
Package ‘epitrix’
July 25, 2025

Title Small Helpers and Tricks for Epidemics Analysis

Version 0.4.1

Description A collection of small functions useful for epidemics analysis and infectious disease mod-
elling. This includes computation of basic reproduction numbers from growth rates, genera-
tion of hashed labels to anonymize data, and fitting discretized Gamma distributions.

Depends R (>= 3.3.0)

License MIT + file LICENSE

Encoding UTF-8

Suggests testthat, roxygen2, outbreaks, incidence (>= 1.4.1), knitr,
rmarkdown, magrittr, ggplot2, tibble, covr

Imports sodium, distcrete, stringi, dplyr, purrr, rlang, tidyr

RoxygenNote 7.3.2

Config/testthat/edition 3

URL http://www.repidemicsconsortium.org/epitrix/

BugReports https://github.com/reconhub/epitrix/issues

VignetteBuilder knitr

NeedsCompilation no

Author Thibaut Jombart [aut, cre],
Anne Cori [aut],
Zhian N. Kamvar [ctb],
Dirk Schumacher [ctb],
Flavio Finger [aut],
Charlie Whittaker [ctb]

Maintainer Thibaut Jombart <thibautjombart@gmail.com>

Repository CRAN

Date/Publication 2025-07-25 08:50:02 UTC

1

http://www.repidemicsconsortium.org/epitrix/
https://github.com/reconhub/epitrix/issues

2 AR2R0

Contents

AR2R0 . 2
clean_labels . 3
empirical_incubation_dist . 4
fit_disc_gamma . 6
fit_gamma_incubation_dist . 7
gamma_shapescale2mucv . 8
hash_names . 10
R02AR . 12
R02herd_immunity_threshold . 13
r2R0 . 13
sim_linelist . 15

Index 16

AR2R0 Title Calculate basic reproduction number from attack rate

Description

Title Calculate basic reproduction number from attack rate

Usage

AR2R0(AR)

Arguments

AR the attack rate; a value or vector of values between 0 and 1

Value

R0, the basic reproduction number, calculated as -log(1-AR)/AR

Examples

Calculate R0 for an attack rate of 50%
AR2R0(0.5)

plot the relationship between R0 and attack rate
x <- seq(0.01, 1, 0.01)
plot(AR2R0(x), x, type = "l", xlab = "R0", ylab = "Attack rate")

clean_labels 3

clean_labels Standardise labels

Description

This function standardises labels e.g. used as variable names or character string values, removing
non-ascii characters, replacing diacritics (e.g. é, ô) with their closest ascii equivalents, and stan-
dardises separating characters. See details for more information on label transformation.

Usage

clean_labels(
x,
sep = "_",
transformation = "Any-Latin; Latin-ASCII",
protect = ""

)

Arguments

x A vector of labels, normally provided as characters.

sep A character string used as separator, defaulting to ’_’.

transformation a string to be passed on to stringi::stri_trans_general() for conversion.
Default is "Any-Latin; Latin-ASCII", which will convert any non-latin charac-
ters to latin and then converts all accented characters to ASCII characters. See
stringi::stri_trans_list() for a full list of options.

protect a character string defining the punctuation that should be protected. This helps
prevent meaninful symbols like > and < from being removed.

Details

The following changes are performed:

• all non-ascii characters are removed

• all diacritics are replaced with their non-accentuated equivalents, e.g. ’é’, ’ê’ and ’è’ become
’e’.

• all characters are set to lower case

• separators are standardised to the use of a single character provided in sep (defaults to ’_’);
heading and trailing separators are removed.

Note

Because of differences between the underlying transliteration engine (ICU), the default transforma-
tions will not transilierate German umlaute correctly. You can add them by specifying "de-ASCII"
in the transformation string after "Any-Latin".

