
Package ‘far’
July 22, 2025

Version 0.6-7

Date 2024-09-13

Title Modelization for Functional AutoRegressive Processes

Depends R (>= 3.4.0), nlme, graphics, stats

Description Modelizations and previsions functions for
Functional AutoRegressive processes using
nonparametric methods: functional kernel,
estimation of the covariance operator in
a subspace, ...

License LGPL-2.1

Encoding UTF-8

URL https://github.com/Looping027/far

NeedsCompilation yes

Author Julien Damon [aut, cre],
Serge, Guillas [aut]

Maintainer Julien Damon <julien.damon@gmail.com>

Repository CRAN

Date/Publication 2024-09-17 12:30:10 UTC

Contents
base.simul.far . 2
BaseK2BaseC . 3
coef.far . 4
date.fdata . 5
fapply . 7
far . 8
far.cv . 11
fdata . 13
interpol.matrix . 14
invgen . 15

1

https://github.com/Looping027/far

2 base.simul.far

is.na.fdata . 16
kerfon . 17
maxfdata . 19
multplot . 20
orthonormalization . 21
plot.fdata . 23
pred.persist . 24
predict.far . 25
predict.kerfon . 27
select.fdata . 29
simul.far . 30
simul.far.sde . 32
simul.far.wiener . 34
simul.farx . 35
simul.wiener . 38

Index 40

base.simul.far Creating functional basis

Description

Computation of a particular basis in a functional space.

Usage

base.simul.far(m=24, n=5)

Arguments

m Number of discretization points

n Number of axis

Details

We consider a sinusoidal basis of the functional space C[0;1] of the continuous functions from [0;1]
to R. We compute here the values of the n first (functional) axis at m equi-repartited discretization
points in [0;1] (more precisely the point 0, 1m ,..., m−1

m).

Value

A matrix of size m x n containing the m values of the n first axis of the basis.

Note

The chosen basis is orthogonal.

The aim of this function is to provide an internal tool for the function simul.farx.

BaseK2BaseC 3

Author(s)

J. Damon

See Also

simul.farx

Examples

print(temp<-base.simul.far(10,3))
print(t(temp)%*%temp)
matplot(base.simul.far(100,5),type='l')

BaseK2BaseC Changing Basis

Description

Given the coordinates in the Karhunen-Loève expansion base of the Wiener, compute the coordi-
nates in the canonical basis.

Usage

BaseK2BaseC(x, nb)

Arguments

x A matrix containing the coordinates in the Karhunen-Loève basis. One obser-
vation per column.

nb The dimension of the canonical basis consider. By default, the dimension is the
same as the Karhunen-Loève one (i.e. number of row of x).

Details

The Karhunen-Loève expansion is a sum of an infinity of terms, but here the expansion is truncated
to a finite number of terms. Empirically, we remark that using twice the dimension of the canonical
basis desired for the number of terms in the expansion is a good compromise.

Value

A object of class fdata with nb discretization points and the same number of observations as x.

Author(s)

J. Damon

4 coef.far

References

Pumo, B. (1992). Estimation et Prévision de Processus Autoregressifs Fonctionnels. Applications
aux Processus à Temps Continu. PhD Thesis, University Paris 6, Pierre et Marie Curie.

See Also

simul.wiener, simul.far.wiener

Examples

data1 <- BaseK2BaseC(x=matrix(rnorm(50),ncol=5,nrow=10), nb=5)
multplot(data1,whole=TRUE)

coef.far Extract Model Coefficients

Description

’coef’ method to extract the linear operator of a FAR model.

Usage

S3 method for class 'far'
coef(object, ...)

Arguments

object An object of type far.

... Other arguments (not used in this case).

Details

Give the matricial representation of the linear operator express in the canonical basis. See far for
more details about the meaning of this operator.

If the far model is used on a one dimensional variable or with the joined=TRUE option, then the
matrix has a dimension equal to the subspace dimension.

In the other case, the dimension of the matrix is equal to the sum of the dimensions of the various
subspaces. In such a case, the order of the variables in the matrix is the same as in the vector
c(y,x). For instance, if kn=c(3,2) with y="Var1" and x="Var3" then:

• The first 3x3 first bloc of the matrix is the autocorrelation of “Var1”.

• The 3x2 up right bloc of the matrix is the correlation of “Var3” on “Var1”.

