charlatan makes realistic looking fake data, inspired
from and borrowing some code from Python’s faker
Why would you want to make fake data that looks real? Here’s some possible use cases to give you a sense for what you can do with this package:
See the Creating realistic data vignette for a few realistic examples.
See the Contributing to charlatan vignette.
R6 objects that
a user can initialize and then call methods on. These contain all the
logic that the below interfaces use.ch_*() that wrap low level interfaces, and are meant to be
easier to use and provide an easy way to make many instances of a
thing.ch_generate() - generate a data.frame with fake data,
choosing which columns to include from the data types provided in
charlatanfraudster() - single interface to all fake data
methods, - returns vectors/lists of data - this function wraps the
ch_*() functions described aboveStable version from CRAN
install.packages("charlatan")
Development version from Github
remotes::install_github("ropensci/charlatan")
library("charlatan")
… for all fake data operations
x <- fraudster()
x$job()
#> [1] "Chiropodist"
x$name()
#> [1] "Herman Terry"
x$job()
#> [1] "Advertising account planner"
x$color_name()
#> [1] "Orchid"
Here we create 3 jobs, for different locales:
ch_job(locale = "en_US", n = 3)
#> [1] "Arboriculturist" "Advertising copywriter"
#> [3] "Runner, broadcasting/film/video"
ch_job(locale = "fr_FR", n = 3)
#> [1] "Enseignant"
#> [2] "Technicien en engins de travaux publics"
#> [3] "Biologiste en environnement"
ch_job(locale = "hr_HR", n = 3)
#> [1] "Ovlašteni ispitivač" "Restaurator tehničar" "Profesionalni diplomat"
ch_job(locale = "uk_UA", n = 3)
#> [1] "Бухгалтер" "Акушер" "Літературознавець"
ch_job(locale = "zh_TW", n = 3)
#> [1] "模特兒" "採購主管" "稅務人員"
For colors:
ch_color_name(locale = "en_US", n = 3)
#> [1] "Indigo" "Violet" "PeachPuff"
ch_color_name(locale = "uk_UA", n = 3)
#> [1] "Болотний" "Алізариновий червоний" "Блідий рожево-ліловий"
ch_generate()
#> # A tibble: 10 × 3
#> name job phone_number
#> <chr> <chr> <chr>
#> 1 Toy Olson Land/geomatics surveyor 100-172-0323x9435
#> 2 Byrd Hyatt Chartered certified accountant 1-720-377-7607x369
#> 3 Mr. Ansel Hoppe Financial adviser 428.454.3111
#> 4 Gennie Paucek Environmental education officer 1-364-963-7415
#> 5 Knute Larkin MD Surveyor, building control 365-153-1512x640
#> 6 Ms. Columbia O'Keefe PhD Psychologist, sport and exercise 1-675-608-6043
#> 7 Hazelle Kertzmann Radiographer, diagnostic +43(6)5410096700
#> 8 Mr. Landon Rempel PhD Broadcast presenter (407)670-1445
#> 9 Emmett Blick-Stroman Engineer, civil (consulting) 07211831032
#> 10 Mrs. Enid Weimann Tourism officer 612.504.1906
ch_generate("job", "phone_number", n = 30)
#> # A tibble: 30 × 2
#> job phone_number
#> <chr> <chr>
#> 1 Paramedic (117)599-7211x265
#> 2 Geophysical data processor 1-698-432-3070
#> 3 Lawyer 883.498.5949x033
#> 4 Diagnostic radiographer (791)275-5975x879
#> 5 Financial risk analyst (054)799-0236
#> 6 Broadcast presenter 395-340-7575x33687
#> 7 Warehouse manager (166)502-3536
#> 8 Government social research officer 812-310-8934x49355
#> 9 Engineer, civil (contracting) 02670092370
#> 10 Agricultural consultant +01(0)2831341920
#> # ℹ 20 more rows
We can create locale specific versions of:
Examples:
ch_name()
#> [1] "Dr. Lawrence Kunde"
ch_name(10)
#> [1] "Thea McKenzie DDS" "Pierre Brekke-Weissnat"
#> [3] "Gustie Gusikowski" "Fernando Reynolds-Murray"
#> [5] "Margot Bartoletti" "Campbell Rolfson"
#> [7] "Diana Rath MD" "Mrs. Hassie Huel MD"
#> [9] "Godfrey Schuster Sr." "Ms. Pepper Gusikowski DVM"
ch_phone_number()
#> [1] "1-165-010-3537"
ch_phone_number(10)
#> [1] "(635)197-0396x6413" "(082)647-9716" "029-535-6739x35240"
#> [4] "(019)449-7175x357" "202.408.9181x1298" "(401)177-2530x2307"
#> [7] "1-356-342-7687" "(725)247-8616" "1-885-126-7772x160"
#> [10] "590-879-7859"
ch_job()
#> [1] "Risk analyst"
ch_job(10)
#> [1] "Chemical engineer"
#> [2] "Administrator, sports"
#> [3] "Secretary, company"
#> [4] "Ophthalmologist"
#> [5] "Technical brewer"
#> [6] "Industrial buyer"
#> [7] "Editorial assistant"
#> [8] "Loss adjuster, chartered"
#> [9] "Engineer, control and instrumentation"
#> [10] "Psychologist, sport and exercise"
Some data types are not localized (arguably the files and user_agents, are mostly universal too).