4 empirical_incubation_dist

Author(s)

Thibaut Jombart <thibautjombart@gmail.com>, Zhian N. Kamvar

Examples

Not run:
clean_labels("-_-This is; A WeÏrD**./sêntënce...")
clean_labels("-_-This is; A WeÏrD**./sêntënce...", sep = ".")
input <- c("Peter and stëven",

"peter-and.stëven",
"pëtêr and stëven _-")

input
clean_labels(input)

Don't transliterate non-latin words
clean_labels(input, transformation = "Latin-ASCII")

protect useful symbols
clean_labels(c("energy > 9000", "energy < 9000"), protect = "><")

if you only want to clean accents, transform to lower, and transliterate,
you can specify "[:punct:][:space:]" for protect:
clean_labels(input, protect = "[:punct:][:space:]")

appropriately transliterate Germanic umlaute
if (stringi::stri_info()$ICU.system) {

This will only be true if you have the correct version of ICU installed

clean_labels("'é', 'ê' and 'è' become 'e', 'ö' becomes 'oe', etc.",
transformation = "Any-Latin; de-ASCII; Latin-ASCII")

}

End(Not run)

empirical_incubation_dist

Extract empirical incubation period distribution from linelist data

Description

This function takes in a linelist data frame and extracts the empirical incubation period distribution
and can take into account uncertainty in the dates of exposure.

Usage

empirical_incubation_dist(x, date_of_onset, exposure, exposure_end = NULL)

empirical_incubation_dist 5

Arguments

x the linelist data (data.frame or linelist object) containing at least a column con-
taining the exposure dates and one containing the onset dates.

date_of_onset the name of the column containing the onset dates (bare variable name or in
quotes)

exposure the name of the column containing the exposure dates (bare variable name or in
quotes)

exposure_end the name of a column containing dates representing the end of the exposure
period. This is ‘NULL‘ by default, indicating all exposures are known and in
the ‘exposure‘ column.

Value

a data frame containing a column with the different incubation periods and a column containing
their relative frequency

Note

For exposure dates, each element can be a vector containing several possible exposure dates. Note
that if the same exposure date appears twice in the list it is given twice as much weight.

Author(s)

Flavio Finger, <flavio.finger@lshtm.ac.uk>, Zhian N. Kamvar

Examples

if (require(tibble)) {
random_dates <- as.Date("2020-01-01") + sample(0:30, 50, replace = TRUE)
x <- tibble(date_of_onset = random_dates)

Linelist with a list column of potential exposure dates ------------------
mkexposures <- function(x) x - round(rgamma(sample.int(5, size = 1), shape = 12, rate = 3))
exposures <- sapply(x$date_of_onset, mkexposures)
x$date_exposure <- exposures

incubation_period_dist <- empirical_incubation_dist(x, date_of_onset, date_exposure)
incubation_period_dist

Linelist with exposure range ---
start_exposure <- round(rgamma(nrow(x), shape = 12, rate = 3))
end_exposure <- round(rgamma(nrow(x), shape = 12, rate = 7))
x$exposure_end <- x$date_of_onset - end_exposure
x$exposure_start <- x$exposure_end - start_exposure
incubation_period_dist <- empirical_incubation_dist(x, date_of_onset, exposure_start, exposure_end)
incubation_period_dist
plot(incubation_period_dist,

type = "h", lwd = 10, lend = 2, col = "#49D193",
xlab = "Days since exposure",
ylab = "Probability",

6 fit_disc_gamma

main = "Incubation time distribution")
}

fit_disc_gamma Fit discretised distributions using ML

Description

These functions performs maximum-likelihood (ML) fitting of a discretised distribution. This is
typically useful for describing delays between epidemiological events, such as incubation period
(infection to onset) or serial intervals (primary to secondary onsets). The function optim is used
internally for fitting.

Usage

fit_disc_gamma(x, mu_ini = NULL, cv_ini = NULL, interval = 1, w = 0, ...)

Arguments

x A vector of numeric data to fit; NAs will be removed with a warning.

mu_ini The initial value for the mean ’mu’, defaulting to the empirically calculated
value.

cv_ini The initial value for the coefficient of variation ’cv’, defaulting to the empirically
calculated value.

interval The interval used for discretisation; see distcrete.

w The centering of the interval used for discretisation; see distcrete.

... Further arguments passed to optim.

Value

The function returns a list with human-readable parametrisation of the discretised Gamma disti-
bution (mean, sd, cv), convergence indicators, and the discretised Gamma distribution itself as a
distcrete object (from the distcrete package).