• The 2x3 down left bloc of the matrix is the correlation of “Var1” on “Var3”.

• The 2x2 down right bloc of the matrix is the autocorrelation of “Var3”.

date.fdata 5

Value

A square matrix of size (raw and column) equal to the sum of the element of kn.

Author(s)

J. Damon, S. Guillas

See Also

far,coef

Examples

Simulation of a FARX process
data1 <- simul.farx(m=10,n=400,base=base.simul.far(20,5),

base.exo=base.simul.far(20,5),
d.a=matrix(c(0.5,0),nrow=1,ncol=2),
alpha.conj=matrix(c(0.2,0),nrow=1,ncol=2),
d.rho=diag(c(0.45,0.90,0.34,0.45)),
alpha=diag(c(0.5,0.23,0.018)),
d.rho.exo=diag(c(0.45,0.90,0.34,0.45)),
cst1=0.0)

Modelization of the FARX process (joined and separate)
model1 <- far(data1,kn=4,joined=TRUE)
model2 <- far(data1,kn=c(3,1),joined=FALSE)

Calculation of the theoretical coefficients
coef.theo <- theoretical.coef(m=10,base=base.simul.far(20,5),

base.exo=base.simul.far(20,5),
d.a=matrix(c(0.5,0),nrow=1,ncol=2),
alpha.conj=matrix(c(0.2,0),nrow=1,ncol=2),
d.rho=diag(c(0.45,0.90,0.34,0.45)),
alpha=diag(c(0.5,0.23,0.018)),
d.rho.exo=diag(c(0.45,0.90,0.34,0.45)),
cst1=0.0)

Joined coefficient
round(coef(model1),2)
coef.theo$rho.T

Separate coefficient
round(coef(model2),2)
coef.theo$rho.X.Z

date.fdata Extract the date of fdata

6 date.fdata

Description

Extract the date(s) of fdata objects

Usage

date.fdata(data)

Arguments

data A fdata object

Details

The dates are the labels of the functionals observations of the fdata object.

fdata are not constructed as ts object so a specific function to obtain the date is useful.

Value

A vector giving the dates (as character).

Author(s)

J. Damon

See Also

fdata

Examples

Reading the data
library(stats)
data(UKDriverDeaths)

Conversion of the data
fUKDriverDeaths <- as.fdata(UKDriverDeaths,col=1,p=12,dates=1969:1984,

name="UK Driver Deaths")
date.fdata(fUKDriverDeaths)

fapply 7

fapply Apply functions over a fdata object

Description

fapply returns a fdata object of the same length as data. Each element of which is the result of
applying FUN to the corresponding element of data.

Usage

fapply(data, FUN, row.names, ...)

Arguments

data A fdata object

FUN the function to be applied. In the case of functions like +, %*%, etc., the function
name must be quoted.

row.names a vector giving the names describing the results of FUN

... optional arguments to FUN.

Details

This function has to be used only with fdata objects, unless it stop, returning no value.

Value

The returned value is a fdata object too.

Author(s)

J. Damon

See Also

apply, lapply.

Examples

Simulation of a FARX process
data1 <- simul.farx(m=10,n=400,base=base.simul.far(20,5),

base.exo=base.simul.far(20,5),
d.a=matrix(c(0.5,0),nrow=1,ncol=2),
alpha.conj=matrix(c(0.2,0),nrow=1,ncol=2),
d.rho=diag(c(0.45,0.90,0.34,0.45)),
alpha=diag(c(0.5,0.23,0.018)),
d.rho.exo=diag(c(0.45,0.90,0.34,0.45)),
cst1=0.0)

8 far

fapply(data1,sum)
multplot(fapply(fapply(data1,abs),cumsum))

far FARX(1) model estimation

Description

Estimates the parameters of FAR(1) and FARX(1) processes (mean and autocorrelation operator)

Usage

far(data, y, x, kn, center=TRUE, na.rm=TRUE, joined=FALSE)

Arguments

data A fdata object.

y A vector giving the name(s) of the endogenous variable(s) of the model.

x A vector giving the name(s) of the exogenous variable(s) of the model.

kn A vector giving the values of the various kn (dimension of plug-in in the algo-
rithm). If it not supplied, the default value is one.

center Logical. Does the observation need to be centered.

na.rm Logical. Does the n.a. need to be removed.

joined Logical. If TRUE, the joined (whole) far model is computed, otherwise the model
work with the separated variables.

