
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Arguments

sampled_batch_scale

A 3D array of sampled batch mean shifts.

B The number of batches present. Defaults to the number of columns in the batch
mean matrix from the first sample.

P The dimension of the batch mean shifts. Defaults to the number of rows in the
batch mean matrix from the first sample.

R The number of iterations run. Defaults to the number of slices in the sampled
batch mean array.

thin The thinning factor of the sampler. Defaults to 1.

Value

A data.frame of three columns; the parameter, the sampled value and the iteration.

Examples

# Data in matrix format
X <- matrix(c(rnorm(100, 0, 1), rnorm(100, 3, 1)), ncol = 2, byrow = TRUE)

# Observed batches represented by integers
batch_vec <- sample(seq(1, 5), size = 100, replace = TRUE)

# MCMC iterations (this is too low for real use)
R <- 100
thin <- 5

# MCMC samples
samples <- runBatchMix(X, R, thin, batch_vec, "MVN")

batch_scale_df <- getSampledBatchShift(samples$batch_scale, R = R, thin = thin)

getSampledBatchShift Get sampled batch shift

Description

Given an array of sampled batch mean shifts from the “mixtureModel“ function, acquire a tidy
version ready for “ggplot2“ use.

Usage

getSampledBatchShift(
sampled_batch_shift,
B = dim(sampled_batch_shift)[2],
P = dim(sampled_batch_shift)[1],
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R = dim(sampled_batch_shift)[3],
thin = 1

)

Arguments

sampled_batch_shift

A 3D array of sampled batch mean shifts.
B The number of batches present. Defaults to the number of columns in the batch

mean matrix from the first sample.
P The dimension of the batch mean shifts. Defaults to the number of rows in the

batch mean matrix from the first sample.
R The number of iterations run. Defaults to the number of slices in the sampled

batch mean array.
thin The thinning factor of the sampler. Defaults to 1.

Value

A data.frame of three columns; the parameter, the sampled value and the iteration.

Examples

# Data in matrix format
X <- matrix(c(rnorm(100, 0, 1), rnorm(100, 3, 1)), ncol = 2, byrow = TRUE)

# Observed batches represented by integers
batch_vec <- sample(seq(1, 5), size = 100, replace = TRUE)

# MCMC iterations (this is too low for real use)
R <- 100
thin <- 5

# MCMC samples
samples <- runBatchMix(X, R, thin, batch_vec, "MVN")

batch_shift_df <- getSampledBatchShift(samples$batch_shift,
R = R,
thin = thin

)

getSampledClusterMeans

Get sampled cluster means

Description

Given an array of sampled cluster means from the “mixtureModel“ function, acquire a tidy version
ready for “ggplot2“ use.
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Usage

getSampledClusterMeans(
sampled_cluster_means,
K = dim(sampled_cluster_means)[2],
P = dim(sampled_cluster_means)[1],
R = dim(sampled_cluster_means)[3],
thin = 1

)

Arguments

sampled_cluster_means

A 3D array of sampled cluster means.

K The number of clusters present. Defaults to the number of columns in the batch
mean matrix from the first sample.

P The dimension of the batch mean shifts. Defaults to the number of rows in the
batch mean matrix from the first sample.

R The number of iterations run. Defaults to the number of slices in the sampled
batch mean array.

thin The thinning factor of the sampler. Defaults to 1.

Value

A data.frame of three columns; the parameter, the sampled value and the iteration.

Examples

# Data in matrix format
X <- matrix(c(rnorm(100, 0, 1), rnorm(100, 3, 1)), ncol = 2, byrow = TRUE)

# Observed batches represented by integers
batch_vec <- sample(seq(1, 5), size = 100, replace = TRUE)

# MCMC iterations (this is too low for real use)
R <- 100
thin <- 5

# MCMC samples
samples <- runBatchMix(X, R, thin, batch_vec, "MVN")

batch_shift_df <- getSampledClusterMeans(samples$means, R = R, thin = thin)
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invGammaLogLikelihood Inverse gamma log-likelihood

Description

Used in calculating model probability in Metropolis-Hastings algorithm when proposals are from
the inverse-Gamma distribution.

Usage

invGammaLogLikelihood(x, shape, scale)

Arguments

x - double; the value to calculate the likelihood of.

shape - double; the shape of the inverse-Gamma distribution.

scale - double; the scale of the inverse-Gamma distribution

Value

the unnormalised log-likelihood of x in a inverse-Gamma with parameters shape and scale.

invWishartLogLikelihood

Inverse-Wishart log-likelihood

Description

Used in calculating model probability in Metropolis-Hastings algorithm when proposals are from
the Wishart distribution.

Usage

invWishartLogLikelihood(X, Psi, nu, P)

Arguments

X - matrix; the matrix to calculate the likelihood of.

Psi - matrix; the scale of the inverse-Wishart distribution.

nu - double; the degrees of freedom for the inverse-Wishart distribution.

P - unsigned integer; the dimension of X.

Value

the unnormalised log-likelihood of X in a inverse-Wishart with parameters Psi and nu.
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minVI Minimium VI

Description

Local implementation of S. Wade’s ‘minVI‘ function from their ‘mcclust.ext‘ package (available
from github). Reimplemented here to avoid dependency on a non-CRAN package and we have
dropped the ‘greedy‘ method. Finds the optimal partition by minimising the lower bound to the
Variation of Information obtained from Jensen’s inequality where the expectation and log are re-
versed. For full details please see the aforementioned package and Wade and Ghahramani, 2018,
’Bayesian Cluster Analysis: Point Estimation and Credible Balls (with Discussion)’.

Usage

minVI(psm, cls.draw = NULL, method = "avg", max.k = NULL)

Arguments

psm The posterior similarity matrix for a set of clustering MCMC samples such as is
returned by the ‘createSimilarityMat‘ function.

cls.draw The set of clustering MCMC samples used to generate ‘psm‘. Only required if
‘method‘ is one of ‘’draws’‘ or ‘’all’‘.

method String indicating which method is used to find the point estimate clustering.
Must be one of ‘’avg’‘, ‘’comp’‘, ‘’draws’‘ or ‘’all’‘. Defaults to ‘’avg’‘. If
‘’all’‘ is passed the three methods are all applied to return different choices of
point clustering.

max.k The maximum number of clusters to consider. Only used by the ‘’comp’‘ and
‘’avg’‘ methods. Defaults to one-quarter the number of data points rounded up.

