Package 'breathteststan'

July 22, 2025

```
Type Package
Title Stan-Based Fit to Gastric Emptying Curves
Version 0.8.9
Description Stan-based curve-fitting function
     for use with package 'breathtestcore' by the same author.
     Stan functions are refactored here for easier testing.
License GPL (>= 3)
Encoding UTF-8
ByteCompile true
Depends R (>= 4.0.0), methods, Rcpp (>= 1.0.6)
Imports breathtestcore (>= 0.8.8), dplyr, purrr, rstan (>= 2.32.0),
     rstantools (\geq 2.4.0), stringr, tidyr
Suggests ggplot2, shinystan, igraph, bayesplot, testthat, covr, knitr,
     parallelly, rmarkdown
LinkingTo BH (>= 1.72), Rcpp (>= 1.0.6), RcppEigen (>= 0.3.4), rstan
     (>= 2.32.0), StanHeaders (>= 2.26.0)
URL https://github.com/dmenne/breathteststan,
     https://dmenne.github.io/breathteststan/
BugReports https://github.com/dmenne/breathteststan/issues
NeedsCompilation yes
SystemRequirements GNU make
Config/testthat/edition 3
Config/testthat/parallel true
RoxygenNote 7.3.2
Author Dieter Menne [aut, cre],
     Menne Biomed Consulting Tuebingen [cph],
     Benjamin Misselwitz [fnd],
     Mark Fox [fnd],
     University Hospital of Zurich, Dep. Gastroenterology [fnd, dtc]
```

2 stan_fit

Maintainer Dieter Menne < dieter.menne@menne-biomed.de>

Repository CRAN

Date/Publication 2025-01-08 09:00:07 UTC

Contents

	sigma.breathteststanfit	
Index		5

sigma.breathteststanfit

S3 method to exctract the residual standard deviation

Description

Functions for S3 method defined in breathtestcore for stan_fit and stan_group fit.

Usage

```
## S3 method for class 'breathteststanfit'
sigma(object, ...)
```

Arguments

object A Stan-based fit
... Not used

Value

A numeric value giving the sigma (= average residual standard deviation) term from the Stan fit.

stan_fit Bayesian Stan fit to 13C Breath Data

Description

Fits exponential beta curves to 13C breath test series data using Bayesian Stan methods. See https://menne-biomed.de/blog/breath-test-stan/ for a comparison between single curve, mixed-model population and Bayesian methods.

3 stan_fit

Usage

```
stan_fit(
  data,
  dose = 100,
  sample_minutes = 15,
  student_t_df = 10,
  chains = 2,
  iter = 1000,
 model = "breath_test_1",
  seed = 4711
)
```

Arguments

data	Data frame or tibble as created by cleanup_data, with mandatory columns patient_id, group, minute and pdr. It is recommended to run all data through cleanup_data which will insert dummy columns for patient_id and minute if the data are distinct, and report an error if not. Since the Bayesian method is stabilized by priors, it is possible to fit single curves.
doso	Dosa of acatata or actangata. Currently, only one common dosa for all records

Dose of acetate or octanoate. Currently, only one common dose for all records dose

is supported.

sample_minutes If mean sampling interval is < sampleMinutes, data are subsampled using a

spline algorithm

student_t_df When student_t_df < 10, the student distribution is used to model the resid-

uals. Recommended values to model typical outliers are from 3 to 6. When

 $student_t_df >= 10$, the normal distribution is used.

chains Number of chains for Stan

Number of iterations for each Stan chain iter

model Name of model; use names(stanmodels) for other models.

Optional seed for rstan seed

Value

A list of classes "breathteststanfit" and "breathtestfit" with elements

- coef Estimated parameters as data frame in a key-value format with columns patient_id, group, parameter, method and value. Has an attribute AIC.
- data The effectively analyzed data. If density of points is too high, e.g. with BreathId devices, data are subsampled before fitting.
- stan_fit The Stan fit for use with shinystan::launch_shiny or extraction of chains.

See Also

Base methods coef, plot, print; methods from package broom: tidy, augment.

stan_fit

Examples

```
library(breathtestcore)
suppressPackageStartupMessages(library(dplyr))
d = breathtestcore::simulate_breathtest_data(n_records = 3) # default 3 records
data = breathtestcore::cleanup_data(d$data)
# Use more than 80 iterations and 4 chains for serious fits
fit = stan_fit(data, chains = 1, iter = 80)
plot(fit) # calls plot.breathtestfit
# Extract coefficients and compare these with those
# used to generate the data
options(digits = 2)
cf = coef(fit)
cf %>%
  filter(grepl("m|k|beta", parameter )) %>%
  select(-method, -group) %>%
  tidyr::spread(parameter, value) %>%
  inner_join(d$record, by = "patient_id") %>%
  select(patient_id, m_in = m.y, m_out = m.x,
        beta_in = beta.y, beta_out = beta.x,
         k_in = k.y, k_out = k.x
# For a detailed analysis of the fit, use the shinystan library
library(shinystan)
# launch_shinystan(fit$stan_fit)
# The following plots are somewhat degenerate because
# of the few iterations in stan_fit
suppressPackageStartupMessages(library(rstan))
stan_plot(fit$stan_fit, pars = c("beta[1]","beta[2]","beta[3]"))
stan_plot(fit$stan_fit, pars = c("k[1]","k[2]","k[3]"))
stan_plot(fit$stan_fit, pars = c("m[1]","m[2]","m[3]"))
```

Index

```
\label{eq:cleanup_data} $$\operatorname{sigma.breathteststanfit,2}$$$\operatorname{stan_fit,2}$
```