Details

The models
A Functional AutoRegressive of order 1 (FAR(1)) process is, in a general way, defined by the
following equation:

Tn = ρ (Tn−1) + ϵn, n ∈ Z

where Tn and ϵn take their values in a functional space (for instance an Hilbertian one), and ρ is a
linear operator. ϵn is a strong white noise.

Now, let us consider a vector of observations, for instance:

(T1,n, ..., Ti,n, ..., Tm,n)

where each Ti,n lives in a one dimension functional space (not necessary the same). In the follow-
ing, we will cut this list into two parts: the endogeneous variables Yn (the ones we are interested
in), and the exogeneous variables Xn (which influence the endogeneous ones).

Then an order 1 Functional AutoRegressive process with eXogeneous variables (FARX(1)) is de-
fined by the equation:

far 9

Yn = ρ (Yn−1) + a (Xn) + ϵn, n ∈ Z

where ρ and a are linear operators in the adequate spaces.

Estimation

This function estimates the parameters of FAR and FARX models.

First, if the mean of the data is not zero (which is required by the model), you can substance this
mean using the center option. Moreover, if the data contains NA values, you can work with it
using the na.rm option.

FAR Estimation

The estimation is mainly about estimating the ρ operator. This estimation is done in a appropriate
subspace (computed from the variance of the observations). What is important to know is that the
best dimension kn for this subspace is not determined by this function. So the user have to supply
this dimension using the kn option. A way to chose this dimension is to first use the far.cv function
on the history.

FARX Estimation

The FARX estimation can be realized by two methods: joined or not.

The joined estimation is done by “joining” the variables into one and estimating a FAR model on
the resulting variable. For instance, with the previous notations, the transformation is:

Tn = (Yn, Xn+1)

and Tn is then a peculiar FAR(1) process. In such a case, you have to use the joined=TRUE oto the
interpretation of this operatorption and specify one value for kn (corresponding to the Tn variable).

Alternatively, you can choose not to estimate the FARX model by the joined procedure, then kn
need to be a vector with a length equal to the number of variables involved in the FARX model
(endogeneous and exogeneous).

In both procedures, the endogeneous and exogeneous variables are provided through the y and x
options respectively.

Results

The function returns a far object. Use the print, coef and predict functions to get more infor-
mations about the model.

Value

A far object, see details for more informations.

Note

This function could be used to estimate FAR and FARX with order higher than 1 as a change of
variables can transform the process to an order 1 FAR or FARX. For instance, if Tn is a FAR(2)
process then Yn = (Tn, Tn−1) is a FAR(1) process.

However, this is not a basic use of this function and may require a hard work of the user to get the
result.

10 far

Author(s)

J. Damon

References

Besse, P. and Cardot, H. (1996). Approximation spline de la prévision d’un processus fonctionnel
autorégressif d’ordre 1. Revue Canadienne de Statistique/Canadian Journal of Statistics, 24, 467–
487.

Bosq, D. (2000) Linear Processes in Function Spaces: Theory and Applications, (Lecture Notes in
Statistics, Vol. 149). New York: Springer-Verlag.

See Also

predict.far, far.cv

Examples

Simulation of a FARX process
data1 <- simul.farx(m=10,n=400,base=base.simul.far(20,5),

base.exo=base.simul.far(20,5),
d.a=matrix(c(0.5,0),nrow=1,ncol=2),
alpha.conj=matrix(c(0.2,0),nrow=1,ncol=2),
d.rho=diag(c(0.45,0.90,0.34,0.45)),
alpha=diag(c(0.5,0.23,0.018)),
d.rho.exo=diag(c(0.45,0.90,0.34,0.45)),
cst1=0.0)

Cross validation (joined and separate)
model1.cv <- far.cv(data=data1, y="X", x="Z", kn=8, ncv=10, cvcrit="X",

center=FALSE, na.rm=FALSE, joined=TRUE)
model2.cv <- far.cv(data=data1, y="X", x="Z", kn=c(4,4), ncv=10, cvcrit="X",

center=FALSE, na.rm=FALSE, joined=FALSE)
print(model1.cv)
print(model2.cv)
k1 <- model1.cv$minL2[1]
k2 <- model2.cv$minL2[1:2]