Value

If ‘method‘ is ‘’all’‘ returns a matrix of four clusterings, one for each method and a repeat of that
which performs best based on minimising the Variation of Information between the clustering and
the PSM. Otherwise returns a vector. This is annotated with the attribute ‘"info"‘, a named list
describing:

* ‘.$loss‘: the loss score used (Variation of Information)

* ‘.$maxNClusters‘: the ‘max.k‘ value used by the ‘’comp’‘ and ‘’avg’‘ methods

* ‘.$expectedLoss‘: the estimated minimum Variation of Information for the point clustering(s)

* ‘.$method‘: the point method used to infer the clustering(s)

Names are due to legacy reasons - this function is replacing the ‘salso::salso‘ function and name
choices are to minimise workflow damage.
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Examples

## Not run:
# MCMC samples and BIC vector
mcmc_outputs <- runMCMCChains(

X,
n_chains,
R,
thin,
batch_vec,
type

)

# Note that in this toy example we have not applied a burn in
psm <- createSimilarityMat(mcmc_outputs[[1]]$samples)
cl_est <- minVI(psm, mcmc_outputs[[1]]$samples)

## End(Not run)

plotAcceptanceRates Plot acceptance rates

Description

Plot the acceptance rates for the parameters sampled in a Metropolis-Hastings step. Aiming for
acceptance rates in [0.2, 0.5] for the class means, the batch effect on location and scale is a good
rule of thumb. The class covariance should be in [0.35, 0.8] based on the authors’ experience. The
class degree of freedom appears to be prone to high acceptance rates, but aim to keep this above 0.2
at a minimum.

Usage

plotAcceptanceRates(mcmc_lst)

Arguments

mcmc_lst The output of the “runMCMCChains“ function.

Value

A ggplot object of the boxplots of acceptance rates for each parameter across chains.

Examples

# Data in a matrix format
X <- matrix(c(rnorm(100, 0, 1), rnorm(100, 3, 1)), ncol = 2, byrow = TRUE)

# Initial labelling
labels <- c(

rep(1, 10),
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sample(c(1, 2), size = 40, replace = TRUE),
rep(2, 10),
sample(c(1, 2), size = 40, replace = TRUE)

)

fixed <- c(rep(1, 10), rep(0, 40), rep(1, 10), rep(0, 40))

# Batch
batch_vec <- sample(seq(1, 5), replace = TRUE, size = 100)

# Sampling parameters
R <- 500
thin <- 10
n_chains <- 4

# MCMC samples and BIC vector
mcmc_lst <- runMCMCChains(X, n_chains, R, thin, batch_vec, "MVN",

initial_labels = labels,
fixed = fixed

)

# Plot the acceptance rate of each parameter in the 4 chains
plotAcceptanceRates(mcmc_lst)

plotLikelihoods Plot likelihoods

Description

Plots the model fit for multiple chains.

Usage

plotLikelihoods(
mcmc_outputs,
choice = "complete_likelihood",
colour_by_chain = TRUE

)

Arguments

mcmc_outputs The output from “runMCMCChains“.

choice The model fit score to use. Must be one of “’observed_likelihood’“, “’com-
plete_likelihood’“ or “’BIC’“. Defaults to “’complete_likelihood’“.

colour_by_chain

Logical indcating if plots should be coloured by chain or all the same colour.
Defaults to “TRUE“.
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Value

A ggplot2 object. Line plot of likelihood across iteration.

Examples

# Data in a matrix format
X <- matrix(c(rnorm(100, 0, 1), rnorm(100, 3, 1)), ncol = 2, byrow = TRUE)

# Initial labelling
labels <- c(

rep(1, 10),
sample(c(1, 2), size = 40, replace = TRUE),
rep(2, 10),
sample(c(1, 2), size = 40, replace = TRUE)

)

fixed <- c(rep(1, 10), rep(0, 40), rep(1, 10), rep(0, 40))

# Batch
batch_vec <- sample(seq(1, 5), replace = TRUE, size = 100)

# Sampling parameters
R <- 1000
thin <- 50
n_chains <- 4

# MCMC samples
samples <- runMCMCChains(X, n_chains, R, thin, batch_vec, "MVN",

initial_labels = labels,
fixed = fixed

)

p <- plotLikelihoods(samples)

plotSampledBatchMeans Plot sampled batch means

Description

Plot the sampled values for the batch mean shifts in each dimension from the output of the mixture
model functions. Not recommended for large B or P.

Usage

plotSampledBatchMeans(samples, burn_in = 0)
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Arguments

samples The output of the “batchUnsupervisedMixtureModel“ or “batchSemiSupervised-
MixtureModel“ functions.

burn_in The samples at the beginning of the chain to drop. Defaults to 0.

Value

A ggplot object of the values in each sampled batch mean per iteration.

Examples

# Data in matrix format
X <- matrix(c(rnorm(100, 0, 1), rnorm(100, 3, 1)), ncol = 2, byrow = TRUE)

# Observed batches represented by integers
batch_vec <- sample(seq(1, 5), size = 100, replace = TRUE)

# MCMC iterations (this is too low for real use)
R <- 100
thin <- 5

# MCMC samples and BIC vector
samples <- runBatchMix(X, R, thin, batch_vec, "MVN")

# Plot the sampled value of the batch mean shift against MCMC iteration
plotSampledBatchMeans(samples)

plotSampledBatchScales

Plot sampled batch scales

Description

Plot the sampled values for the batch scale in each dimension from the output of the mixture model
functions. Not recommended for large B or P.

