Type: | Package |
Title: | Fitting Tails by the Empirical Residual Coefficient of Variation |
Version: | 1.0.1 |
Date: | 2019-10-09 |
Encoding: | UTF-8 |
Author: | Joan del Castillo, David Moriña Soler and Isabel Serra |
Maintainer: | Isabel Serra <iserra@crm.cat> |
Description: | Provides a methodology simple and trustworthy for the analysis of extreme values and multiple threshold tests for a generalized Pareto distribution, together with an automatic threshold selection algorithm. See del Castillo, J, Daoudi, J and Lockhart, R (2014) <doi:10.1111/sjos.12037>. |
Depends: | R (≥ 3.5.0) |
Suggests: | poweRlaw, evir |
License: | GPL-2 | GPL-3 [expanded from: GPL (≥ 2)] |
NeedsCompilation: | no |
LazyData: | true |
Packaged: | 2019-10-15 04:01:26 UTC; dmorina |
Repository: | CRAN |
Date/Publication: | 2019-10-15 15:30:02 UTC |
Empirical residual coefficient of variation
Description
Fitting tails by the empirical residual coefficient of variation.
Details
Package: | ercv |
Type: | Package |
Version: | 1.0.1 |
Date: | 2019-09-19 |
License: | GPL version 2 or newer |
LazyLoad: | yes |
The package provides a methodology simple and trustworthy for the analysis of extreme values. The package contains functions for visualizing, fitting and validating the distribution of tails. Moreover, it also provides multiple threshold tests for a generalized Pareto distribution, together with an automatic threshold selection algorithm.
Author(s)
Joan del Castillo (Universitat Autònoma de Barcelona), David Moriña Soler (Catalan Institute of Oncology (ICO)-IDIBELL) and Isabel Serra (Centre de Recerca Matemàtica)
References
del Castillo, J. and Padilla, M. (2016). Modeling extreme values by the residual coefficient of variation. SORT Statist. Oper. Res. Trans. 40(2), 303-320.
del Castillo, J. and Serra, I. (2015). Likelihood inference for Generalized Pareto Distribution. Computational Statistics and Data Analysis, 83, 116-128.
del Castillo, J., Daoudi, J. and Lockhart, R. (2014). Methods to Distinguish Between Polynomial and Exponential Tails. Scandinavian Journal of Statistics, 41, 382-393.
See Also
ercv-package
, cievi
,
ccdfplot
, cvevi
, cvplot
, evicv
, fitpot
,
ppot
, qpot
, tdata
, thrselect
,
Tm
EEMBC AutoBench suite (Benchmark 3)
Description
This data corresponds to 1000 observations sampled from the third benchmark of the well-known suite for real-time systems EEMBC AutoBench suite (Poovey, 2007), including a number of of programs used in automotive embedded systems. It corresponds to the basic integer and floating point (BIFP) algorithm.
Usage
BIFP
Format
A numeric vector.
References
Abella J., Padilla, M.,del Castillo, J. & Cazorla, F. (2017). Measurement-Based Worst-Case Execution Time Estimation Using the Coefficient of Variation". ACM Transactions on Design Automation of Electronic Systems (TODAES), 22(4).
Poovey, J. (2007). Characterization of the EEMBC Benchmark Suite. North Carolina State University.
Euro/Dollar daily exchange rates
Description
This data corresponds to the euro/dollar daily exchange rates between 1999 and 2016, including the financial crisis of 2007-2008, which has been generated from the package quantmod
(Ryan, 2016).
Usage
EURUSD
Format
A data frame with 6575 rows and 1 column.
References
Ryan, J. A. (2016). quantmod: Quantitative Financial Modelling Framework. R package version 0.4-7. https://CRAN.R-project.org/package=quantmod
EEMBC AutoBench suite (Benchmark 2)
Description
This data corresponds to 1000 observations sampled from the second benchmark of the well-known suite for real-time systems EEMBC AutoBench suite (Poovey, 2007), including a number of of programs used in automotive embedded systems. It corresponds to the fast fourier transform (FFT) algorithm.