Modelization of the FARX process (joined and separate)
model1 <- far(data=data1, y="X", x="Z", kn=k1,

center=FALSE, na.rm=FALSE, joined=TRUE)
model2 <- far(data=data1, y="X", x="Z", kn=k2,

center=FALSE, na.rm=FALSE, joined=FALSE)
print(model1)
print(model2)

far.cv 11

far.cv Cross Validation for FARX(1) model

Description

Cross Validation for FAR(1) and FARX(1) models

Usage

far.cv(data, y, x, kn, ncv, cvcrit, center=TRUE, na.rm=TRUE, joined=FALSE)

Arguments

data A fdata object.

y A vector giving the name(s) of the endogenous variable(s) of the model.

x A vector giving the name(s) of the exogenous variable(s) of the model.

kn A vector giving the maximum values of the various kn (dimension of plug-in in
the algorithm). If it not supplied, the number of discretization point is used.

ncv Number of observations used to the cross validation

cvcrit A vector of characters. Name of the variable used to measure the errors (y by
default).

center Logical. Does the observation need to be centered.

na.rm Logical. Does the n.a. need to be removed.

joined Logical. If TRUE, the joined (whole) far model is computed, otherwise the model
work with the separated variables.

Details

In order to perform good forecasting with a FAR or FARX model, you need to determine the di-
mensions kn of the subspace in which the linear operator is estimated (see far for more details).

This function helps the user to do this choice by performing a cross validation on a test sample. The
usage is close of the far function, so we will discuss about the options which differ.

First, the kn option is used to restrict the values searched: this is a vector containing the maxima
values. As in far, the dimension of this vector is function of the number of variables involved in
the model and the type of estimation done (joined or not).

ncv is the number of observation used to test the models. If it is not provided, the function use the
last fifth of the observations in data. In such a case, the four first fifth are used to estimates the
models. This is in general a good compromise.

Finally, cvcrit list the variables used to test the models. If more than one variable is provided, the
test is calculated as a mean of the errors over all the variables.

The criteria used to test the (functional) errors are the norms L1, L2, L infinite, L1 on the maxima,
L2 on the maxima, and L infinite on the maxima.

12 far.cv

Value

It is a LIST with the following elements

cv Matrix giving the various errors (L1, L2, L infinite, L1 on the maxima, L2 on
the maxima, L infinite on the maxima) for the tested values of kn

minL1 A vector corresponding to the row of cv where the L1 error minima is obtained

minL2 A vector corresponding to the row of cv where the L2 error minima is obtained

minLinf A vector corresponding to the row of cv where the L infinite error minima is
obtained

minL1max A vector corresponding to the row of cv where the L1 maxima’s error minima
is obtained

minL2max A vector corresponding to the row of cv where the L2 maxima’s error minima
is obtained

minLinfmax A vector corresponding to the row of cv where the L infinite maxima’s error
minima is obtained

Author(s)

J. Damon

See Also

far, fdata

Examples

Simulation of a FARX process
data1 <- simul.farx(m=10,n=400,base=base.simul.far(20,5),

base.exo=base.simul.far(20,5),
d.a=matrix(c(0.5,0),nrow=1,ncol=2),
alpha.conj=matrix(c(0.2,0),nrow=1,ncol=2),
d.rho=diag(c(0.45,0.90,0.34,0.45)),
alpha=diag(c(0.5,0.23,0.018)),
d.rho.exo=diag(c(0.45,0.90,0.34,0.45)),
cst1=0.0)

Cross validation (joined and separate)
model1.cv <- far.cv(data=data1, y="X", x="Z", kn=8, ncv=10, cvcrit="X",

center=FALSE, na.rm=FALSE, joined=TRUE)
model2.cv <- far.cv(data=data1, y="X", x="Z", kn=c(4,4), ncv=10, cvcrit="X",

center=FALSE, na.rm=FALSE, joined=FALSE)
print(model1.cv)
print(model2.cv)
k1 <- model1.cv$minL2[1]
k2 <- model2.cv$minL2[1:2]

Modelization of the FARX process (joined and separate)
model1 <- far(data=data1, y="X", x="Z", kn=k1,

center=FALSE, na.rm=FALSE, joined=TRUE)

fdata 13

model2 <- far(data=data1, y="X", x="Z", kn=k2,
center=FALSE, na.rm=FALSE, joined=FALSE)

print(model1)
print(model2)

fdata Functional Data class

Description

Object of class ’fdata’ and its methods.