Usage

plotSampledBatchScales(samples, burn_in = 0)

Arguments

samples The output of the “batchUnsupervisedMixtureModel“ or “batchSemiSupervised-
MixtureModel“ functions.

burn_in The samples at the beginning of the chain to drop. Defaults to 0.
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Value

A ggplot object of the values in each sampled batch mean per iteration.

Examples

# Data in matrix format
X <- matrix(c(rnorm(100, 0, 1), rnorm(100, 3, 1)), ncol = 2, byrow = TRUE)

# Observed batches represented by integers
batch_vec <- sample(seq(1, 5), size = 100, replace = TRUE)

# MCMC iterations (this is too low for real use)
R <- 100
thin <- 5

# MCMC samples and BIC vector
samples <- runBatchMix(X, R, thin, batch_vec, "MVN")

# Plot the sampled value of the batch scales against MCMC iteration
plotSampledBatchScales(samples)

plotSampledClusterMeans

Plot sampled cluster means

Description

Plot the sampled values for the cluster means in each dimension from the output of the mixture
model functions. Not recommended for large K or P.

Usage

plotSampledClusterMeans(samples, burn_in = 0)

Arguments

samples The output of the “batchUnsupervisedMixtureModel“ or “batchSemiSupervised-
MixtureModel“ functions.

burn_in The samples at the beginning of the chain to drop. Defaults to 0.

Value

A ggplot object of the values in each sampled cluster mean per iteration.
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Examples

# Data in matrix format
X <- matrix(c(rnorm(100, 0, 1), rnorm(100, 3, 1)), ncol = 2, byrow = TRUE)

# Observed batches represented by integers
batch_vec <- sample(seq(1, 5), size = 100, replace = TRUE)

# MCMC iterations (this is too low for real use)
R <- 100
thin <- 5

# MCMC samples and BIC vector
samples <- runBatchMix(X, R, thin, batch_vec, "MVN")

# Plot the sampled value of the cluster means against MCMC iteration
plotSampledClusterMeans(samples)

plotSampledParameter Plot sampled vector parameter

Description

Plot the sampled values for a sampled vector from the output of the “mixtureModel“ function. Not
recommended for large B or P.

Usage

plotSampledParameter(samples, parameter, R = NULL, thin = 1, burn_in = 0)

Arguments

samples The output of the “mixtureModel“ function.

parameter The name of the parameter to be plotted (a string).

R The number of iterations run. Defaults to the number of samples for the cluster
membership.

thin The thinning factor of the sampler. Defaults to 1.

burn_in The samples at the beginning of the chain to drop. Defaults to 0.

Value

A ggplot object of the values in each sampled batch mean per iteration.
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Examples

# Data in matrix format
X <- matrix(c(rnorm(100, 0, 1), rnorm(100, 3, 1)), ncol = 2, byrow = TRUE)

# Observed batches represented by integers
batch_vec <- sample(seq(1, 3), size = 100, replace = TRUE)

# MCMC iterations (this is too low for real use)
R <- 50
thin <- 1

# MCMC samples and BIC vector
samples <- runBatchMix(X, R, thin, batch_vec, "MVN", K_max = 8)

# Plot the sampled value of the cluster means against MCMC iteration
parameter <- "means"
plotSampledParameter(samples, parameter, R, thin)

predictClass Predict class

Description

Predicts a final class for each item given a matrix of allocation probabilities.

Usage

predictClass(prob)

Arguments

prob Output from the “calcAllocProb“ function, a N x K matrix of allocation proba-
bilities.

Value

An N vector of class allocations.

Examples

# Data in a matrix format
X <- matrix(c(rnorm(100, 0, 1), rnorm(100, 3, 1)), ncol = 2, byrow = TRUE)

# Initial labelling
labels <- c(

rep(1, 10),
sample(c(1, 2), size = 40, replace = TRUE),
rep(2, 10),
sample(c(1, 2), size = 40, replace = TRUE)
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)

fixed <- c(rep(1, 10), rep(0, 40), rep(1, 10), rep(0, 40))

# Batch
batch_vec <- sample(seq(1, 5), replace = TRUE, size = 100)

# Sampling parameters
R <- 1000
thin <- 50

# MCMC samples and BIC vector
samples <- batchSemiSupervisedMixtureModel(

X,
R,
thin,
labels,
fixed,
batch_vec,
"MVN"

)

# Burn in
burn <- 200
eff_burn <- burn / thin

# Probability across classes
probs <- calcAllocProb(samples, burn = burn)

# Predict the class
preds <- predictClass(probs)

predictFromMultipleChains

Predict from multiple MCMC chains

Description

Applies a burn in to and finds a point estimate by combining multiple chains of “callMDI“.

Usage

predictFromMultipleChains(
mcmc_outputs,
burn,
point_estimate_method = "median",
chains_already_processed = FALSE

)
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Arguments

mcmc_outputs Output from “runMCMCChains“

burn The number of MCMC samples to drop as part of a burn in.
point_estimate_method

Summary statistic used to define the point estimate. Must be “’mean’“ or “’me-
dian’“. “’median’“ is the default.

chains_already_processed

Logical indicating if the chains have already had a burn-in applied.

Value

A named list of quantities related to prediction/clustering:

* “allocation_probability“: List with an $(N x K)$ matrix if the model is semi-supervised. The
point estimate of the allocation probabilities for each data point to each class.

* “prob“: $N$ vector of the point estimate of the probability of being allocated to the class with the
highest probability.

* “pred“: $N$ vector of the predicted class for each sample. If the model is unsupervised then the
“salso“ function from Dahl et al. (2021) is used on the sampled partitions using the default settings.

* “samples“: List of sampled allocations for each view. Columns correspond to items being clus-
tered, rows to MCMC samples.

