Package 'bootGOF'

July 22, 2025

Title Bootstrap Based Goodness-of-Fit Tests

Version 0.1.0

Description Bootstrap based goodness-of-fit tests. It allows to perform rigorous statistical tests to check if a chosen model family is correct based on the marked empirical process. The implemented algorithms are described in (Dikta and Scheer (2021) <doi:10.1007/978-3-030-73480-0>) and can be applied to generalized linear models without any further implementation effort. As far as certain linearity conditions are fulfilled the resampling scheme are also applicable beyond generalized linear models. This is reflected in the software architecture which allows to reuse the resampling scheme by implementing only certain interfaces for models that are not supported natively by the package.

Imports checkmate (>= 2.0.0), R6 (>= 2.4.1)

License GPL-3 Encoding UTF-8 RoxygenNote 7.1.0

URL https://github.com/MarselScheer/bootGOF

BugReports https://github.com/MarselScheer/bootGOF/issues

Suggests testthat, covr, roxygen2, pkgdown, devtools, tinytest, mockery, knitr, rmarkdown, minpack.lm, MASS

VignetteBuilder knitr

NeedsCompilation no

Author Marsel Scheer [aut, cre], Gerhard Dikta [aut]

Maintainer Marsel Scheer < scheer@freescience.de>

Repository CRAN

Date/Publication 2021-06-24 07:30:02 UTC

Contents

	GOF_glm_info_extractor	2
	GOF_glm_sim_param	3
	GOF_glm_trainer	4
	GOF_lm_info_extractor	5
	GOF_lm_sim_param	6
	GOF_lm_trainer	6
	GOF_model	7
	GOF_model_info_extractor	9
	GOF_model_resample	10
	GOF_model_simulator	11
	GOF_model_test	11
	GOF_model_trainer	13
	GOF_sim_wild_rademacher	14
	Rn1_CvM	15
	Rn1_KS	15
	Rn1_statistic	16
	rrademacher	17
Index		18

GOF_glm_info_extractor

Implements the "interface" GOF_model_info_extractor for for generalized linear models

Description

This class is specialized in extracting various information from an object of class "glm"

Super class

```
bootGOF::GOF_model_info_extractor -> GOF_glm_info_extractor
```

Methods

Public methods:

- GOF_glm_info_extractor\$yhat()
- GOF_glm_info_extractor\$y_minus_yhat()
- GOF_glm_info_extractor\$beta_x_covariates()
- GOF_glm_info_extractor\$clone()

```
Method yhat(): see GOF_model_info_extractor
```

Usage:

```
GOF_glm_info_extractor$yhat(model)
```

Arguments:

GOF_glm_sim_param 3

```
model see GOF_model_info_extractor
    Returns: see GOF_model_info_extractor
   Method y_minus_yhat(): see GOF_model_info_extractor
    Usage:
    GOF_glm_info_extractor$y_minus_yhat(model)
    Arguments:
    model see GOF model info extractor
    Returns: see GOF_model_info_extractor
   Method beta_x_covariates(): see GOF_model_info_extractor
    Usage:
    GOF_glm_info_extractor$beta_x_covariates(model)
    Arguments:
    model see GOF_model_info_extractor
    Returns: see GOF_model_info_extractor
   Method clone(): The objects of this class are cloneable with this method.
    Usage:
    GOF_glm_info_extractor$clone(deep = FALSE)
    Arguments:
    deep Whether to make a deep clone.
GOF_glm_sim_param
                        Implements the "interface" GOF_model_simulator for for generalized
```

Description

after the GLM was fitted the distribution of the of the dependent variable is fully specified and used here to generate new dependent variables that follow model

Methods

Public methods:

```
    GOF_glm_sim_param$resample_y()
    GOF_glm_sim_param$clone()
    Method resample_y(): see GOF_model_simulator Usage:
    GOF_glm_sim_param$resample_y(model)
    Arguments:
```

linear models

GOF_glm_trainer

```
model see GOF_model_simulator

Returns: see GOF_model_simulator

Method clone(): The objects of this class are cloneable with this method.

Usage:

GOF_glm_sim_param$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.
```