Usage

as.fdata(object,...)
as.fdata.matrix(object,..., col, p, dates, name)
as.fdata.list(object,..., dates, name)

Arguments

object A matrix or a list.

col A vector giving the names of the variables to include in the ’fdata’ object.

p A real value giving the number of discretization point chosen.

dates A vector of character containing the dates of the observations.

name A vector of character containing the names of the variables (generated if not
provided).

... Additional arguments.

Details

Fdata objects are mainly used to modelize functional data in the purpose of computing functional
autoregressive model by the far and kerfon functions.

An fdata is composed of one or several variables. Each ones is a functional time series.

To be more precise, every variable got a functional data by element of the dates (explicitly given
or implicitly deduced). So the number of functional observations is a common data.

In the contrary, each variable can be expressed in a different functional space. For example, if
you got two variables, Temperature and Wind, measured during 30 days. Choosing a daily rep-
resentation, the fdata will contain a 30 elements long dates vector. Nevertheless, the variables
measurement can be different. If Temperature is measured every hour and Wind every two hours,
the fdata object can handle such a representation. The only constraint is to get a regular measure-
ment: no changes in the methodology.

Basically, the fdata objects are discrete measurements but the modelization which can be used
on it will make it functional. Indeed, The first methods implemented as far and kerfon use a
linear approximation, but more sophisticate modelization, as splines or wavelets approximations
may come.

14 interpol.matrix

Value

An object of class fdata.

Author(s)

J. Damon

See Also

far, multplot, maxfdata, kerfon.

Examples

Reading of the data
library(stats)
data(UKDriverDeaths)

Making the data of class 'fdata'
fUKDriverDeaths <- as.fdata(UKDriverDeaths,col=1,p=12,dates=1969:1984,

name="UK Driver Deaths")
summary(fUKDriverDeaths)

ploting of the data : whole and 1 year
par(mfrow=c(2,1))
plot(fUKDriverDeaths,xval=1969+(1:192)/12,whole=TRUE,

name="Whole Evolution : ")
plot(fUKDriverDeaths,date="1984",xval=1:12,

name="Evolution during year 1984 : ")

Matrix conversion
print(as.fdata(matrix(rnorm(50),10,5)))
print(as.fdata(matrix(rnorm(500),100,5),col=1:2,p=5))

List Conversions
print(as.fdata(list("X"=matrix(rnorm(100),10,10),
"Z"=matrix(rnorm(50),5,10))))

interpol.matrix Interpolation matrix

Description

Calculate the matrix giving the linear interpolation of regularly spaced points.

Usage

interpol.matrix(n = 12, m = 24, tol = sqrt(.Machine$double.eps))

invgen 15

Arguments

n Number (integer) of points in output space

m Number (integer) of points in the input function (or space)

tol A relative tolerance to detect zero singular values.

Details

The general principle is, considering a function for which we know values at m equally spaced
points (for instance 1/m, 2/m, ..., 1), to compute the matrix giving the linear approximation of n
equally spaced points (for instance 1/n, 2/n, ..., 1).

The function works whether n or m is the largest.

The function is vectorized, so m and n can be vectors of integers. In this case, they have to be of the
same size and the resulting matrix is block diagonal.

Value

A nxm matrix if they are integer, else a sum(n)xsum(m) matrix.

Author(s)

J. Damon

See Also

theoretical.coef, simul.far or simul.farx.

Examples

mat1 <- interpol.matrix(12,24)
mat2 <- interpol.matrix(c(3,5),c(12,12))
print(mat1 %*% base.simul.far(24,5))
print(mat2 %*% base.simul.far(24,5))

invgen Generalized inverse of a Matrix

Description

Calculates the Moore-Penrose generalized inverse of a matrix X.

Usage

invgen(a, tol)

16 is.na.fdata

Arguments

a Matrix for which the Moore-Penrose inverse is required.

tol A relative tolerance to detect zero singular values.

Value

A Moore-Penrose generalized inverse matrix for X.