Usage
FFT
Format
A numeric vector.
References
Abella J., Padilla, M.,del Castillo, J. & Cazorla, F. (2017). Measurement-Based Worst-Case Execution Time Estimation Using the Coefficient of Variation". ACM Transactions on Design Automation of Electronic Systems (TODAES), 22(4).
Poovey, J. (2007). Characterization of the EEMBC Benchmark Suite. North Carolina State University.
EEMBC AutoBench suite (Benchmark 4)
Description
This data corresponds to 1000 observations sampled from the fourth benchmark of the well-known suite for real-time systems EEMBC AutoBench suite (Poovey, 2007), including a number of of programs used in automotive embedded systems. It corresponds to the matrix arithmetic (MA) algorithm.
Usage
MA
Format
A numeric vector.
References
Abella J., Padilla, M.,del Castillo, J. & Cazorla, F. (2017). Measurement-Based Worst-Case Execution Time Estimation Using the Coefficient of Variation". ACM Transactions on Design Automation of Electronic Systems (TODAES), 22(4).
Poovey, J. (2007). Characterization of the EEMBC Benchmark Suite. North Carolina State University.
Multiple threshold test for a GPD
Description
Multiple threshold test for a GPD.
Usage
Tm(data, threshold = NA, nextremes = NA, omit = 16, evi = NA, m = 10, nsim = 100)
Arguments
data |
a numeric vector. |
threshold |
a threshold value (either this or |
nextremes |
the number of upper extremes to be used (either
this or |
omit |
the minimum required number of upper extremes for computing residual statistics. |
evi |
extreme value index. In particular, the shape parammeter of a generalized Pareto distribution. |
m |
number of thresholds to do multiplicial test. |
nsim |
number of simulations. |
Value
A data.frame
containing the following columns:
nextremes the number of upper extremes to be used.
cvopt optimal coefficient of variation for the tail.
evi the corresponding tail index for optimal coefficient of variation if
evi
parameter isNA
.tms the statistic of the tail index test.
pvalue p-value associated to
tms
.
Author(s)
Joan del Castillo, David Moriña Soler and Isabel Serra
References
del Castillo, J. and Padilla, M. (2016). Modeling extreme values by the residual coefficient of variation. SORT Statist. Oper. Res. Trans. 40(2), 303-320.
del Castillo, J. and Serra, I. (2015). Likelihood inference for Generalized Pareto Distribution. Computational Statistics and Data Analysis, 83, 116-128.
del Castillo, J., Daoudi, J. and Lockhart, R. (2014). Methods to Distinguish Between Polynomial and Exponential Tails. Scandinavian Journal of Statistics, 41, 382-393.
See Also
ercv-package
, cievi
,
ccdfplot
, cvevi
, cvplot
, evicv
, fitpot
,
ppot
, qpot
, tdata
, thrselect
Examples
data("nidd.thresh",package = "evir")
Tm(nidd.thresh,evi=0, nextremes = 75)
Bilbao waves data set
Description
This data corresponds to the Bilbao waves data set, firstly analysed by Castillo and Hadi (1997) and in del Castillo and Serra (2015) from the MLE point of view.
Usage
bilbao
Format
A numeric vector.
References
Castillo, E. and Hadi, A. S. (1997). Fitting the Generalized Pareto Distribution to Data. Journal of the American Statistical Association, 92, 1609-1620. del Castillo, J. and Serra, I. (2015). Likelihood inference for Generalized Pareto Distribution. Computational Statistics and Data Analysis, 83, 116-128.
Plot of complementary empirical distribution function and the complementary distribution function
Description
Plot of complementary empirical distribution function of a sample and the complementary distribution function from peaks-over-threshold model.
Usage
ccdfplot(data, pars=NA, log="y", from=NA, ci=FALSE, main="Complementary cdf",
xlab="data", ylab="ccdf", ...)
Arguments
data |
a numeric vector. |
pars |
a list with the set of parameters of peaks-over-threshold model. |
log |
a character string which contains |
from |
the origen of x-axis in the plot. |
ci |
should confidence bands be plotted. Defaults to |
main |
an overall title for the plot. |
xlab |
horizontal axis label. Defaults to |
ylab |
vertical axis label. Defaults to |
... |
usual graphic parameters. |
Value
Plot of complementary empirical distribution function and the complementary distribution function.