Examples

# Data dimensions
N <- 600
P <- 4
K <- 5
B <- 7

# Generating model parameters
mean_dist <- 2.25
batch_dist <- 0.3
group_means <- seq(1, K) * mean_dist
batch_shift <- rnorm(B, mean = batch_dist, sd = batch_dist)
std_dev <- rep(2, K)
batch_var <- rep(1.2, B)
group_weights <- rep(1 / K, K)
batch_weights <- rep(1 / B, B)
dfs <- c(4, 7, 15, 60, 120)

my_data <- generateBatchData(
N,
P,
group_means,
std_dev,
batch_shift,
batch_var,
group_weights,
batch_weights,
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type = "MVT",
group_dfs = dfs

)

X <- my_data$observed_data

true_labels <- my_data$group_IDs
fixed <- my_data$fixed
batch_vec <- my_data$batch_IDs

alpha <- 1
initial_labels <- generateInitialLabels(alpha, K, fixed, true_labels)

# Sampling parameters
R <- 1000
thin <- 25
burn <- 100
n_chains <- 2

# Density choice
type <- "MVT"

# MCMC samples and BIC vector
mcmc_outputs <- runMCMCChains(

X,
n_chains,
R,
thin,
batch_vec,
type,
initial_labels = initial_labels,
fixed = fixed

)
ensemble_mod <- predictFromMultipleChains(mcmc_outputs, burn)

prepareInitialParameters

Prepare initial values

Description

Prepares user given values for input into the C++ function.

Usage

prepareInitialParameters(
initial_class_means,
initial_class_covariance,
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initial_batch_shift,
initial_batch_scale,
initial_class_df,
P,
K,
B,
type

)

Arguments

initial_class_means

A $P x K$ matrix of initial values for the class means. Defaults to draws from
the prior distribution.

initial_class_covariance

A $P x P x K$ array of initial values for the class covariance matrices. Defaults
to draws from the prior distribution.

initial_batch_shift

A $P x B$ matrix of initial values for the batch shift effect Defaults to draws
from the prior distribution.

initial_batch_scale

A $P x B$ matrix of initial values for the batch scales Defaults to draws from
the prior distribution.

initial_class_df

A $K$ vector of initial values for the class degrees of freedom. Defaults to
draws from the prior distribution.

P Integer. The number of measurements for each sample in the dataset being mod-
elled.

K The number of classes/clusters being modelled.

B The number of batches being modelled.

type The type of mixture model used; one of "MVN" or "MVT".

Value

A named list containing the different parameters.

processMCMCChain Process MCMC chain

Description

Applies a burn in to and finds a point estimate for the output of “batchSemiSupervisedMixture-
Model“.
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Usage

processMCMCChain(mcmc_output, burn, point_estimate_method = "median")

Arguments

mcmc_output Output from “batchSemiSupervisedMixtureModel“

burn The number of MCMC samples to drop as part of a burn in.
point_estimate_method

Summary statistic used to define the point estimate. Must be “’mean’“ or “’me-
dian’“. “’median’“ is the default.

Value

A named list similar to the output of “batchSemiSupervisedMixtureModel“ with some additional
entries:

* “mean_est“: $(P x K)$ matrix. The point estimate of the cluster means with columns correspond-
ing to clusters.

* “cov_est“: $(P x P x K)$ array. The point estimate of the cluster covariance matrices with slices
corresponding to clusters.

* “shift_est“: $(P x B)$ matrix. The point estimate of the batch shift effect with columns corre-
sponding to batches.

* “scale_est“: $(P x B)$ matrix. The point estimate of the batch scale effects. The $bth$ column
contains the diagonal entries of the scaling matrix for the $bth£ batch.

* “mean_sum_est“: $(P x K x B)$ array. The point estimate of the sum of the cluster means and
the batch shift effect with columns corresponding to clusters and slices to batches.

* “cov_comb_est“: List of length $B$, with each entry being a $(P x P x K)$ array. The point
estimate of the combination of the cluster covariance matrices and the batch scale effect with list
entries corresponding to batches and slices of each array corresponding to clusters.

* “inferred_dataset“: $(N x P)$ matrix. The inferred “batch-free” dataset.

* “allocation_probability“: $(N x K)$ matrix. The point estimate of the allocation probabilities for
each data point to each class.

* “prob“: $N$ vector. The point estimate of the probability of being allocated to the class with the
highest probability.

* “pred“: $N$ vector. The predicted class for each sample.

Examples

# Data in a matrix format
X <- matrix(c(rnorm(100, 0, 1), rnorm(100, 3, 1)), ncol = 2, byrow = TRUE)

# Initial labelling
labels <- c(

rep(1, 10),
sample(c(1, 2), size = 40, replace = TRUE),
rep(2, 10),
sample(c(1, 2), size = 40, replace = TRUE)
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)

fixed <- c(rep(1, 10), rep(0, 40), rep(1, 10), rep(0, 40))

# Batch
batch_vec <- sample(seq(1, 5), replace = TRUE, size = 100)

# Sampling parameters
R <- 1000
burn <- 250
thin <- 50

# MCMC samples
samples <- runBatchMix(X, R, thin, batch_vec, "MVN",

initial_labels = labels,
fixed = fixed

)

# Process the MCMC samples
processed_samples <- processMCMCChain(samples, burn)

processMCMCChains Process MCMC chains

Description

Applies a burn in to and finds a point estimate for each of the chains outputted from “runMCMC-
Chains“.

Usage

processMCMCChains(mcmc_lst, burn, point_estimate_method = "median")

Arguments

mcmc_lst Output from “runMCMCChains“

burn The number of MCMC samples to drop as part of a burn in.
point_estimate_method

Summary statistic used to define the point estimate. Must be “’mean’“ or “’me-
dian’“. “’median’“ is the default.

Value

A named list similar to the output of “batchSemiSupervisedMixtureModel“ with some additional
entries:

* “mean_est“: $(P x K)$ matrix. The point estimate of the cluster means with columns correspond-
ing to clusters.
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* “cov_est“: $(P x P x K)$ array. The point estimate of the cluster covariance matrices with slices
corresponding to clusters.

* “shift_est“: $(P x B)$ matrix. The point estimate of the batch shift effect with columns corre-
sponding to batches.

* “scale_est“: $(P x B)$ matrix. The point estimate of the batch scale effects. The $bth$ column
contains the diagonal entries of the scaling matrix for the $bth£ batch.