See Also

solve,svd,eigen

Examples

mat1<-matrix(rnorm(100),ncol=10)
print(invgen(mat1))

is.na.fdata Not Available / “Missing” Values

Description

The generic function is.na returns a logical vector of the same “form” as its argument x, containing
TRUE for those elements marked NA or NaN (!) and FALSE otherwise. dim, dimnames and names
attributes are preserved.

Usage

S3 method for class 'fdata'
is.na(x)

Arguments

x A fdata object

Details

An observation is considered as NA if any of its values is NA.

Value

A matrix of Logical values giving as rows the variables of x and as columns the observation.

Author(s)

J. Damon

kerfon 17

See Also

NA

Examples

Reading of the data
library(stats)
data(UKDriverDeaths)
UKDriverDeaths[20]<-NA

Making the data of class 'fdata'
fUKDriverDeaths <- as.fdata(UKDriverDeaths,col=1,p=12,dates=1969:1984,

name="UK Driver Deaths")
summary(fUKDriverDeaths)
is.na(fUKDriverDeaths)

kerfon Functional Kernel estimation

Description

Modelization of fdata using functional kernel.

Usage

kerfon(data, x, r, hmin, hmax, na.rm=TRUE)

Arguments

data A fdata object.

x The name of the studied variable.

r Number of observations used to cross validate the model.

hmin Minimal value of the bandwidth.

hmax Maximal value of the bandwidth.

na.rm Logical. Does the n.a. need to be removed.

Details

This function constructs a functional kernel model and performs the estimation of it’s bandwidth.

One nonparametric way to deal with the conditional expectation ρ(x) = IE [Xi |Xi−1 = x], where
(Xi) is a H-valued process, is to consider a predictor inspired by the classical kernel regression,
as in Nadaraja and Watson. This estimator is defined by :

ρ̂hn
(x) =

n−1∑
i=1

Xi+1 ·K
(

∥Xi−x∥H

hn

)
n−1∑
i=1

K
(

∥Xi−x∥H

hn

) , x ∈ H

18 kerfon

Where K is a kernel, ∥.∥H is the norm in H, and hn is the bandwidth (∈ IR+
∗).

The function kerfon use the cross validation to determinate a value for hn. This method have been
chosen because of the lack of theoretical results about this model. The parameters hmin and hmax
are used, when provided, to control the permissible values of hn. By default, those parameters are
respectively equals to σ/8 and 4 ∗ σ, where σ is the estimated squared root of the variance operator
of X. To choose the value of hn, you need to provide the same value for both hmin and hmax.

During the cross-validation, considering that the fdata object x contains n observations, the function
use the first (n−r) observations as the past values, and compute the mean square norm of the errors
on the last r observations.

Of course, if the model created is then used to compute prediction through predict.kerfon, the
whole set of observations (the n observations) are used as the past values.

As fdata object may contains several variables, a way is provided to select the studied variable (the
function only works with one variable for the moment).

Value

A kerfon object. A method for the print function is provided.

For information, the object is a list with the following elements :

call the call of the function.
h the bandwidth (three values : optimal, minimum, maximum)
x the name of the chosen variable
xdata the past values for x
ydata the associated values for x

Author(s)

J. Damon

See Also

predict.kerfon

Examples

Simulation of a FARX process
data1 <- simul.farx(m=10,n=400,base=base.simul.far(20,5),

base.exo=base.simul.far(20,5),
d.a=matrix(c(0.5,0),nrow=1,ncol=2),
alpha.conj=matrix(c(0.2,0),nrow=1,ncol=2),
d.rho=diag(c(0.45,0.90,0.34,0.45)),
alpha=diag(c(0.5,0.23,0.018)),
d.rho.exo=diag(c(0.45,0.90,0.34,0.45)),
cst1=0.0)

Cross validation
model1 <- kerfon(data=data1, x="X", r=10, na.rm=TRUE)
print(model1)

maxfdata 19

maxfdata Maxima of functional data

Description

Extract the maxima series from a functional data object.

Usage

maxfdata(data)

Arguments

data A fdata object

Value

A fdata object.

