Title: | Bootstrap for Regression Effect Sizes |
Version: | 1.0.5 |
Description: | Generates nonparametric bootstrap confidence intervals (Efron and Tibshirani, 1993: <doi:10.1201/9780429246593>) for standardized regression coefficients (beta) and other effect sizes, including multiple correlation, semipartial correlations, improvement in R-squared, squared partial correlations, and differences in standardized regression coefficients, for models fitted by lm(). |
URL: | https://github.com/jeksterslab/betaNB, https://jeksterslab.github.io/betaNB/ |
BugReports: | https://github.com/jeksterslab/betaNB/issues |
License: | MIT + file LICENSE |
Encoding: | UTF-8 |
LazyData: | true |
Depends: | R (≥ 3.5.0) |
Imports: | stats |
Suggests: | knitr, rmarkdown, testthat |
RoxygenNote: | 7.3.2 |
NeedsCompilation: | no |
Packaged: | 2025-01-09 22:31:38 UTC; root |
Author: | Ivan Jacob Agaloos Pesigan
|
Maintainer: | Ivan Jacob Agaloos Pesigan <r.jeksterslab@gmail.com> |
Repository: | CRAN |
Date/Publication: | 2025-01-10 03:10:01 UTC |
betaNB: Bootstrap for Regression Effect Sizes
Description
Generates nonparametric bootstrap confidence intervals (Efron and Tibshirani, 1993: doi:10.1201/9780429246593) for standardized regression coefficients (beta) and other effect sizes, including multiple correlation, semipartial correlations, improvement in R-squared, squared partial correlations, and differences in standardized regression coefficients, for models fitted by lm().
Author(s)
Maintainer: Ivan Jacob Agaloos Pesigan r.jeksterslab@gmail.com (ORCID) [copyright holder]
See Also
Useful links:
Report bugs at https://github.com/jeksterslab/betaNB/issues
Estimate Standardized Regression Coefficients and Generate the Corresponding Sampling Distribution Using Nonparametric Bootstrapping
Description
Estimate Standardized Regression Coefficients and Generate the Corresponding Sampling Distribution Using Nonparametric Bootstrapping
Usage
BetaNB(object, alpha = c(0.05, 0.01, 0.001))
Arguments
object |
Object of class |
alpha |
Numeric vector.
Significance level |
Details
The vector of standardized regression coefficients
(\boldsymbol{\hat{\beta}}
)
is estimated from bootstrap samples.
Confidence intervals are generated by obtaining
percentiles corresponding to 100(1 - \alpha)\%
from the generated sampling
distribution of \boldsymbol{\hat{\beta}}
,
where \alpha
is the significance level.
Value
Returns an object
of class betanb
which is a list with the following elements:
- call
Function call.
- args
Function arguments.
- thetahatstar
Sampling distribution of
\boldsymbol{\hat{\beta}}
.- jackknife
Jackknife estimates.
- vcov
Sampling variance-covariance matrix of
\boldsymbol{\hat{\beta}}
.- est
Vector of estimated
\boldsymbol{\hat{\beta}}
.- fun
Function used ("BetaNB").
Author(s)
Ivan Jacob Agaloos Pesigan
See Also
Other Beta Nonparametric Bootstrap Functions:
DeltaRSqNB()
,
DiffBetaNB()
,
NB()
,
PCorNB()
,
RSqNB()
,
SCorNB()
Examples
# Data ---------------------------------------------------------------------
data("nas1982", package = "betaNB")
# Fit Model in lm ----------------------------------------------------------
object <- lm(QUALITY ~ NARTIC + PCTGRT + PCTSUPP, data = nas1982)
# NB -----------------------------------------------------------------------
nb <- NB(
object,
R = 100, # use a large value e.g., 5000L for actual research
seed = 0508
)
# BetaNB -------------------------------------------------------------------
out <- BetaNB(nb, alpha = 0.05)
## Methods -----------------------------------------------------------------
print(out)
summary(out)
coef(out)
vcov(out)
confint(out, level = 0.95)
Estimate Improvement in R-Squared and Generate the Corresponding Sampling Distribution Using Nonparametric Bootstrapping
Description
Estimate Improvement in R-Squared and Generate the Corresponding Sampling Distribution Using Nonparametric Bootstrapping
Usage
DeltaRSqNB(object, alpha = c(0.05, 0.01, 0.001))
Arguments
object |
Object of class |
alpha |
Numeric vector.