Author(s)

Thibaut Jombart <thibautjombart@gmail.com>

Charlie Whittaker <charles.whittaker16@imperial.com>

See Also

The distcrete package for discretising distributions, and optim for details on available optimisa-
tion procedures.

fit_gamma_incubation_dist 7

Examples

generate data

mu <- 15.3 # days
sigma <- 9.3 # days
cv <- sigma / mu
cv
param <- gamma_mucv2shapescale(mu, cv)

if (require(distcrete)) {
w <- distcrete("gamma", interval = 1,

shape = param$shape,
scale = param$scale, w = 0)

x <- w$r(100)
x

fit_disc_gamma(x)
}

fit_gamma_incubation_dist

Fit discrite gamma distribution to incubation periods

Description

A wrapper around fit_disc_gamma to fit a discrete gamma distribution to incubation periods derived
from exposure and onset dates. Can take into account uncertain dates of exposure.

Usage

fit_gamma_incubation_dist(
x,
date_of_onset,
exposure,
exposure_end = NULL,
nsamples = 1000,
...

)

Arguments

x the linelist data (data.frame or linelist object) containing at least a column con-
taining the exposure dates and one containing the onset dates.

date_of_onset the name of the column containing the onset dates (bare variable name or in
quotes)

8 gamma_shapescale2mucv

exposure the name of the column containing the exposure dates (bare variable name or in
quotes)

exposure_end the name of a column containing dates representing the end of the exposure
period. This is ‘NULL‘ by default, indicating all exposures are known and in
the ‘exposure‘ column.

nsamples The number of samples to draw from the empirical distribution to fit on (dafaults
to 1000)

... passed to fit_disc_gamma

Value

see [fit_disc_gamma()]

Author(s)

Flavio Finger, <flavio.finger@lshtm.ac.uk>

Examples

random_dates <- as.Date("2020-01-01") + sample(0:30, 50, replace = TRUE)
x <- data.frame(date_of_onset = random_dates)

mkexposures <- function(x) x - round(rgamma(sample.int(5, size = 1), shape = 12, rate = 3))
exposures <- sapply(x$date_of_onset, mkexposures)
x$date_exposure <- exposures

fit <- fit_gamma_incubation_dist(x, date_of_onset, date_exposure)
plot(0:20, fit$distribution$d(0:20),

type = "h", lwd = 10, lend = 2, col = "#49D193",
xlab = "Days since exposure",
ylab = "Probability",
main = "Incubation time distribution")

gamma_shapescale2mucv Reparameterise Gamma distributions

Description

These functions permit to use alternate parametrisations for Gamma distributions, from ’shape and
scale’ to ’mean (mu) and coefficient of variation (cv), and back. gamma_shapescale2mucv does the
first conversion, while gamma_mucv2shapescale does the second. The function gamma_log_likelihood
is a shortcut for computing Gamma log-likelihood with the alternative parametrisation (mean, cv).
See ’details’ for a guide of which parametrisation to use.#’

gamma_shapescale2mucv 9

Usage

gamma_shapescale2mucv(shape, scale)

gamma_mucv2shapescale(mu, cv)

gamma_log_likelihood(
x,
mu,
cv,
discrete = TRUE,
interval = 1,
w = 0,
anchor = 0.5

)

Arguments

shape The shape parameter of the Gamma distribution.

scale The scale parameter of the Gamma distribution.

mu The mean of the Gamma distribution.

cv The coefficient of variation of the Gamma distribution, i.e. the standard devia-
tion divided by the mean.

x A vector of data treated as observations drawn from a Gamma distribution, for
which the likelihood is to be computed.

discrete A logical indicating if the distribution should be discretised; TRUE by default.

interval The interval used for discretisation; see distcrete.

w The centering of the interval used for discretisation, defaulting to 0; see distcrete.

anchor The anchor used for discretisation, i.e. starting point of the discretisation pro-
cess; defaults to 0; see distcrete.

Details

The gamma distribution is described in dgamma is parametrised using shape and scale (or rate).
However, these parameters are naturally correlated, which make them poor choices whenever try-
ing to fit data to a Gamma distribution. Their interpretation is also less clear than the traditional
mean and variance. When fitting the data, or reporting results, it is best to use the alternative
parametrisation using the mean (mu) and the coefficient of variation (cv), i.e. the standard deviation
divided by the mean.

Value

A named list containing ’shape’ and ’scale’, or mean (’mean’) and coefficient of variation (’cv’).