* “mean_sum_est“: $(P x K x B)$ array. The point estimate of the sum of the cluster means and
the batch shift effect with columns corresponding to clusters and slices to batches.

* “cov_comb_est“: List of length $B$, with each entry being a $(P x P x K)$ array. The point
estimate of the combination of the cluster covariance matrices and the batch scale effect with list
entries corresponding to batches and slices of each array corresponding to clusters.

* “inferred_dataset“: $(N x P)$ matrix. The inferred “batch-free” dataset.

* “allocation_probability“: $(N x K)$ matrix. The point estimate of the allocation probabilities for
each data point to each class.

* “prob“: $N$ vector. The point estimate of the probability of being allocated to the class with the
highest probability.

* “pred“: $N$ vector. The predicted class for each sample.

Examples

# Data in a matrix format
X <- matrix(c(rnorm(100, 0, 1), rnorm(100, 3, 1)), ncol = 2, byrow = TRUE)

# Initial labelling
labels <- c(

rep(1, 10),
sample(c(1, 2), size = 40, replace = TRUE),
rep(2, 10),
sample(c(1, 2), size = 40, replace = TRUE)

)

fixed <- c(rep(1, 10), rep(0, 40), rep(1, 10), rep(0, 40))

# Batch
batch_vec <- sample(seq(1, 5), replace = TRUE, size = 100)

# Sampling parameters
R <- 1000
burn <- 250
thin <- 50
n_chains <- 4

# MCMC samples
samples <- runMCMCChains(X, n_chains, R, thin, batch_vec, "MVN",

initial_labels = labels,
fixed = fixed

)

# Process the MCMC samples
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processed_samples <- processMCMCChains(samples, burn)

rStickBreakingPrior Random Draw From Stick Breaking Prior

Description

Draw weights from the stick-breaking prior.

Usage

rStickBreakingPrior(alpha, K)

Arguments

alpha The concentration parameter.

K The number of weights to generate.

Value

A vector of component weights.

Examples

weights <- rStickBreakingPrior(1, 50)

runBatchMix Run Batch Mixture Model

Description

Runs a MCMC chain for a Bayesian mixture model which models both batch effects and class/cluster
structure.

Usage

runBatchMix(
X,
R,
thin,
batch_vec,
type,
K_max = NULL,
initial_labels = NULL,
fixed = NULL,
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alpha = 1,
mu_proposal_window = 0.5^2,
cov_proposal_window = 0.002,
m_proposal_window = 0.3^2,
S_proposal_window = 0.01,
t_df_proposal_window = 0.015,
m_scale = NULL,
rho = 3,
theta = 1,
initial_class_means = NULL,
initial_class_covariance = NULL,
initial_batch_shift = NULL,
initial_batch_scale = NULL,
initial_class_df = NULL,
verbose = TRUE

)

Arguments

X Data to cluster as a matrix with the items to cluster held in rows.

R The number of iterations in the sampler.

thin The factor by which the samples generated are thinned, e.g. if “thin=50“ only
every 50th sample is kept.

batch_vec Labels identifying which batch each item being clustered is from.

type Character indicating density type to use. One of ’MVN’ (multivariate normal
distribution) or ’MVT’ (multivariate t distribution).

K_max The number of components to include (the upper bound on the number of clus-
ters in each sample). Defaults to the number of unique labels in “initial_labels“.

initial_labels Initial clustering.

fixed Which items are fixed in their initial label. If not given, defaults to a vector of 0
meaning the model is run unsupervised.

alpha The concentration parameter for the stick-breaking prior and the weights in the
model.

mu_proposal_window

The proposal window for the cluster mean proposal kernel. Making this smaller
will normally increase the acceptance rate for the proposed values in the Metropolis-
Hastings sampler. The proposal density is a Gaussian distribution, the window
is the variance.

cov_proposal_window

The proposal window for the cluster covariance proposal kernel. The proposal
density is a Wishart distribution, this argument is the reciprocal of the degree of
freedom. It is recommended to set this aiming for accpetance rates of greater
than 0.5 for the covariance matrices (e.g., between 2e-03 and 1e-04 is a good
range to consider initially). As the entire covariance matrix is sampled at once
exploration is difficult.
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m_proposal_window

The proposal window for the batch mean proposal kernel. The proposal density
is a Gaussian distribution, the window is the variance.

S_proposal_window

The proposal window for the batch standard deviation proposal kernel. The
proposal density is a Gamma distribution, this argument is the reciprocal of the
rate. Recommended range to initially consider is 0.015 to 2e-03, though smaller
values might be necessary particularly in higher dimensional data.

t_df_proposal_window

The proposal window for the degrees of freedom for the multivariate t distribu-
tion (not used if type is not ’MVT’). The proposal density is a Gamma distribu-
tion, this argument is the reciprocal of the rate. If the data is more Gaussian than
the degrees of freedom might have high acceptance rates regardless of the value
chosen.

m_scale The scale hyperparameter for the batch shift prior distribution. This defines the
scale of the batch effect upon the mean and should be in (0, 1].

rho The shape of the prior distribution for the batch scale.

theta The scale of the prior distribution for the batch scale.
initial_class_means

A $P x K$ matrix of initial values for the class means. Defaults to draws from
the prior distribution.

initial_class_covariance

A $P x P x K$ array of initial values for the class covariance matrices. Defaults
to draws from the prior distribution.

initial_batch_shift

A $P x B$ matrix of initial values for the batch shift effect Defaults to draws
from the prior distribution.

initial_batch_scale

A $P x B$ matrix of initial values for the batch scales Defaults to draws from
the prior distribution.

initial_class_df

A $K$ vector of initial values for the class degrees of freedom. Defaults to
draws from the prior distribution.

verbose Logiccal indicating if warning about proposal windows should be printed.

Value

A named list containing the sampled partitions, cluster and batch parameters, model fit measures
and some details on the model call.