Significance level |
Details
The vector of improvement in R-squared
(\Delta R^{2}
)
is estimated from bootstrap samples.
Confidence intervals are generated by obtaining
percentiles corresponding to 100(1 - \alpha)\%
from the generated sampling
distribution of \Delta R^{2}
,
where \alpha
is the significance level.
Value
Returns an object
of class betanb
which is a list with the following elements:
- call
Function call.
- args
Function arguments.
- thetahatstar
Sampling distribution of
\Delta R^{2}
.- vcov
Sampling variance-covariance matrix of
\Delta R^{2}
.- est
Vector of estimated
\Delta R^{2}
.- fun
Function used ("DeltaRSqNB").
Author(s)
Ivan Jacob Agaloos Pesigan
See Also
Other Beta Nonparametric Bootstrap Functions:
BetaNB()
,
DiffBetaNB()
,
NB()
,
PCorNB()
,
RSqNB()
,
SCorNB()
Examples
# Data ---------------------------------------------------------------------
data("nas1982", package = "betaNB")
# Fit Model in lm ----------------------------------------------------------
object <- lm(QUALITY ~ NARTIC + PCTGRT + PCTSUPP, data = nas1982)
# NB -----------------------------------------------------------------------
nb <- NB(
object,
R = 100, # use a large value e.g., 5000L for actual research
seed = 0508
)
# DeltaRSqNB ---------------------------------------------------------------
out <- DeltaRSqNB(nb, alpha = 0.05)
## Methods -----------------------------------------------------------------
print(out)
summary(out)
coef(out)
vcov(out)
confint(out, level = 0.95)
Estimate Differences of Standardized Slopes and Generate the Corresponding Sampling Distribution Using Nonparametric Bootstrapping
Description
Estimate Differences of Standardized Slopes and Generate the Corresponding Sampling Distribution Using Nonparametric Bootstrapping
Usage
DiffBetaNB(object, alpha = c(0.05, 0.01, 0.001))
Arguments
object |
Object of class |
alpha |
Numeric vector.
Significance level |
Details
The vector of differences of standardized regression slopes
is estimated from bootstrap samples.
Confidence intervals are generated by obtaining
percentiles corresponding to 100(1 - \alpha)\%
from the generated sampling
distribution of differences of standardized regression slopes,
where \alpha
is the significance level.
Value
Returns an object
of class betanb
which is a list with the following elements:
- call
Function call.
- args
Function arguments.
- thetahatstar
Sampling distribution of differences of standardized regression slopes.
- vcov
Sampling variance-covariance matrix of differences of standardized regression slopes.
- est
Vector of estimated differences of standardized regression slopes.
- fun
Function used ("DiffBetaNB").
Author(s)
Ivan Jacob Agaloos Pesigan
See Also
Other Beta Nonparametric Bootstrap Functions:
BetaNB()
,
DeltaRSqNB()
,
NB()
,
PCorNB()
,
RSqNB()
,
SCorNB()
Examples
# Data ---------------------------------------------------------------------
data("nas1982", package = "betaNB")
# Fit Model in lm ----------------------------------------------------------
object <- lm(QUALITY ~ NARTIC + PCTGRT + PCTSUPP, data = nas1982)
# NB -----------------------------------------------------------------------
nb <- NB(
object,
R = 100, # use a large value e.g., 5000L for actual research
seed = 0508
)
# DiffBetaNB ---------------------------------------------------------------
out <- DiffBetaNB(nb, alpha = 0.05)
## Methods -----------------------------------------------------------------
print(out)
summary(out)
coef(out)
vcov(out)
confint(out, level = 0.95)
Generate the Sampling Distribution of Sample Covariances Using Nonparametric Bootstrapping
Description
Generate the Sampling Distribution of Sample Covariances Using Nonparametric Bootstrapping
Usage
NB(object, R = 5000L, seed = NULL)
Arguments
object |
Object of class |
R |
Positive integer. Number of bootstrap replications. |
seed |
Integer. Seed number for reproducibility. |
Value
Returns an object
of class nb
which is a list with the following elements:
- call
Function call.