Author(s)
Joan del Castillo, David Moriña Soler and Isabel Serra
References
del Castillo, J. and Padilla, M. (2016). Modeling extreme values by the residual coefficient of variation. SORT Statist. Oper. Res. Trans. 40(2), 303-320.
del Castillo, J. and Serra, I. (2015). Likelihood inference for Generalized Pareto Distribution. Computational Statistics and Data Analysis, 83, 116-128.
del Castillo, J., Daoudi, J. and Lockhart, R. (2014). Methods to Distinguish Between Polynomial and Exponential Tails. Scandinavian Journal of Statistics, 41, 382-393.
See Also
ercv-package
, cievi
,
cvevi
, cvplot
, evicv
, fitpot
,
ppot
, qpot
, tdata
, thrselect
,
Tm
Examples
data(iFFT)
ccdfplot(iFFT)
Confidence interval for extreme value index
Description
Confidence interval for extreme value index estimation by Tm
method.
Usage
cievi(nextremes, evi=0, conf.level=0.90, m=10, nsim=100)
Arguments
nextremes |
the number of upper extremes to be used. |
evi |
extreme value index. In particular, the shape parammeter of a generalized Pareto distribution. |
conf.level |
confidence level of the interval. |
m |
number of thresholds to do multiplicial test. |
nsim |
number of simulation. |
Value
A numerical vector with two elements, containing the limits of the interval.
Author(s)
Joan del Castillo, David Moriña Soler and Isabel Serra
References
del Castillo, J. and Padilla, M. (2016). Modeling extreme values by the residual coefficient of variation. SORT Statist. Oper. Res. Trans. 40(2), 303-320.
del Castillo, J. and Serra, I. (2015). Likelihood inference for Generalized Pareto Distribution. Computational Statistics and Data Analysis, 83, 116-128.
del Castillo, J., Daoudi, J. and Lockhart, R. (2014). Methods to Distinguish Between Polynomial and Exponential Tails. Scandinavian Journal of Statistics, 41, 382-393.
See Also
ercv-package
, cievi
,
ccdfplot
, cvevi
, cvplot
, evicv
, fitpot
,
ppot
, qpot
, tdata
, thrselect
,
Tm
Examples
cievi(70, evi=0)
Coefficient of variation for a given extreme value index
Description
The coefficient of variation for a given extreme value index in the generalized Pareto distribution.
Usage
cvevi(evi)
Arguments
evi |
extreme value index. In particular, the shape parameter
of a generalized Pareto distribution. It has to satisfy |
Value
A numerical value containing the coefficient of variation for the given extreme value index.
Author(s)
Joan del Castillo, David Moriña Soler and Isabel Serra
References
del Castillo, J. and Padilla, M. (2016). Modeling extreme values by the residual coefficient of variation. SORT Statist. Oper. Res. Trans. 40(2), 303-320.
del Castillo, J. and Serra, I. (2015). Likelihood inference for Generalized Pareto Distribution. Computational Statistics and Data Analysis, 83, 116-128.
del Castillo, J., Daoudi, J. and Lockhart, R. (2014). Methods to Distinguish Between Polynomial and Exponential Tails. Scandinavian Journal of Statistics, 41, 382-393.
See Also
ercv-package
, cievi
,
ccdfplot
, cvevi
, cvplot
, evicv
, fitpot
,
ppot
, qpot
, tdata
, thrselect
,
Tm
Examples
cvevi(-1)
Exploratory empirical residual coefficient of variation
Description
Exploratory empirical residual coefficient of variation for extreme value analysis.
Usage
cvplot(data, threshold = NA, nextremes = NA, omit=4, evi=0, main="CVplot",
conf.level=0.90, xlab="Excluded sample size",
ylab="Coefficient of variation", col="blue", ...)