Examples

# Data in a matrix format
X <- matrix(c(rnorm(100, 0, 1), rnorm(100, 3, 1)), ncol = 2, byrow = TRUE)

# Initial labelling
labels <- c(



48 runBatchMix

rep(1, 10),
sample(c(1, 2), size = 40, replace = TRUE),
rep(2, 10),
sample(c(1, 2), size = 40, replace = TRUE)

)

fixed <- c(rep(1, 10), rep(0, 40), rep(1, 10), rep(0, 40))

# Batch
batch_vec <- sample(seq(1, 5), replace = TRUE, size = 100)

# Density choice
type <- "MVN"

# Sampling parameters
R <- 1000
thin <- 50

# MCMC samples
mcmc_out <- runBatchMix(

X,
R,
thin,
batch_vec,
type,
initial_labels = labels,
fixed = fixed

)

# Given an initial value for the parameters
initial_class_means <- matrix(c(1, 1, 3, 4), nrow = 2)
initial_class_covariance <- array(c(1, 0, 0, 1, 1, 0, 0, 1),

dim = c(2, 2, 2)
)

# We can use values from a previous chain
initial_batch_shift <- mcmc_out$batch_shift[, , R / thin]
initial_batch_scale <- matrix(

c(1.2, 1.3, 1.7, 1.1, 1.4, 1.3, 1.2, 1.2, 1.1, 2.0),
nrow = 2

)

mcmc_out <- runBatchMix(X,
R,
thin,
batch_vec,
type,
initial_labels = labels,
fixed = fixed,
initial_class_means = initial_class_means,
initial_class_covariance = initial_class_covariance,
initial_batch_shift = initial_batch_shift,
initial_batch_scale = initial_batch_scale
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)

runMCMCChains Run MCMC Chains

Description

Run multiple chains of the batch mixture model of the same type.

Usage

runMCMCChains(
X,
n_chains,
R,
thin,
batch_vec,
type,
K_max = NULL,
initial_labels = NULL,
fixed = NULL,
alpha = 1,
mu_proposal_window = 0.5^2,
cov_proposal_window = 0.002,
m_proposal_window = 0.3^2,
S_proposal_window = 0.01,
t_df_proposal_window = 0.015,
m_scale = 0.01,
rho = 3,
theta = 1,
initial_class_means = NULL,
initial_class_covariance = NULL,
initial_batch_shift = NULL,
initial_batch_scale = NULL,
initial_class_df = NULL,
verbose = TRUE

)

Arguments

X Data to cluster as a matrix with the items to cluster held in rows.

n_chains Integer. Number of MCMC chains to run.

R The number of iterations in the sampler.

thin The factor by which the samples generated are thinned, e.g. if “thin=50“ only
every 50th sample is kept.
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batch_vec Labels identifying which batch each item being clustered is from.

type Character indicating density type to use. One of ’MVN’ (multivariate normal
distribution) or ’MVT’ (multivariate t distribution). “weights“ which is a matrix
with K x B columns. The columns are ordered by batch, i.e. the first K columns
contain the class weights in the first batch, the second K are the class weights
in the second batch, etc. If generic weights are used then this matrix has K
columns, one for each component weight.

K_max The number of components to include (the upper bound on the number of clus-
ters in each sample). Defaults to the number of unique labels in “initial_labels“.

initial_labels Initial clustering, if none given defaults to a random draw.

fixed Which items are fixed in their initial label. If not given, defaults to a vector of 0
meaning the model is run unsupervised.

alpha The concentration parameter for the stick-breaking prior and the weights in the
model.

mu_proposal_window

The proposal window for the cluster mean proposal kernel. The proposal density
is a Gaussian distribution, the window is the variance.

cov_proposal_window

The proposal window for the cluster covariance proposal kernel. The proposal
density is a Wishart distribution, this argument is the reciprocal of the degree of
freedom.

m_proposal_window

The proposal window for the batch mean proposal kernel. The proposal density
is a Gaussian distribution, the window is the variance.

S_proposal_window

The proposal window for the batch standard deviation proposal kernel. The
proposal density is a Gamma distribution, this argument is the reciprocal of the
rate.

t_df_proposal_window

The proposal window for the degrees of freedom for the multivariate t distribu-
tion (not used if type is not ’MVT’). The proposal density is a Gamma distribu-
tion, this argument is the reciprocal of the rate.

m_scale The scale hyperparameter for the batch shift prior distribution. This defines the
scale of the batch effect upon the mean and should be in (0, 1].

rho The shape of the prior distribution for the batch scale.

theta The scale of the prior distribution for the batch scale.
initial_class_means

A $P x K$ matrix of initial values for the class means. Defaults to draws from
the prior distribution.

initial_class_covariance

A $P x P x K$ array of initial values for the class covariance matrices. Defaults
to draws from the prior distribution.

initial_batch_shift

A $P x B$ matrix of initial values for the batch shift effect Defaults to draws
from the prior distribution.
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initial_batch_scale

A $P x B$ matrix of initial values for the batch scales Defaults to draws from
the prior distribution.

initial_class_df

A $K$ vector of initial values for the class degrees of freedom. Defaults to
draws from the prior distribution.

verbose Logiccal indicating if warning about proposal windows should be printed.

Value

A list of named lists. Each entry is the output of “runBatchMix“.

Examples

# Data in a matrix format
X <- matrix(c(rnorm(100, 0, 1), rnorm(100, 3, 1)), ncol = 2, byrow = TRUE)

# Initial labelling
labels <- c(

rep(1, 10),
sample(c(1, 2), size = 40, replace = TRUE),
rep(2, 10),
sample(c(1, 2), size = 40, replace = TRUE)

)

fixed <- c(rep(1, 10), rep(0, 40), rep(1, 10), rep(0, 40))

# Batch
batch_vec <- sample(seq(1, 5), replace = TRUE, size = 100)

# Sampling parameters
R <- 1000
thin <- 50
n_chains <- 4

# MCMC samples
samples <- runMCMCChains(X, n_chains, R, thin, batch_vec, "MVN",

initial_labels = labels,
fixed = fixed

)

sampleMVN Sample mixture of multivariate normal distributions with batch effects

Description

Performs MCMC sampling for a mixture model with batch effects.
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Usage

sampleMVN(
X,
K,
B,
labels,
batch_vec,
mu_proposal_window,
cov_proposal_window,
m_proposal_window,
S_proposal_window,
R,
thin,
concentration,
m_scale,
rho,
theta,
initial_mu,
initial_cov,
initial_m,
initial_S,
mu_initialised,
cov_initialised,
m_initialised,
S_initialised,
sample_m_scale

)

Arguments

X The data matrix to perform clustering upon (items to cluster in rows).