Author(s)

J. Damon

See Also

fapply

Examples

Simulation of a FARX process
data1 <- simul.farx(m=10,n=400,base=base.simul.far(20,5),

base.exo=base.simul.far(20,5),
d.a=matrix(c(0.5,0),nrow=1,ncol=2),
alpha.conj=matrix(c(0.2,0),nrow=1,ncol=2),
d.rho=diag(c(0.45,0.90,0.34,0.45)),
alpha=diag(c(0.5,0.23,0.018)),
d.rho.exo=diag(c(0.45,0.90,0.34,0.45)),
cst1=0.0)

print(data2 <- maxfdata(data1))
print(unclass(data2))

20 multplot

multplot Multivariate plots

Description

Multivariate plots of Functional Data (more precisely fdata objects).

Usage

multplot(object, ...)

S3 method for class 'fdata'
multplot(object, date = 1, xval = NULL, name = NULL, legend = FALSE,

yleg, xlab = NULL, ylab = NULL, main = NULL, whole = FALSE, ...)

Arguments

object An fdata object for which a multplot is desired.

date String vector. List of the dates to work with.

xval Numerical vector. Values of the axis x.

name String vector. The set of variables to plot.

legend Boolean. Plot a legend ?

yleg Numeric. Where to put the legend box (y value).

xlab String. Title of the axis x.

ylab String. Title of the axis y.

main String. Title of the plot.

whole Boolean. A global plot (TRUE) or a plot by day (FALSE)

... Additional arguments.

Details

This function facilitate the plotting of fdata objects. It is dedicated to multivariate plots, please
take a look at plot.fdata if you need univariate plots in one graphic.

The default behaviour is to produce one plot containing all the variables of the observation called
"1".

If you want less variables, use the name argument. If you need more observations, use the date
argument. When provided, the xval argument allow you to change the labels of the x-axis.

It is also possible to plot the complete series on the same plot using the whole argument.

Moreover a legend facility is provided using the legend and yleg arguments.

Author(s)

J. Damon

orthonormalization 21

See Also

fdata, plot.fdata.

Examples

Simulation of a FARX process
data1 <- simul.farx(m=10,n=100,base=base.simul.far(20,5),

base.exo=base.simul.far(20,5),
d.a=matrix(c(0.5,0),nrow=1,ncol=2),
alpha.conj=matrix(c(0.2,0),nrow=1,ncol=2),
d.rho=diag(c(0.45,0.90,0.34,0.45)),
alpha=diag(c(0.5,0.23,0.018)),
d.rho.exo=diag(c(0.45,0.90,0.34,0.45)),
cst1=0.0)

2 variables : X et Z
number of points per curve : 10
number of curves : 100
corresponding dates
date.fdata(data1)

multplot(data1) # plot the date "1" of the variables "X" and "Z"
multplot(data1,legend=TRUE) # Same thing with a legend
multplot(data1,legend=TRUE,yleg=-0.5) # same thing with a legend misplaced
multplot(data1,main="day 1",legend=TRUE,xlab="hour",

ylab="object of study")

par(mfrow=c(1,3))
multplot(data1,date=c("3","4","5")) # days "3", "4" and "5" are plotted
par(mfrow=c(1,1))

to plot the whole series, we used whole = TRUE
but we have to give the x values

multplot(data1,xval=seq(from=0,to=99.9,by=0.1),whole=TRUE)

to plot a subset of the series,
it is recommended to create a subset object with select.fdata
data2 <- select.fdata(data1,date=c("4","5","6"))
multplot(data2,xval=seq(from=4,to=6.9,by=0.1),whole=TRUE)

orthonormalization Orthonormalization of a set of a matrix

Description

Gram-Schmidt orthogonalization of a matrix considering its columns as vectors. Normalization is
provided as will.

22 orthonormalization

Usage

orthonormalization(u, basis=TRUE, norm=TRUE)

Arguments

u a matrix (n x p) representing n different vectors in a n dimensional space

basis does the returned matrix have to be a basis

norm does the returned vectors have to be normed

Details

This is a simple application of the Gram-Schmidt algorithm of orthogonalization (please note that
this process was presented first by Laplace).

The user provides a set of vector (structured in a matrix) and the function calculate a orthogonal
basis of the same space. If desired, the returned basis can be normed, or/and completed to cover the
hole space.

If the number of vectors in u is greater than the dimension of the space (that is if n > p), only the
first p columns are taken into account to computed the result. A warning is also provided.

The only assumption made on u is that the span space is of size min(n,p). In other words, there must
be no colinearities in the initial set of vector.