Author(s)

Code by Anne Cori <a.cori@imperial.ac.uk>, packaging by Thibaut Jombart <thibautjombart@gmail.com>

10 hash_names

Examples

set up some parameters

mu <- 10
cv <- 1

transform into shape scale

tmp <- gamma_mucv2shapescale (mu, cv)
shape <- tmp$shape
scale <- tmp$scale

recover original parameters when applying the revert function

gamma_shapescale2mucv(shape, scale) # compare with mu, cv

empirical validation:
check mean / cv of a sample derived using rgamma with
shape and scale computed from mu and cv

gamma_sample <- rgamma(n = 10000, shape = shape, scale = scale)
mean(gamma_sample) # compare to mu
sd(gamma_sample) / mean(gamma_sample) # compare to cv

hash_names Anonymise data using scrypt

Description

This function uses the scrypt algorithm from libsodium to anonymise data, based on user-indicated
data fields. Data fields are concatenated first, then each entry is hashed. The function can either
return a full detailed output, or short labels ready to use for ’anonymised data’. Before concatenation
(using "_" as a separator) to form labels, inputs are modified using [clean_labels()]

Usage

hash_names(
...,
size = 6,
full = TRUE,
hashfun = "secure",
salt = NULL,
clean_labels = TRUE

)

hash_names 11

Arguments

... Data fields to be hashed.

size The number of characters retained in the hash.

full A logical indicating if the a full output should be returned as a data.frame,
including original labels, shortened hash, and full hash.

hashfun This defines the hashing function to be used. If you specify "secure" (default),
it will use [sodium::scrypt()], which will be secure, but will be slow for large
data sets. For fast hashing with no colisions, you can sepecify "fast", and it
will use [sodium::sha256()], which is several orders of magnitude faster than
[sodium::scrypt()]. You can also specify a hashing function that takes and re-
turns a [raw][base::raw] vector of bytes that can be converted to character with
[rawToChar()].

salt An optional object that can be coerced to a character to be used to ’salt’ the
hashing algorithm (see details). Ignored if ‘NULL‘.

clean_labels A logical indicating if labels of variables should be standardized; defaults to
‘TRUE‘

Details

The argument ‘salt‘ should be used for salting the algorithm, i.e. adding an extra input to the
input fields (the ’salt’) to change the resulting hash and prevent identification of individuals via
pre-computed hash tables.

It is highly recommend to choose a secret, random salt in order make it harder for an attacker to
decode the hash.

Author(s)

Thibaut Jombart <thibautjombart@gmail.com>, Dirk Shchumacher <mail@dirk-schumacher.net>,
Zhian N. Kamvar <zkamvar@gmail.com>

See Also

[clean_labels()], used to clean labels prior to hashing
[sodium::hash()] for available hashing functions.

Examples

first_name <- c("Jane", "Joe", "Raoul")
last_name <- c("Doe", "Smith", "Dupont")
age <- c(25, 69, 36)

secure hashing
hash_names(first_name, last_name, age, hashfun = "secure")

fast hashing
hash_names(first_name, last_name, age,

size = 8, full = FALSE, hashfun = "fast")

12 R02AR

salting the hashing (more secure!)

hash_names(first_name, last_name) # unsalted - less secure
hash_names(first_name, last_name, salt = 123) # salted with an integer
hash_names(first_name, last_name, salt = "foobar") # salted with an character

using a different hash algorithm if you want things to run faster

hash_names(first_name, last_name, hashfun = "fast") # use sha256 algorithm

R02AR Title Calculate attack rate from basic reproduction number

Description

Title Calculate attack rate from basic reproduction number

Usage

R02AR(R0, tol = 0.01)

Arguments

R0 a value or vector of values representing the basic reproduction number, must be
>=0

tol a single >=0 value giving the tolerance for the calculated attack rate

Value

AR, the attack rate, calculated using the relationship: R0 = -log(1-AR)/AR

Examples

Calculate the attack rate for a specific value of the reproduction number
R02AR(2) # returns the AR for an R0 of 2

plot the relationship between R0 and attack rate
x <- seq(1.01, 5, 0.01)
plot(x, R02AR(x), type = "l", xlab = "R0", ylab = "Attack rate")

R02herd_immunity_threshold 13

R02herd_immunity_threshold

Title Calculate herd immunity threshold from basic reproduction num-
ber

Description

Title Calculate herd immunity threshold from basic reproduction number

Usage

R02herd_immunity_threshold(R0)

Arguments

R0 a value or vector of values representing the basic reproduction number, must be
>=0