K The number of components to model (upper limit on the number of clusters
found).

B The number of batches to model.

labels Vector item labels to initialise from.

batch_vec Observed batch labels.
mu_proposal_window

The standard deviation for the Gaussian proposal density of the cluster means.
cov_proposal_window

The degrees of freedom for the Wishart proposal density of the cluster covari-
ances.

m_proposal_window

The standard deviation for the Gaussian proposal density of the batch mean
effects.

S_proposal_window

The rate for the Gamma proposal density of the batch scale.
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R The number of iterations to run for.

thin thinning factor for samples recorded.

concentration Vector of concentrations for mixture weights (recommended to be symmetric).

m_scale The scale hyperparameter for the batch shift prior distribution.

rho The shape of the prior distribution for the batch scale.

theta The scale of the prior distribution for the batch scale.

initial_mu A P x K matrix of initial values for the class means.

initial_cov A P x P x K cube of initial values for the class covariance matrices.

initial_m A P x B matrix of initial values for the batch shift effects.

initial_S A P x B matrix of initial values for the batch scales.

mu_initialised Bool indicating if the class means are initialised by the user. If “false“ then
initial values are drawn from the prior distribution.

cov_initialised

Bool indicating if the class covariance matrices are initialised by the user. If
“false“ then initial values are drawn from the prior distribution.

m_initialised Bool indicating if the batch shift effects are initialised by the user. If “false“
then initial values are drawn from the prior distribution.

S_initialised Bool indicating if the batch scales are initialised by the user. If “false“ then
initial values are drawn from the prior distribution.

sample_m_scale Bool indicating if the hyperparameter on the batch shift effect is sampled or
given as fixed.

Value

Named list of the different quantities drawn by the sampler.

sampleMVT Sample mixture of multivariate t-distributions with batch effects

Description

Performs MCMC sampling for a MVT mixture model with batch effects.

Usage

sampleMVT(
X,
K,
B,
labels,
batch_vec,
mu_proposal_window,
cov_proposal_window,
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m_proposal_window,
S_proposal_window,
t_df_proposal_window,
R,
thin,
concentration,
m_scale,
rho,
theta,
initial_mu,
initial_cov,
initial_df,
initial_m,
initial_S,
mu_initialised,
cov_initialised,
df_initialised,
m_initialised,
S_initialised,
sample_m_scale

)

Arguments

X The data matrix to perform clustering upon (items to cluster in rows).

K The number of components to model (upper limit on the number of clusters
found).

B The number of batches to model.

labels Vector item labels to initialise from.

batch_vec Observed batch labels.
mu_proposal_window

The standard deviation for the Gaussian proposal density of the cluster means.
cov_proposal_window

The degrees of freedom for the Wishart proposal density of the cluster covari-
ances.

m_proposal_window

The standard deviation for the Gaussian proposal density of the batch mean
effects.

S_proposal_window

The rate for the Gamma proposal density of the batch scale.
t_df_proposal_window

The rate for the Gamma proposal density of the cluster degrees of freedom.

R The number of iterations to run for.

thin thinning factor for samples recorded.

concentration Vector of concentrations for mixture weights (recommended to be symmetric).

m_scale The scale hyperparameter for the batch shift prior distribution.
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rho The shape of the prior distribution for the batch scale.

theta The scale of the prior distribution for the batch scale.

initial_mu A P x K matrix of initial values for the class means.

initial_cov A P x P x K cube of initial values for the class covariance matrices.

initial_df A K vector of initial values for the class degrees of freedom.

initial_m A P x B matrix of initial values for the batch shift effects.

initial_S A P x B matrix of initial values for the batch scales.

mu_initialised Bool indicating if the class means are initialised by the user. If “false“ then
initial values are drawn from the prior distribution.

cov_initialised

Bool indicating if the class covariance matrices are initialised by the user. If
“false“ then initial values are drawn from the prior distribution.

df_initialised Bool indicating if the class degrees of freedom are initialised by the user. If
“false“ then initial values are drawn from the prior distribution.

m_initialised Bool indicating if the batch shift effects are initialised by the user. If “false“
then initial values are drawn from the prior distribution.

S_initialised Bool indicating if the batch scales are initialised by the user. If “false“ then
initial values are drawn from the prior distribution.

sample_m_scale Bool indicating if the hyperparameter on the batch shift effect is sampled or
given as fixed.

Value

Named list of the different quantities drawn by the sampler.

samplePriorLabels Sample prior labels

Description

Generate labels from the stick-breaking prior.

Usage

samplePriorLabels(alpha, K, N)

Arguments

alpha The concentration parameter for the stick-breaking prior.

K The number of components to include (the upper bound on the number of unique
labels generated).

N The number of labels to generate.
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Value

A vector of labels.

Examples

initial_labels <- samplePriorLabels(1, 50, 100)

sampleSemisupervisedMVN

Sample semi-supervised MVN Mixture model

Description

Performs MCMC sampling for a mixture model.

Usage

sampleSemisupervisedMVN(
X,
K,
B,
labels,
batch_vec,
fixed,
mu_proposal_window,
cov_proposal_window,
m_proposal_window,
S_proposal_window,
R,
thin,
concentration,
m_scale,
rho,
theta,
initial_mu,
initial_cov,
initial_m,
initial_S,
mu_initialised,
cov_initialised,
m_initialised,
S_initialised,
sample_m_scale

)
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Arguments

X The data matrix to perform clustering upon (items to cluster in rows).
K The number of components to model (upper limit on the number of clusters

found).
B The number of batches to model.
labels Vector item labels to initialise from.
batch_vec Observed batch labels.
fixed Binary vector of the items that are fixed in their initial label.
mu_proposal_window

The standard deviation for the Gaussian proposal density of the cluster means.
cov_proposal_window

The degrees of freedom for the Wishart proposal density of the cluster covari-
ances.

m_proposal_window

The standard deviation for the Gaussian proposal density of the batch mean
effects.