GOF_glm_trainer

Implements the "interface" GOF_model_trainer for for generalized linear models

Description

refits an object of class "glm" to a new data set

Methods

Public methods:

```
GOF_glm_trainer$refit()GOF_glm_trainer$clone()
```

```
Method refit(): see GOF_model_trainer

Usage:
GOF_glm_trainer$refit(model, data)

Arguments:
model see GOF_model_trainer
data see GOF_model_trainer

Returns: see GOF_model_trainer
```

Method clone(): The objects of this class are cloneable with this method.

```
Usage:
GOF_glm_trainer$clone(deep = FALSE)
Arguments:
deep Whether to make a deep clone.
```

 $\begin{tabular}{ll} {\tt GOF_Im_info_extractor} & {\it Implements the "interface" GOF_model_info_extractor for linear models \end{tabular}$

Description

This class is specialized in extracting various information from an object of class "lm"

Super class

```
bootGOF::GOF_model_info_extractor -> GOF_lm_info_extractor
```

Methods

```
Public methods:
```

```
• GOF_lm_info_extractor$yhat()
  • GOF_lm_info_extractor$y_minus_yhat()
  • GOF_lm_info_extractor$beta_x_covariates()
  • GOF_lm_info_extractor$clone()
Method yhat(): see GOF_model_info_extractor
 Usage:
 GOF_lm_info_extractor$yhat(model)
 Arguments:
 model see GOF_model_info_extractor
 Returns: see GOF_model_info_extractor
Method y_minus_yhat(): see GOF_model_info_extractor
 Usage:
 GOF_lm_info_extractor$y_minus_yhat(model)
 Arguments:
 model see GOF_model_info_extractor
 Returns: see GOF_model_info_extractor
Method beta_x_covariates(): see GOF_model_info_extractor
 GOF_lm_info_extractor$beta_x_covariates(model)
 Arguments:
 model see GOF_model_info_extractor
 Returns: see GOF_model_info_extractor
Method clone(): The objects of this class are cloneable with this method.
 GOF_lm_info_extractor$clone(deep = FALSE)
 Arguments:
```

GOF_lm_trainer

GOF_lm_sim_param

Implements the "interface" GOF_model_simulator for for linear models

Description

after the classical linear model was fitted the normal distribution of the of the dependent variable is fully specified and used here to generate new dependent variables that follow model

Methods

Public methods:

- GOF_lm_sim_param\$resample_y()
- GOF_lm_sim_param\$clone()

Method resample_y(): generates/resamples the dependent variables based on the parameteric nature defined by model

```
Usage:
GOF_lm_sim_param$resample_y(model)
Arguments:
model see GOF_model_simulator
Returns: see GOF_model_simulator
```

Method clone(): The objects of this class are cloneable with this method.

```
Usage:
GOF_lm_sim_param$clone(deep = FALSE)
Arguments:
deep Whether to make a deep clone.
```

GOF_lm_trainer

Implements the "interface" GOF_model_trainer for for linear models

Description

refits an object of class "lm" to a new data set

GOF_model 7

Methods

Public methods:

```
• GOF_lm_trainer$refit()
• GOF_lm_trainer$clone()

Method refit(): see GOF_model_trainer

Usage:
GOF_lm_trainer$refit(model, data)

Arguments:
model see GOF_model_trainer
data see GOF_model_trainer

Returns: see GOF_model_trainer

Method clone(): The objects of this class are cloneable with this method.

Usage:
GOF_lm_trainer$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.
```

GOF_model

Convenience function for creating a GOF-test for statistical models

Description

Simplifies the creation of an instance of GOF_model_test, the actual work horse for performing a goodness-of-fit-test.