Arguments
data |
a numeric vector. |
threshold |
a threshold value (either this or |
nextremes |
the number of upper extremes to be used (either
this or |
omit |
the minimum required number of upper extremes for computing residual statistics. |
evi |
extreme value index. In particular, the shape parammeter of a generalized Pareto distribution. |
main |
an overall title for the plot. |
conf.level |
confidence level of the interval (defaults to 0.90). |
xlab |
horizontal axis label. Defaults to |
ylab |
vertical axis label. Defaults to |
col |
plot color. Defaults to |
... |
Usual graphic parameters. |
Value
Plot of the empirical residual CV and confidence intervals.
Author(s)
Joan del Castillo, David Moriña Soler and Isabel Serra
References
del Castillo, J. and Padilla, M. (2016). Modeling extreme values by the residual coefficient of variation. SORT Statist. Oper. Res. Trans. 40(2), 303-320.
del Castillo, J. and Serra, I. (2015). Likelihood inference for Generalized Pareto Distribution. Computational Statistics and Data Analysis, 83, 116-128.
del Castillo, J., Daoudi, J. and Lockhart, R. (2014). Methods to Distinguish Between Polynomial and Exponential Tails. Scandinavian Journal of Statistics, 41, 382-393.
See Also
ercv-package
, cievi
,
ccdfplot
, cvevi
, evicv
, fitpot
,
ppot
, qpot
, tdata
, thrselect
,
Tm
Examples
data("moby", package = "poweRlaw")
cvplot(moby, main="MobyDick")
data(iFFT)
cvplot(iFFT, threshold=median(iFFT), main="iFFT")
Internal ercv functions
Description
Internal ercv functions
Usage
frcv(data, Ps)
Tms.pvalue(n, tms, m, evi, hat=TRUE, omit=16, nsim=100)
egpd(x, evi=NA, heavy=NA)
## S3 method for class 'fitpot'
print(x, ...)
## S3 method for class 'fitpot'
summary(object, ...)
## S3 method for class 'fitpot'
print.summary(x, ...)
## S3 method for class 'fitpot'
confint(object, parm, level=0.95, ...)
Details
These functions are not to be called by the user
See Also
ercv-package
, ccdfplot
, cievi
,
cvevi
, cvplot
, evicv
, fitpot
,
ppot
, qpot
, tdata
, thrselect
,
Tm
Extreme value index
Description
The extreme value index for a given coefficient of variation in the generalized Pareto distribution.
Usage
evicv(cv)
Arguments
cv |
coefficient of variation. It has to satisfy |
Value
The extreme value index for a given coefficient of variation in the generalized Pareto distribution as a numerical value.
Author(s)
Joan del Castillo, David Moriña Soler and Isabel Serra
References
del Castillo, J. and Padilla, M. (2016). Modeling extreme values by the residual coefficient of variation. SORT Statist. Oper. Res. Trans. 40(2), 303-320.
del Castillo, J. and Serra, I. (2015). Likelihood inference for Generalized Pareto Distribution. Computational Statistics and Data Analysis, 83, 116-128.
del Castillo, J., Daoudi, J. and Lockhart, R. (2014). Methods to Distinguish Between Polynomial and Exponential Tails. Scandinavian Journal of Statistics, 41, 382-393.
See Also
ercv-package
, cievi
,
ccdfplot
, cvevi
, cvplot
, fitpot
,
ppot
, qpot
, tdata
, thrselect
,
Tm
Examples
evicv(2)
Fits peaks-over-threshold model of a sample
Description
Fits peaks-over-threshold model of a sample.
Usage
fitpot(data, threshold=NA, nextremes=NA, evi=NA)
Arguments
data |
a numeric vector. |
threshold |
a threshold value (either this or |
nextremes |
the number of upper extremes to be used (either
this or |
evi |
extreme value index. In particular, the shape parammeter of a generalized Pareto distribution. |
Value
A data.frame
with the following columns:
evi extreme value index. In particular, the shape parammeter of a generalized Pareto distribution.
psi the scale parameter of a generalized Pareto distribution.
threshold a threshold value where peaks-over-threshold is applied.
prob proportion of size of data corresponding to the upper extremes modelled with generalized pareto distribution.
