Type: Package
Title: Computational Tools for Meta-Analysis of Diagnostic Accuracy Test
Version: 1.1.1
Date: 2023-05-27
Maintainer: Hisashi Noma <noma@ism.ac.jp>
Description: Computational tools for meta-analysis of diagnostic accuracy test. Bootstrap-based computational methods of the confidence interval for AUC of summary ROC curve and some related AUC-based inference methods are available (Noma et al. (2021) <doi:10.1080/23737484.2021.1894408>).
Imports: MASS, mada
License: GPL-3
Encoding: UTF-8
LazyData: true
NeedsCompilation: no
Packaged: 2023-05-30 05:07:12 UTC; Hisashi
Author: Hisashi Noma ORCID iD [aut, cre]
Repository: CRAN
Date/Publication: 2023-05-30 10:50:10 UTC

The 'dmetatools' package.

Description

Computational tools for meta-analysis of diagnostic accuracy test. Bootstrap-based computational methods of the confidence interval for AUC of summary ROC curve and some related AUC-based inference methods are available.

Author(s)

Hisashi Noma <noma@ism.ac.jp>

References

Noma, H., Matsushima, Y., and Ishii, R. (2021). Confidence interval for the AUC of SROC curve and some related methods using bootstrap for meta-analysis of diagnostic accuracy studies. Communications in Statistics: Case Studies and Data Analysis 7: 344-358. doi:10.1080/23737484.2021.1894408


Influence diagnostics based on the AUC of summary ROC curve

Description

Influence diagnostics based on AUC of the summary ROC curve by leave-one-out analysis. The threshold to determine influential outlying study is computed by parametric bootstrap.

Usage

AUC_IF(TP, FP, FN, TN, B=2000, alpha=0.95)

Arguments

TP

A vector of the number of true positives (TP)

FP

A vector of the number of false positives (FP)

FN

A vector of the number of false negatives (FN)

TN

A vector of the number of true negatives (TN)

B

The number of bootstrap resampling (default: 2000)

alpha

The error level to be calculated for the bootstrap interval of deltaAUC (default: 0.95)

Value

Influence diagnostic statistics based on the AUC of the summary ROC curve. The output is sorted by the absolute size of deltaAUC.

Author(s)

Hisashi Noma <noma@ism.ac.jp>

References

Noma, H., Matsushima, Y., and Ishii, R. (2021). Confidence interval for the AUC of SROC curve and some related methods using bootstrap for meta-analysis of diagnostic accuracy studies. Communications in Statistics: Case Studies and Data Analysis 7: 344-358. doi:10.1080/23737484.2021.1894408

Examples

require(mada)

data(asthma)

fit1 <- reitsma(asthma)    # DTA analysis using the Reitsma model
summary(fit1)

plot(fit1)		# Plot the SROC curves
points(fpr(asthma), sens(asthma), cex = .5)

attach(asthma)
AUC_IF(TP, FP, FN, TN, B=2)    # Influential analysis based on the AUC
detach(asthma)
# This is an example command for illustration. B should be >= 1000.

Confidence interval for AUC of summary ROC curve

Description

Calculating the confidence interval for AUC of summary ROC curve by parametric bootstrap.

Usage

AUC_boot(TP, FP, FN, TN, B=2000, alpha=0.95)

Arguments

TP

A vector of the number of true positives (TP)

FP

A vector of the number of false positives (FP)

FN

A vector of the number of false negatives (FN)

TN

A vector of the number of true negatives (TN)

B

The number of bootstrap resampling (default: 2000)

alpha

The confidence level (default: 0.95)

Value

The confidence interval for AUC of summary ROC curve is calculated.

Author(s)

Hisashi Noma <noma@ism.ac.jp>

References

Noma, H., Matsushima, Y., and Ishii, R. (2021). Confidence interval for the AUC of SROC curve and some related methods using bootstrap for meta-analysis of diagnostic accuracy studies. Communications in Statistics: Case Studies and Data Analysis 7: 344-358. doi:10.1080/23737484.2021.1894408

Examples

require(mada)

data(cervical)

CT <- cervical[cervical$method==1,]
LAG <- cervical[cervical$method==2,]
MRI <- cervical[cervical$method==3,]

fit1 <- reitsma(CT)    # DTA meta-analysis using the Reitsma model
summary(fit1)
fit2 <- reitsma(LAG)
summary(fit2)
fit3 <- reitsma(MRI)
summary(fit3)

plot(fit1)    # Plot the SROC curves
lines(sroc(fit2), lty=2, col="blue")
ROCellipse(fit2, lty=2, pch=2, add=TRUE, col="blue")
lines(sroc(fit3), lty=3, col="red")
ROCellipse(fit3, lty=3, pch=3, add=TRUE, col="red")
points(fpr(CT), sens(CT), cex = .5)
points(fpr(LAG), sens(LAG), pch = 2, cex = 0.5, col="blue")
points(fpr(MRI), sens(MRI), pch = 3, cex = 0.5, col="red")
legend("bottomright", c("CT", "LAG", "MRI"), pch = 1:3, lty = 1:3, col=c("black","blue","red"))

AUC_boot(CT$TP,CT$FP,CT$FN,CT$TN,B=5)
AUC_boot(LAG$TP,LAG$FP,LAG$FN,LAG$TN,B=5)
AUC_boot(MRI$TP,MRI$FP,MRI$FN,MRI$TN,B=5)
# These are example commands for illustration. B should be >= 1000.