S_proposal_window

The rate for the Gamma proposal density of the batch scale.
R The number of iterations to run for.
thin thinning factor for samples recorded.
concentration Vector of concentrations for mixture weights (recommended to be symmetric).
m_scale The scale hyperparameter for the batch shift prior distribution.
rho The shape of the prior distribution for the batch scale.
theta The scale of the prior distribution for the batch scale.
initial_mu A P x K matrix of initial values for the class means.
initial_cov A P x P x K cube of initial values for the class covariance matrices.
initial_m A P x B matrix of initial values for the batch shift effects.
initial_S A P x B matrix of initial values for the batch scales.
mu_initialised Bool indicating if the class means are initialised by the user. If “false“ then

initial values are drawn from the prior distribution.
cov_initialised

Bool indicating if the class covariance matrices are initialised by the user. If
“false“ then initial values are drawn from the prior distribution.

m_initialised Bool indicating if the batch shift effects are initialised by the user. If “false“
then initial values are drawn from the prior distribution.

S_initialised Bool indicating if the batch scales are initialised by the user. If “false“ then
initial values are drawn from the prior distribution.

sample_m_scale Bool indicating if the hyperparameter on the batch shift effect is sampled or
given as fixed.

Value

Named list of the different quantities drawn by the sampler.
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sampleSemisupervisedMVT

Sample semi-supervised MVT Mixture model

Description

Performs MCMC sampling for a mixture model.

Usage

sampleSemisupervisedMVT(
X,
K,
B,
labels,
batch_vec,
fixed,
mu_proposal_window,
cov_proposal_window,
m_proposal_window,
S_proposal_window,
t_df_proposal_window,
R,
thin,
concentration,
m_scale,
rho,
theta,
initial_mu,
initial_cov,
initial_df,
initial_m,
initial_S,
mu_initialised,
cov_initialised,
df_initialised,
m_initialised,
S_initialised,
sample_m_scale

)

Arguments

X The data matrix to perform clustering upon (items to cluster in rows).

K The number of components to model (upper limit on the number of clusters
found).
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B The number of batches to model.
labels Vector item labels to initialise from.
batch_vec Observed batch labels.
fixed Binary vector of the items that are fixed in their initial label.
mu_proposal_window

The standard deviation for the Gaussian proposal density of the cluster means.
cov_proposal_window

The degrees of freedom for the Wishart proposal density of the cluster covari-
ances.

m_proposal_window

The standard deviation for the Gaussian proposal density of the batch mean
effects.

S_proposal_window

The rate for the Gamma proposal density of the batch scale.
t_df_proposal_window

The rate for the Gamma proposal density of the cluster degrees of freedom.
R The number of iterations to run for.
thin thinning factor for samples recorded.
concentration Vector of concentrations for mixture weights (recommended to be symmetric).
m_scale The scale hyperparameter for the batch shift prior distribution.
rho The shape of the prior distribution for the batch scale.
theta The scale of the prior distribution for the batch scale.
initial_mu A P x K matrix of initial values for the class means.
initial_cov A P x P x K cube of initial values for the class covariance matrices.
initial_df A K vector of initial values for the class degrees of freedom.
initial_m A P x B matrix of initial values for the batch shift effects.
initial_S A P x B matrix of initial values for the batch scales.
mu_initialised Bool indicating if the class means are initialised by the user. If “false“ then

initial values are drawn from the prior distribution.
cov_initialised

Bool indicating if the class covariance matrices are initialised by the user. If
“false“ then initial values are drawn from the prior distribution.

df_initialised Bool indicating if the class degrees of freedom are initialised by the user. If
“false“ then initial values are drawn from the prior distribution.

m_initialised Bool indicating if the batch shift effects are initialised by the user. If “false“
then initial values are drawn from the prior distribution.

S_initialised Bool indicating if the batch scales are initialised by the user. If “false“ then
initial values are drawn from the prior distribution.

sample_m_scale Bool indicating if the hyperparameter on the batch shift effect is sampled or
given as fixed.

Value

Named list of the different quantities drawn by the sampler.
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VI.lb Minimum VI lower bound

Description

Local implementation of S. Wade’s ‘minVI‘ function from their ‘mcclust.ext‘ package (available
from github). Reimplemented here to avoid dependency on a non-CRAN package. Computes
the lower bound to the posterior expected Variation of Information. For full details please see
the aforementioned package and Wade and Ghahramani, 2018, ’Bayesian Cluster Analysis: Point
Estimation and Credible Balls (with Discussion)’.

Usage

VI.lb(cls, psm)

Arguments

cls A clustering for which the lower bound of the Variation of Information is calcu-
lated.

psm The posterior similarity matrix which ‘cls‘ is a summary thereof.

Value

A vector of the the lower bound of the Variation of Information for

Examples

## Not run:
# MCMC samples and BIC vector
mcmc_outputs <- runMCMCChains(

X,
n_chains,
R,
thin,
batch_vec,
type

)

# Note that in this toy example we have not applied a burn in
psm <- createSimilarityMat(mcmc_outputs[[1]]$samples)
VI.lb(mcmc_outputs[[1]]$samples[1, ], psm)

## End(Not run)
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wishartLogLikelihood Wishart log-likelihood

Description

Used in calculating model probability in Metropolis-Hastings algorithm when proposals are from
the Wishart distribution.

Usage

wishartLogLikelihood(X, V, n, P)

Arguments

X - matrix; the matrix to calculate the likelihood of.

V - matrix; the scale of the Wishart distribution.

n - double; the degrees of freedom for the Wishart distribution.

P - unsigned integer; the dimension of X.

Value

the unnormalised log-likelihood of X in a Wishart with parameters V and n.
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