Author(s)
Joan del Castillo, David Moriña Soler and Isabel Serra
References
del Castillo, J. and Padilla, M. (2016). Modeling extreme values by the residual coefficient of variation. SORT Statist. Oper. Res. Trans. 40(2), 303-320.
del Castillo, J. and Serra, I. (2015). Likelihood inference for Generalized Pareto Distribution. Computational Statistics and Data Analysis, 83, 116-128.
del Castillo, J., Daoudi, J. and Lockhart, R. (2014). Methods to Distinguish Between Polynomial and Exponential Tails. Scandinavian Journal of Statistics, 41, 382-393.
See Also
ercv-package
, cievi
,
ccdfplot
, cvevi
, cvplot
, evicv
,
ppot
, qpot
, tdata
, thrselect
,
Tm
Examples
data("nidd.thresh", package = "evir")
fitpot(nidd.thresh)
EEMBC AutoBench suite (Benchmark 1)
Description
This data corresponds to 1000 observations sampled from the first benchmark of the well-known suite for real-time systems EEMBC AutoBench suite (Poovey, 2007), including a number of of programs used in automotive embedded systems. It corresponds to the inverse fast fourier transform (iFFT) algorithm.
Usage
iFFT
Format
A numeric vector.
References
Abella J., Padilla, M.,del Castillo, J. & Cazorla, F. (2017). Measurement-Based Worst-Case Execution Time Estimation Using the Coefficient of Variation". ACM Transactions on Design Automation of Electronic Systems (TODAES), 22(4).
Poovey, J. (2007). Characterization of the EEMBC Benchmark Suite. North Carolina State University.
Cumulative distribution function
Description
Cumulative distribution function from the peaks-over-threshold model.
Usage
ppot(q, pars, lower.tail=TRUE, log.p=FALSE)
Arguments
q |
vector of quantiles. |
pars |
a numeric vector with the set of parameters of
peaks-over-threshold model. The names of the elements have to be |
lower.tail |
logical; if |
log.p |
logical; if |
Value
Cumulated probability function as a numerical value.
Author(s)
Joan del Castillo, David Moriña Soler and Isabel Serra
References
del Castillo, J. and Padilla, M. (2016). Modeling extreme values by the residual coefficient of variation. SORT Statist. Oper. Res. Trans. 40(2), 303-320.
del Castillo, J. and Serra, I. (2015). Likelihood inference for Generalized Pareto Distribution. Computational Statistics and Data Analysis, 83, 116-128.
del Castillo, J., Daoudi, J. and Lockhart, R. (2014). Methods to Distinguish Between Polynomial and Exponential Tails. Scandinavian Journal of Statistics, 41, 382-393.
See Also
ercv-package
, cievi
,
ccdfplot
, cvevi
, cvplot
, evicv
, fitpot
,
qpot
, tdata
, thrselect
,
Tm
Examples
ppot(1.9, c(evi=0.1, psi=0.2, threshold=0.3, prob=0.4), lower.tail=FALSE)
x<-runif(10000)
x<-c(x^-1,x)
pars<-fitpot(x,1)
ppot(10,pars$coeff,lower.tail=FALSE) #the true value is 0.5/10
Quantile function
Description
Quantile function from the peaks-over-threshold model.
Usage
qpot(p, pars, lower.tail=TRUE, log.p=FALSE)
Arguments
p |
vector of probabilities. |
pars |
a numeric vector with the set of parameters of
peaks-over-threshold model. The names of the elements have to be |
lower.tail |
logical; if |
log.p |
logical; if |
Value
Quantile function as a numerical value.
Author(s)
Joan del Castillo, David Moriña Soler and Isabel Serra
References
del Castillo, J. and Padilla, M. (2016). Modeling extreme values by the residual coefficient of variation. SORT Statist. Oper. Res. Trans. 40(2), 303-320.
del Castillo, J. and Serra, I. (2015). Likelihood inference for Generalized Pareto Distribution. Computational Statistics and Data Analysis, 83, 116-128.
del Castillo, J., Daoudi, J. and Lockhart, R. (2014). Methods to Distinguish Between Polynomial and Exponential Tails. Scandinavian Journal of Statistics, 41, 382-393.