Usage

```
GOF_model(
  model,
  data,
  nmb_boot_samples,
  simulator_type,
  y_name,
  Rn1_statistic,
  gof_model_resample_class = GOF_model_resample,
  gof_model_test_class = GOF_model_test
)
```

8 GOF_model

Arguments

```
model
                  of class 'lm' or 'glm'. Caution with MASS::glm.nb, see vignette 'New-Models'
                 for more details.
                  see GOF model test
data
nmb_boot_samples
                  see GOF_model_test
simulator_type either "parameteric" or "semi_parameteric_rademacher"
                 see GOF_model_test
y_name
                 see GOF_model_test
Rn1_statistic
gof_model_resample_class
                  no need to change this parameter. Here the class used for resampling the model
                  (GOF_model_resample) is injected. This parameter simply makes it easier to
                 test the convenience function properly.
gof_model_test_class
                  no need to change this parameter. Here the class used for performing the GOF
                  test (GOF_model_test) is injected. This parameter simply makes it easier to test
                  the convenience function properly.
```

Value

instance of GOF_model_test

Examples

```
set.seed(1)
N <- 100
X1 <- rnorm(N)
X2 <- rnorm(N)</pre>
d <- data.frame(</pre>
  y = rpois(n = N, lambda = exp(4 + X1 * 2 + X2 * 6)),
  x1 = X1,
  x2 = X2
fit \leftarrow glm(y \sim x1, data = d, family = poisson())
mt <- GOF_model(</pre>
  model = fit,
  data = d,
  nmb_boot_samples = 100,
  simulator_type = "parametric",
  y_name = "y",
  Rn1_statistic = Rn1_KS$new())
mt$get_pvalue()
fit <- glm(y \sim x1 + x2, data = d, family = poisson())
mt <- GOF_model(</pre>
  model = fit,
  data = d,
  nmb_boot_samples = 100,
  simulator_type = "parametric",
  y_n = "y",
  Rn1_statistic = Rn1_KS$new())
mt$get_pvalue()
```

```
GOF_model_info_extractor
```

R6 Class representing model information

Description

R6 does not offer interfaces. Hence all methods are considered as abstract.

Methods

Public methods:

```
• GOF_model_info_extractor$yhat()
```

- GOF_model_info_extractor\$y_minus_yhat()
- GOF_model_info_extractor\$beta_x_covariates()
- GOF_model_info_extractor\$clone()

Method yhat(): Abstract function that estimates/predicts the the dependent variable in model

Usage:

```
GOF_model_info_extractor$yhat(model)
```

Arguments:

model fitted model

Returns: estimate/prediction of the dependent variable fitted by model

Method y_minus_yhat(): abstract function that calculates the residuals on the scale of the dependent variable.

Usage:

```
GOF_model_info_extractor$y_minus_yhat(model)
```

Arguments:

model fitted model

Returns: residuals on the scale of the dependent variable

Method beta_x_covariates(): abstract function that calculates the inner product of estimated parameters and the independent variables.

Usage:

```
GOF_model_info_extractor$beta_x_covariates(model)
```

Arguments:

model fitted model

Returns: inner product of the estimated parameters and the independent variables.

Method clone(): The objects of this class are cloneable with this method.

Usage:

```
GOF_model_info_extractor$clone(deep = FALSE)
```

Arguments:

GOF_model_resample R6 Class representing the resampling scheme for Goodness-of-fit-tests for (linear) models

Description

Class is able to resample model fit, i.e. generate a new data set and refit the model to the new data.

Methods

Public methods:

```
    GOF_model_resample$new()
    GOF_model_resample$resample()
    GOF_model_resample$clone()
    Method new():
        Usage:
        GOF_model_resample$new(gof_model_simulator, gof_model_trainer)
        Arguments:
        gof_model_simulator an instance that implements GOF_model_simulator
```

gof_model_trainer an instance that implements GOF_model_trainer

Returns: No explicit return

Method resample(): resamples the dependent variable in data and refits model to that new data set

```
Usage:
GOF_model_resample$resample(model, data, y_name)
Arguments:
model fitted model based on data
data used to fit model
y_name string specifying the name of the dependent variable
Returns: a resampled version of model
```

Method clone(): The objects of this class are cloneable with this method.

```
Usage:
GOF_model_resample$clone(deep = FALSE)
Arguments:
deep Whether to make a deep clone.
```

GOF_model_simulator

GOF_model_simulator

R6 Class representing a generator/resample of the dependent variable

Description

R6 does not offer interfaces. Hence all methods are considered as abstract.