Bootstrap test for the difference of AUCs of summary ROC curves for multiple diagnostic tests

Description

Calculating the difference of AUCs of summary ROC curves (dAUC) and its confidence interval, and the p-value for the test of "dAUC=0" by parametric bootstrap.

Usage

AUC_comparison(TP1, FP1, FN1, TN1, TP2, FP2, FN2, TN2, B=2000, alpha=0.05)

Arguments

TP1

A vector of the number of true positives (TP) of test 1

FP1

A vector of the number of false positives (FP) of test 1

FN1

A vector of the number of false negatives (FN) of test 1

TN1

A vector of the number of true negatives (TN) of test 1

TP2

A vector of the number of true positives (TP) of test 2

FP2

A vector of the number of false positives (FP) of test 2

FN2

A vector of the number of false negatives (FN) of test 2

TN2

A vector of the number of true negatives (TN) of test 2

B

The number of bootstrap resampling (default: 2000)

alpha

The significance level (default: 0.05)

Value

The AUCs of the summary ROC curves and their confidence intervals are calculated. Also, the difference of the AUCs (dAUC) and its confidence interval, and the p-value for the test of "dAUC=0" are provided.

Author(s)

Hisashi Noma <noma@ism.ac.jp>

References

Noma, H., Matsushima, Y., and Ishii, R. (2021). Confidence interval for the AUC of SROC curve and some related methods using bootstrap for meta-analysis of diagnostic accuracy studies. Communications in Statistics: Case Studies and Data Analysis 7: 344-358. doi:10.1080/23737484.2021.1894408

Examples

require(mada)

data(cervical)

CT <- cervical[cervical$method==1,]
LAG <- cervical[cervical$method==2,]
MRI <- cervical[cervical$method==3,]

fit1 <- reitsma(CT)    # DTA meta-analysis using the Reitsma model
summary(fit1)
fit2 <- reitsma(LAG)
summary(fit2)
fit3 <- reitsma(MRI)
summary(fit3)

plot(fit1)    # Plot the SROC curves
lines(sroc(fit2), lty=2, col="blue")
ROCellipse(fit2, lty=2, pch=2, add=TRUE, col="blue")
lines(sroc(fit3), lty=3, col="red")
ROCellipse(fit3, lty=3, pch=3, add=TRUE, col="red")
points(fpr(CT), sens(CT), cex = .5)
points(fpr(LAG), sens(LAG), pch = 2, cex = 0.5, col="blue")
points(fpr(MRI), sens(MRI), pch = 3, cex = 0.5, col="red")
legend("bottomright", c("CT", "LAG", "MRI"), pch = 1:3, lty = 1:3, col=c("black","blue","red"))

AUC_comparison(CT$TP,CT$FP,CT$FN,CT$TN,LAG$TP,LAG$FP,LAG$FN,LAG$TN,B=5)
AUC_comparison(MRI$TP,MRI$FP,MRI$FN,MRI$TN,LAG$TP,LAG$FP,LAG$FN,LAG$TN,B=5)
AUC_comparison(MRI$TP,MRI$FP,MRI$FN,MRI$TN,CT$TP,CT$FP,CT$FN,CT$TN,B=5)
# These are example commands for illustration. B should be >= 1000.

Korevaar et al. (2015)'s data of minimally invasive markers for detection of airway eosinophilia in asthma

Description

Usage

data(asthma)

Format

A data frame with 12 rows and 4 variables

References

Korevaar, D. A., Westerhof, G. A., Wang, J., et al. (2015). Diagnostic accuracy of minimally invasive markers for detection of airway eosinophilia in asthma: a systematic review and meta-analysis. Lancet Respiratory Medicine. 3: 290-300. doi:10.1016/S2213-2600(15)00050-8

Noma, H., Matsushima, Y., and Ishii, R. (2021). Confidence interval for the AUC of SROC curve and some related methods using bootstrap for meta-analysis of diagnostic accuracy studies. Communications in Statistics: Case Studies and Data Analysis 7: 344-358. doi:10.1080/23737484.2021.1894408


Scheidler et al. (1997)'s cervical cancer data

Description

Usage

data(cervical)

Format

A data frame with 44 rows and 8 variables

References

Scheidler, J., Hricak, H., Yu, K. K., Subak, L., and Segal, M. R. (1997). Radiological evaluation of lymph node metastases in patients with cervical cancer. A meta-analysis. JAMA 278: 1096-1101.

Reitsma, J. B., Glas, A. S., Rutjes, A. W., Scholten, R. J., Bossuyt, P. M., and Zwinderman, A. H. (2005). Bivariate analysis of sensitivity and specificity produces informative summary measures in diagnostic reviews. Journal of Clinical Epidemiology 58: 982-990. doi:10.1016/j.jclinepi.2005.02.022

Noma, H., Matsushima, Y., and Ishii, R. (2021). Confidence interval for the AUC of SROC curve and some related methods using bootstrap for meta-analysis of diagnostic accuracy studies. Communications in Statistics: Case Studies and Data Analysis 7: 344-358. doi:10.1080/23737484.2021.1894408