See Also
ercv-package
, cievi
,
ccdfplot
, cvevi
, cvplot
, evicv
, fitpot
,
ppot
, tdata
, thrselect
,
Tm
Examples
qpot(0.1, c(evi=0.1, psi=0.2, threshold=0.3, prob=0.4), lower.tail=FALSE)
x<-runif(10000)
x<-c(x^-1,x)
pars<-fitpot(x,1)
qpot(0.5/10,pars$coeff,lower.tail=FALSE) #the true value is 10
Transforms a heavy-tailed sampled to non-heavy tailed
Description
Transformation of a sample with assumption of heavy-tail to a sample with non-heavy tail.
Usage
tdata(data, threshold = NA, nextremes = NA, sigma=NA)
Arguments
data |
a numeric vector. |
threshold |
a threshold value (either this or |
nextremes |
the number of upper extremes to be used (either
this or |
sigma |
the scale parammeter divided by shape parameter in generalized Pareto distribution. |
Value
The transformed data as a numerical vector.
Author(s)
Joan del Castillo, David Moriña Soler and Isabel Serra
References
del Castillo, J. and Padilla, M. (2016). Modeling extreme values by the residual coefficient of variation. SORT Statist. Oper. Res. Trans. 40(2), 303-320.
del Castillo, J. and Serra, I. (2015). Likelihood inference for Generalized Pareto Distribution. Computational Statistics and Data Analysis, 83, 116-128.
del Castillo, J., Daoudi, J. and Lockhart, R. (2014). Methods to Distinguish Between Polynomial and Exponential Tails. Scandinavian Journal of Statistics, 41, 382-393.
See Also
ercv-package
, cievi
,
ccdfplot
, cvevi
, cvplot
, evicv
, fitpot
,
ppot
, qpot
, thrselect
,
Tm
Examples
data("danish", package = "evir")
tdata(danish)
Threshold selection algorithm
Description
Threshold selection algorithm.
Usage
thrselect(data, threshold=NA, nextremes=NA, omit=16, evi=NA, m=10, nsim=100,
conf.level=0.90, oprint=TRUE)
Arguments
data |
a numeric vector. |
threshold |
a threshold value (either this or |
nextremes |
the number of upper extremes to be used (either
this or |
omit |
the minimum required number of upper extremes for computing residual statistics. |
evi |
extreme value index. In particular, the shape parammeter of a generalized Pareto distribution. |
m |
number of thresholds to do multiplicial test. |
nsim |
number of simulations. |
conf.level |
confidence level of the interval. |
oprint |
logical. If |
Value
A list including two data.frame
(solution and options). Each of the data.frame
contains the following columns:
m number of thresholds for testing tail index.
nextremes number of thresholds for testing tail index.
threshold the threshold value
rcv residual coefficient of variation for selected threshold.
cvopt optimal coefficient of variation for the tail.
evi the corresponding tail index for optimal coefficient of variation if
evi
parameter isNA
.tms the statistic of the tail index test.
pvalue p-value associated to
tms
.
Author(s)
Joan del Castillo, David Moriña Soler and Isabel Serra
References
del Castillo, J. and Padilla, M. (2016). Modeling extreme values by the residual coefficient of variation. SORT Statist. Oper. Res. Trans. 40(2), 303-320.
del Castillo, J. and Serra, I. (2015). Likelihood inference for Generalized Pareto Distribution. Computational Statistics and Data Analysis, 83, 116-128.
del Castillo, J., Daoudi, J. and Lockhart, R. (2014). Methods to Distinguish Between Polynomial and Exponential Tails. Scandinavian Journal of Statistics, 41, 382-393.
See Also
ercv-package
, cievi
,
ccdfplot
, cvevi
, cvplot
, evicv
, fitpot
,
ppot
, qpot
, tdata
,
Tm
Examples
data("nidd.thresh", package = "evir")
thrselect(nidd.thresh, nsim=500)