ch_currency(3)
#> [1] "LTL" "RON" "GHS"
ch_credit_card_provider()
#> [1] "Discover"
ch_credit_card_provider(n = 4)
#> [1] "Diners Club / Carte Blanche" "VISA 16 digit"
#> [3] "JCB 15 digit" "Diners Club / Carte Blanche"
ch_credit_card_number()
#> [1] "4910218727801000"
ch_credit_card_number(n = 10)
#> [1] "3027286704035888" "3158731917012546371" "3112509263038535449"
#> [4] "3158976738315571054" "6011217371035136781" "4995484405809"
#> [7] "3112985431943077574" "3096622039431748876" "6011438916110691341"
#> [10] "3028602338907012"
ch_credit_card_security_code()
#> [1] "540"
ch_credit_card_security_code(10)
#> [1] "439" "846" "968" "224" "461" "621" "560" "189" "016" "954"
charlatan makes it very easy to generate fake data with
missing entries. First, you need to run
MissingDataProvider() and then make an appropriate
make_missing() call specifying the data type to be
generated. This method picks a random number (N) of slots
in the input make_missing vector and then picks
N random positions that will be replaced with NA matching
the input class.
testVector <- MissingDataProvider$new()
testVector$make_missing(x = ch_generate()$name)
#> [1] "Josephine Baumbach" "Kaycee Mayert" "Jonah Kihn PhD"
#> [4] "Michal Bashirian Jr." "Brittany Kemmer-Renner" "Sibyl Leuschke"
#> [7] "Albin Koepp IV" "Dr. Duane Oberbrunner" NA
#> [10] "Bess Marquardt"
testVector$make_missing(x = ch_integer(10))
#> [1] 923 NA NA 666 261 NA NA 333 755 522
set.seed(123)
testVector$make_missing(x = sample(c(TRUE, FALSE), 10, replace = TRUE))
#> [1] TRUE NA NA FALSE TRUE NA FALSE FALSE NA TRUE
Real data is messy, right? charlatan makes it easy to
create messy data. This is still in the early stages so is not available
across most data types and languages, but we’re working on it.
For example, create messy names:
ch_name(50, messy = TRUE)
#> [1] "Destiney Dicki" "Mrs. Freddie Pouros DDS"
#> [3] "Ms. Jada Lesch" "Inga Dach"
#> [5] "Keyshawn Schaefer" "Ferdinand Bergstrom"
#> [7] "Justen Simonis" "Ms. Doloris Stroman DVM"
#> [9] "Mrs. Ermine Heidenreich" "Marion Corwin"
#> [11] "Jalen Grimes" "Mr. Sullivan Hammes IV"
#> [13] "Adrien Vandervort-Dickens" "Dr. Sharif Kunde"
#> [15] "Marlena Reichert PhD" "Mr. Brandan Oberbrunner"
#> [17] "Lloyd Adams III" "Randy Ziemann"
#> [19] "Gina Sanford" "Cornell Funk"
#> [21] "Yadiel Collier" "Kamryn Johnson"
#> [23] "Tyesha Schmeler" "Ernie Hegmann-Graham"
#> [25] "Zackery Runolfsdottir" "Cleveland Predovic"
#> [27] "Melvyn Hickle" "Larry Nienow IV"
#> [29] "Vilma Rutherford" "Wiliam Ziemann-Fadel"
#> [31] "Mrs. Kathy Halvorson" "Mirtie Harvey-Shanahan"
#> [33] "Eliezer Pfeffer" "Dr. Shep Buckridge"
#> [35] "Kyree Kutch" "Ms. Delpha Grant"
#> [37] "Ms. Icie Crooks" "Loney Jenkins-Lindgren"
#> [39] "Shania Donnelly DVM" "Dr. Patric Veum"
#> [41] "Amirah Rippin DVM" "Randle Hilpert"
#> [43] "Soren Dare" "Roderic Walter"
#> [45] "Farah Daugherty MD" "Marva Crooks"
#> [47] "Ryland Ledner" "Girtha Harvey DDS"
#> [49] "Staci Spencer" "Mr. Olan Bernhard"
Right now only suffixes and prefixes for names in en_US
locale are supported. Notice above some variation in prefixes and
suffixes.