- args
Function arguments.
- lm_process
Processed
lm
object.- thetahatstar
Sampling distribution of sample covariances.
- jackknife
Jackknife estimates.
Author(s)
Ivan Jacob Agaloos Pesigan
References
Efron, B., & Tibshirani, R. J. (1993) An introduction to the bootstrap. Chapman & Hall.
See Also
Other Beta Nonparametric Bootstrap Functions:
BetaNB()
,
DeltaRSqNB()
,
DiffBetaNB()
,
PCorNB()
,
RSqNB()
,
SCorNB()
Examples
# Data ---------------------------------------------------------------------
data("nas1982", package = "betaNB")
# Fit Model in lm ----------------------------------------------------------
object <- lm(QUALITY ~ NARTIC + PCTGRT + PCTSUPP, data = nas1982)
# NB -----------------------------------------------------------------------
nb <- NB(
object,
R = 100, # use a large value e.g., 20000L for actual research
seed = 0508
)
nb
# The `nb` object can be passed as the first argument
# to the following functions
# - BetaNB
# - DeltaRSqNB
# - DiffBetaNB
# - PCorNB
# - RSqNB
# - SCorNB
Estimate Squared Partial Correlation Coefficients and Generate the Corresponding Sampling Distribution Using Nonparametric Bootstrapping
Description
Estimate Squared Partial Correlation Coefficients and Generate the Corresponding Sampling Distribution Using Nonparametric Bootstrapping
Usage
PCorNB(object, alpha = c(0.05, 0.01, 0.001))
Arguments
object |
Object of class |
alpha |
Numeric vector.
Significance level |
Details
The vector of squared partial correlation coefficients
(r^{2}_{p}
)
is estimated from bootstrap samples.
Confidence intervals are generated by obtaining
percentiles corresponding to 100(1 - \alpha)\%
from the generated sampling
distribution of r^{2}_{p}
,
where \alpha
is the significance level.
Value
Returns an object
of class betanb
which is a list with the following elements:
- call
Function call.
- args
Function arguments.
- thetahatstar
Sampling distribution of
r^{2}_{p}
.- vcov
Sampling variance-covariance matrix of
r^{2}_{p}
.- est
Vector of estimated
r^{2}_{p}
.- fun
Function used ("PCorNB").
Author(s)
Ivan Jacob Agaloos Pesigan
See Also
Other Beta Nonparametric Bootstrap Functions:
BetaNB()
,
DeltaRSqNB()
,
DiffBetaNB()
,
NB()
,
RSqNB()
,
SCorNB()
Examples
# Data ---------------------------------------------------------------------
data("nas1982", package = "betaNB")
# Fit Model in lm ----------------------------------------------------------
object <- lm(QUALITY ~ NARTIC + PCTGRT + PCTSUPP, data = nas1982)
# NB -----------------------------------------------------------------------
nb <- NB(
object,
R = 100, # use a large value e.g., 5000L for actual research
seed = 0508
)
# PCorNB -------------------------------------------------------------------
out <- PCorNB(nb, alpha = 0.05)
## Methods -----------------------------------------------------------------
print(out)
summary(out)
coef(out)
vcov(out)
confint(out, level = 0.95)
Estimate Multiple Correlation Coefficients (R-Squared and Adjusted R-Squared) and Generate the Corresponding Sampling Distribution Using Nonparametric Bootstrapping
Description
Estimate Multiple Correlation Coefficients (R-Squared and Adjusted R-Squared) and Generate the Corresponding Sampling Distribution Using Nonparametric Bootstrapping
Usage
RSqNB(object, alpha = c(0.05, 0.01, 0.001))
Arguments
object |
Object of class |
alpha |
Numeric vector.