Methods

Public methods:

```
• GOF_model_simulator$resample_y()
```

```
• GOF_model_simulator$clone()
```

Method resample_y(): Abstract function that resamples/generates the dependent variable

```
Usage:
```

```
GOF_model_simulator$resample_y(model)
```

Arguments:

model fitted model

Returns: generates the dependent variable according to the model

Method clone(): The objects of this class are cloneable with this method.

Usage:

```
GOF_model_simulator$clone(deep = FALSE)
```

Arguments:

deep Whether to make a deep clone.

GOF_model_test

R6 Class representing the Goodness-of-Fit test for (linear) models.

Description

This class can test the null hypothesis that data follows a particular linear model, i.e. classical linear models, generalized linear models or models of the type $m(\beta^{\top}X) + \epsilon$.

Methods

Public methods:

- GOF_model_test\$new()
- GOF_model_test\$get_Rn1_org()
- GOF_model_test\$get_Rn1_boot()
- GOF_model_test\$get_pvalue()
- GOF_model_test\$clone()

12 GOF_model_test

Method new(): Usage:

```
GOF_model_test$new(
   model,
    data,
    nmb_boot_samples,
    y_name,
   Rn1_statistic,
   gof_model_info_extractor,
    gof_model_resample
 Arguments:
 model a fitted model
 data used to fit model
 nmb_boot_samples integer specifying the number of bootstrap samples to perform
 y_name string specifying the name of the dependent variable in in data
 Rn1_statistic statistic used to map the marked empirical process to the real line. Needs to
     be an instance of the class that implements Rn1_statistic
 gof_model_info_extractor an instance that implements GOF_model_info_extractor in order
     to apply it to model
 gof_model_resample an instance that implements GOF_model_resample in order to apply it
 Returns: An instance of the Class
Method get_Rn1_org(): calculates the marked empricial process for model
 GOF_model_test$get_Rn1_org()
 Returns: vector ordered by the inner product of the estimated parameter and the independent
 variables
Method get_Rn1_boot(): calculates the marked empricial process for the resampled versions
of model
 Usage:
 GOF_model_test$get_Rn1_boot()
 Returns: list of length nmb_boot_samples where every element is a vector ordered by the inner
 product of the estimated parameter and the dependent variables
Method get_pvalue(): p-value for Goodness-of-Fit-test for model
 Usage:
 GOF_model_test$get_pvalue()
 Returns: p-value for the null hypothesis that the dependent variable was generated according
 to model
Method clone(): The objects of this class are cloneable with this method.
```

GOF_model_trainer 13

```
Usage:
GOF_model_test$clone(deep = FALSE)
Arguments:
deep Whether to make a deep clone.
```

GOF_model_trainer

R6 Class representing a trainer for fitting models

Description

R6 does not offer interfaces. Hence all methods are considered as abstract.

Methods

Public methods:

```
• GOF_model_trainer$refit()
```

• GOF_model_trainer\$clone()

Method refit(): Abstract function refits the model to a new data set

```
Usage:
```

```
GOF_model_trainer$refit(model, data)
```

Arguments:

model fitted model

data used for refitting the model

Returns: model refitted on data

Method clone(): The objects of this class are cloneable with this method.

Usage:

```
GOF_model_trainer$clone(deep = FALSE)
```

Arguments:

```
GOF_sim_wild_rademacher
```

Implements the "interface" GOF_model_simulator in a semi-parametric fashion

Description

This is a model agnostic resampling class, where Rademacher random variables are used to add or substract the residuals from the fitted values.