Value

The herd immunity threshold, calculated as 1 - 1 / R0

Examples

Calculate the herd immunity threshold for a specific value of the
reproduction number (here 2)
R02herd_immunity_threshold(2)

plot the relationship between R0 and herd immunity threshold
x <- seq(1.01, 15, 0.01)
plot(x, R02herd_immunity_threshold(x), type = "l",

xlab = "R0", ylab = "Herd immunity threshold")

r2R0 Transform a growth rate into a reproduction number

Description

The function r2R0 can be used to transform a growth rate into a reproduction number estimate, given
a generation time distribution. This uses the approach described in Wallinga and Lipsitch (2007,
Proc Roy Soc B 274:599–604) for empirical distributions. The function lm2R0_sample generates a
sample of R0 values from a log-linear regression of incidence data stored in a lm object.

14 r2R0

Usage

r2R0(r, w, trunc = 1000)

lm2R0_sample(x, w, n = 100, trunc = 1000)

Arguments

r A vector of growth rate values.

w The serial interval distribution, either provided as a distcrete object, or as a
numeric vector containing probabilities of the mass functions.

trunc The number of time units (most often, days), used for truncating w, whenever a
distcrete object is provided. Defaults to 1000.

x A lm object storing a a linear regression of log-incidence over time.

n The number of draws of R0 values, defaulting to 100.

Details

It is assumed that the growth rate (’r’) is measured in the same time unit as the serial interval (’w’
is the SI distribution, starting at time 0).

Author(s)

Code by Anne Cori <a.cori@imperial.ac.uk>, packaging by Thibaut Jombart <thibautjombart@gmail.com>

Examples

Ebola estimates of the SI distribution from the first 9 months of
West-African Ebola oubtreak

mu <- 15.3 # days
sigma <- 9.3 # days
param <- gamma_mucv2shapescale(mu, sigma / mu)

if (require(distcrete)) {
w <- distcrete("gamma", interval = 1,

shape = param$shape,
scale = param$scale, w = 0)

r2R0(c(-1, -0.001, 0, 0.001, 1), w)

Use simulated Ebola outbreak and 'incidence' to get a log-linear
model of daily incidence.

if (require(outbreaks) && require(incidence)) {
i <- incidence(ebola_sim$linelist$date_of_onset)
plot(i)
f <- fit(i[1:100])
f
plot(i[1:150], fit = f)

sim_linelist 15

R0 <- lm2R0_sample(f$model, w)
hist(R0, col = "grey", border = "white", main = "Distribution of R0")
summary(R0)

}
}

sim_linelist Simulate simple linelist data

Description

This function simulates a simple linelist data including dates of epidemiological events and basic
patient information. No underlying epidemiological model is used.

Usage

sim_linelist(
n = 1,
onset_from = as.Date("2020-01-01"),
onset_span = 60,
report_delay = 7,
cfr = 0.1

)

Arguments

n Number of entries to simulate.

onset_from The earliest date of symptom onset which can be generated.

onset_span The time span over which to generate dates of onset.

report_delay The mean delay between onset and reporting, using a Poisson distribution.

cfr The case fatality ratio, i.e. the proportion of patient dying from the infection
(used to generate the ’outcome’ variable).

Author(s)

Thibaut Jombart <thibautjombart@gmail.com>

Examples

sim_linelist(10)

Index

AR2R0, 2

clean_labels, 3

dgamma, 9
distcrete, 6, 9

empirical_incubation_dist, 4

fit_disc_gamma, 6
fit_discrete (fit_disc_gamma), 6
fit_gamma_incubation_dist, 7

gamma_log_likelihood
(gamma_shapescale2mucv), 8

gamma_mucv2shapescale
(gamma_shapescale2mucv), 8

gamma_shapescale2mucv, 8

hash_names, 10

lm2R0_sample (r2R0), 13

optim, 6

R02AR, 12
R02herd_immunity_threshold, 13
r2R0, 13

sim_linelist, 15
stringi::stri_trans_general(), 3
stringi::stri_trans_list(), 3

16

	AR2R0
	clean_labels
	empirical_incubation_dist
	fit_disc_gamma
	fit_gamma_incubation_dist
	gamma_shapescale2mucv
	hash_names
	R02AR
	R02herd_immunity_threshold
	r2R0
	sim_linelist
	Index