Significance level |
Details
R-squared (R^{2}
) and
adjusted R-squared (\bar{R}^{2}
)
is estimated from bootstrap samples.
Confidence intervals are generated by obtaining
percentiles corresponding to 100(1 - \alpha)\%
from the generated sampling
distribution of R^{2}
and \bar{R}^{2}
,
where \alpha
is the significance level.
Value
Returns an object
of class betanb
which is a list with the following elements:
- call
Function call.
- args
Function arguments.
- thetahatstar
Sampling distribution of
R^{2}
and\bar{R}^{2}
.- vcov
Sampling variance-covariance matrix of
R^{2}
and\bar{R}^{2}
.- est
Vector of estimated
R^{2}
and\bar{R}^{2}
.- fun
Function used ("RSqNB").
Author(s)
Ivan Jacob Agaloos Pesigan
See Also
Other Beta Nonparametric Bootstrap Functions:
BetaNB()
,
DeltaRSqNB()
,
DiffBetaNB()
,
NB()
,
PCorNB()
,
SCorNB()
Examples
# Data ---------------------------------------------------------------------
data("nas1982", package = "betaNB")
# Fit Model in lm ----------------------------------------------------------
object <- lm(QUALITY ~ NARTIC + PCTGRT + PCTSUPP, data = nas1982)
# NB -----------------------------------------------------------------------
nb <- NB(
object,
R = 100, # use a large value e.g., 5000L for actual research
seed = 0508
)
# RSqNB --------------------------------------------------------------------
out <- RSqNB(nb, alpha = 0.05)
## Methods -----------------------------------------------------------------
print(out)
summary(out)
coef(out)
vcov(out)
confint(out, level = 0.95)
Estimate Semipartial Correlation Coefficients and Generate the Corresponding Sampling Distribution Using Nonparametric Bootstrapping
Description
Estimate Semipartial Correlation Coefficients and Generate the Corresponding Sampling Distribution Using Nonparametric Bootstrapping
Usage
SCorNB(object, alpha = c(0.05, 0.01, 0.001))
Arguments
object |
Object of class |
alpha |
Numeric vector.
Significance level |
Details
The vector of semipartial correlation coefficients
(r_{s}
)
is estimated from bootstrap samples.
Confidence intervals are generated by obtaining
percentiles corresponding to 100(1 - \alpha)\%
from the generated sampling
distribution of r_{s}
,
where \alpha
is the significance level.
Value
Returns an object
of class betanb
which is a list with the following elements:
- call
Function call.
- args
Function arguments.
- thetahatstar
Sampling distribution of
r_{s}
.- vcov
Sampling variance-covariance matrix of
r_{s}
.- est
Vector of estimated
r_{s}
.- fun
Function used ("SCorNB").
Author(s)
Ivan Jacob Agaloos Pesigan
See Also
Other Beta Nonparametric Bootstrap Functions:
BetaNB()
,
DeltaRSqNB()
,
DiffBetaNB()
,
NB()
,
PCorNB()
,
RSqNB()
Examples
# Data ---------------------------------------------------------------------
data("nas1982", package = "betaNB")
# Fit Model in lm ----------------------------------------------------------
object <- lm(QUALITY ~ NARTIC + PCTGRT + PCTSUPP, data = nas1982)
# NB -----------------------------------------------------------------------
nb <- NB(
object,
R = 100, # use a large value e.g., 5000L for actual research
seed = 0508
)
# SCorNB -------------------------------------------------------------------
out <- SCorNB(nb, alpha = 0.05)
## Methods -----------------------------------------------------------------
print(out)
summary(out)
coef(out)
vcov(out)
confint(out, level = 0.95)
Estimated Parameter Method for an Object of Class
betanb
Description
Estimated Parameter Method for an Object of Class
betanb
Usage
## S3 method for class 'betanb'
coef(object, ...)