Methods

Public methods:

- GOF_sim_wild_rademacher\$new()
- GOF_sim_wild_rademacher\$resample_y()
- GOF_sim_wild_rademacher\$clone()

Method new():

```
Usage:
```

GOF_sim_wild_rademacher\$new(gof_model_info_extractor)

Arguments:

gof_model_info_extractor the info extractor that is used to derive the residuals and fitted
 values for resampling.

Method resample_y(): a wild bootstrap using Rademacher random variables to resample the dependent variable

```
Usage:
GOF_sim_wild_rademacher$resample_y(model)
Arguments:
model see GOF_model_simulator
```

Method clone(): The objects of this class are cloneable with this method.

```
Usage:
```

```
GOF_sim_wild_rademacher$clone(deep = FALSE)
```

Arguments:

deep Whether to make a deep clone.

Returns: see GOF_model_simulator

Rn1_CvM 15

 $Rn1_CvM$

Cramer-von-Mises-statistic for marked empirical process

Description

Implements the "interface" Rn1_statistic

Super class

```
bootGOF::Rn1_statistic -> Rn1_CvM
```

Methods

Public methods:

- Rn1_CvM\$calc_statistic()
- Rn1_CvM\$clone()

Method calc_statistic(): calculates the calculates the Cramer-von-Mises statistic

Usage:

Rn1_CvM\$calc_statistic(Rn1)

Arguments:

Rn1 see Rn1_statistic

Returns: see Rn1_statistic

Method clone(): The objects of this class are cloneable with this method.

Usage:

Rn1_CvM\$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Rn1_KS

Kolmogorov-Smirnov-statistic for marked empirical process

Description

Implements the "interface" Rn1_statistic

Super class

```
bootGOF::Rn1_statistic->Rn1_KS
```

Rn1_statistic

Methods

```
Public methods:
```

```
• Rn1_KS$calc_statistic()
```

```
• Rn1_KS$clone()
```

Method calc_statistic(): calculates the Kolmogorov-Smirnov-statistic

```
Usage:
```

Rn1_KS\$calc_statistic(Rn1)

Arguments:

Rn1 see Rn1_statistic

Returns: see Rn1_statistic

Method clone(): The objects of this class are cloneable with this method.

Usage:

Rn1_KS\$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Rn1_statistic

R6 Class representing statistics for marked empirical processes

Description

R6 does not offer interfaces. Hence all methods are considered as abstract.

Methods

Public methods:

- Rn1_statistic\$calc_statistic()
- Rn1_statistic\$clone()

Method calc_statistic(): Abstract function that calculates the statistic for a given marked empirical process

Usage:

Rn1_statistic\$calc_statistic(Rn1)

Arguments:

Rn1 marked empirical process as a double vector

Returns: statistic based on Rn1

Method clone(): The objects of this class are cloneable with this method.

Usage:

Rn1_statistic\$clone(deep = FALSE)

Arguments:

rrademacher 17

rrademacher

Generates Rademacher distributed random variables

Description

Generates Rademacher distributed random variables

Usage

rrademacher(n)

Arguments

n

number of random variables to be generated

Value

vector of values following the Rademacher distribution

Index

```
bootGOF::GOF_model_info_extractor, 2, 5
bootGOF::Rn1_statistic, 15
{\tt GOF\_glm\_info\_extractor, 2}
GOF_glm_sim_param, 3
GOF_glm_trainer, 4
GOF_lm_info_extractor, 5
GOF_lm_sim_param, 6
GOF_lm_trainer, 6
\mathsf{GOF}_{\mathsf{model}}, 7
GOF_model_info_extractor, 2, 3, 5, 9, 12
GOF_model_resample, 8, 10, 12
GOF_model_simulator, 3, 4, 6, 10, 11, 14
GOF_model_test, 7, 8, 11
{\tt GOF\_model\_trainer}, \textbf{4}, \textbf{7}, \textbf{10}, \textbf{13}
{\tt GOF\_sim\_wild\_rademacher, 14}
Rn1_CvM, 15
Rn1_KS, 15
Rn1_statistic, 12, 15, 16, 16
rrademacher, 17
```