Arguments
object |
Object of Class |
... |
additional arguments. |
Value
Returns a vector of estimated parameters.
Author(s)
Ivan Jacob Agaloos Pesigan
Confidence Intervals Method for an Object of Class
betanb
Description
Confidence Intervals Method for an Object of Class
betanb
Usage
## S3 method for class 'betanb'
confint(object, parm = NULL, level = 0.95, type = "pc", ...)
Arguments
object |
Object of Class |
parm |
a specification of which parameters are to be given confidence intervals, either a vector of numbers or a vector of names. If missing, all parameters are considered. |
level |
the confidence level required. |
type |
Charater string.
Confidence interval type, that is,
|
... |
additional arguments. |
Value
Returns a matrix of confidence intervals.
Author(s)
Ivan Jacob Agaloos Pesigan
1982 National Academy of Sciences Doctoral Programs Data
Description
1982 National Academy of Sciences Doctoral Programs Data
Usage
nas1982
Format
Ratings of 46 doctoral programs in psychology in the USA with the following variables:
- QUALITY
Program quality ratings.
- NFACUL
Number of faculty members in the program.
- NGRADS
Number of program graduates.
- PCTSUPP
Percentage of program graduates who received support.
- PCTGRT
Percent of faculty members holding research grants.
- NARTIC
Number of published articles attributed to program faculty member.
- PCTPUB
Percent of faculty with one or more published article.
References
National Research Council. (1982). An assessment of research-doctorate programs in the United States: Social and behavioral sciences. doi:10.17226/9781. Reproduced with permission from the National Academy of Sciences, Courtesy of the National Academies Press, Washington, D.C.
Print Method for an Object of Class
betanb
Description
Print Method for an Object of Class
betanb
Usage
## S3 method for class 'betanb'
print(x, alpha = NULL, type = "pc", digits = 4, ...)
Arguments
x |
Object of Class |
alpha |
Numeric vector.
Significance level |
type |
Charater string.
Confidence interval type, that is,
|
digits |
Digits to print. |
... |
additional arguments. |
Value
Prints a matrix of estimates, standard errors, number of bootstrap replications, and confidence intervals.
Author(s)
Ivan Jacob Agaloos Pesigan
Print Method for an Object of Class nb
Description
Print Method for an Object of Class nb
Usage
## S3 method for class 'nb'
print(x, ...)
Arguments
x |
Object of Class |
... |
additional arguments. |
Value
Prints the first six bootstrap covariance matrices.
Author(s)
Ivan Jacob Agaloos Pesigan
Examples
object <- lm(QUALITY ~ NARTIC + PCTGRT + PCTSUPP, data = nas1982)
nb <- NB(object, R = 100)
print(nb)
Summary Method for an Object of Class
betanb
Description
Summary Method for an Object of Class
betanb
Usage
## S3 method for class 'betanb'
summary(object, alpha = NULL, type = "pc", digits = 4, ...)
Arguments
object |
Object of Class |
alpha |
Numeric vector.
Significance level |
type |
Charater string.
Confidence interval type, that is,
|
digits |
Digits to print. |
... |
additional arguments. |
Value
Returns a matrix of estimates, standard errors, number of bootstrap replications, and confidence intervals.
Author(s)
Ivan Jacob Agaloos Pesigan
Sampling Variance-Covariance Matrix Method for an Object of Class
betanb
Description
Sampling Variance-Covariance Matrix Method for an Object of Class
betanb
Usage
## S3 method for class 'betanb'
vcov(object, ...)
Arguments
object |
Object of Class |
... |
additional arguments. |
Value
Returns the variance-covariance matrix of estimates.
Author(s)
Ivan Jacob Agaloos Pesigan