Value

The orthogonalized matrix obtained from u where the vector are arranged in columns.

If basis is set to TRUE, the returned matrix is squared.

Author(s)

J. Damon

Examples

mat1 <- matrix(c(1,0,1,1,1,0),nrow=3,ncol=2)
orth1 <- orthonormalization(mat1, basis=FALSE, norm=FALSE)
orth2 <- orthonormalization(mat1, basis=FALSE, norm=TRUE)
orth3 <- orthonormalization(mat1, basis=TRUE, norm=TRUE)
crossprod(orth1)
crossprod(orth2)
crossprod(orth3)

plot.fdata 23

plot.fdata Plot Functional Data

Description

Plot Functional Data (more precisely fdata objects).

Usage

S3 method for class 'fdata'
plot(x,...,date, xval, name, main, whole, separator)

Arguments

x A fdata object.

date A vector of character giving the chosen dates.

xval A numerical vector giving the values to appear on the x axis.

name A vector of character giving the plotted variables.

main an overall title for the plot.

whole Logical. If TRUE all the observations are plot on the same graphic.

separator Logical. It will be used when whole=TRUE. If TRUE then dashed lines are plotted
to separated the observations.

... Additional arguments to the plot.

Details

This function facilitate the plotting of fdata objects. It is dedicated to univariate plots, please take
a look at multplot if you need multivariate plots in one graphic.

The default behaviour is to plot the observation called "1" of all the variables available in x (so it
will produce as many plots as the number of variables).

If you want less variables, use the name argument. If you need more observations, use the date
argument. When provided, the xval argument allow you to change the labels of the x-axis.

It is also possible to plot the complete series on the same plot using the whole argument. In this
case, the separator allow you to draw line to distinguish the different observations of the functional
data.

Author(s)

J. Damon

See Also

fdata, multplot.

24 pred.persist

Examples

Reading of the data
library(stats)
data(UKDriverDeaths)

Making the data of class 'fdata'
fUKDriverDeaths <- as.fdata(UKDriverDeaths, col=1, p=12,

dates=1969:1984,
name="UK Driver Deaths")

summary(fUKDriverDeaths)

plotting of the data : whole and 1 year
par(mfrow=c(2,1))
plot(fUKDriverDeaths, xval=1969+(1:192)/12,

whole=TRUE, name="Whole Evolution : ", separator=TRUE)
plot(fUKDriverDeaths, date="1984", xval=1:12,

name="Evolution during year 1984 : ")

pred.persist Forecasting using functional persistence

Description

Compute prediction of functional data using the persistence.

Usage

pred.persist(data, x, na.rm=TRUE, label, positive=FALSE)

Arguments

data A fdata object.

x A vector of character giving the names of the variables predicted.

na.rm Logical. Does the n.a. need to be removed.

label A vector of character giving the dates to associate to the predicted observations.

positive Logical. Does the result must be forced to positive values.

Details

The persistence model is a beautiful way to name the simplest model ever. This model just suppose
that the next observation will be equal to the previous one, that is to say, noting X̂n the prediction
for Xn that we "compute" :

X̂n+1 = Xn

Of course, the intrinsic purpose of this model is to be a comparison for more complicated models.

predict.far 25

The x option is provided to select the variable to predict, using the label option value as the labels
for the new observations. Notices that the output as the same length as the input as it is only a shift
in time.

In some special context, the user may need to suppress the na.rm observations with the na.rm
option, or force the prediction to be positive with the positive option (in this case the maximum
of 0 and the past value is computed).

Value

A fdata object.

Note

This has been more instinctive to call this function predict.persist but, due to the naming mechanism
introduced by the object oriented programming, this would have reefer to the predict method for the
persist objects. As it isn’t the meaning of this function, we preferred the name pred.persist.

Author(s)

J. Damon

See Also

predict.far,predict.kerfon.

Examples

Simulation of a FARX process
data1 <- simul.farx(m=10,n=40,base=base.simul.far(20,5),

base.exo=base.simul.far(20,5),
d.a=matrix(c(0.5,0),nrow=1,ncol=2),
alpha.conj=matrix(c(0.2,0),nrow=1,ncol=2),
d.rho=diag(c(0.45,0.90,0.34,0.45)),
alpha=diag(c(0.5,0.23,0.018)),
d.rho.exo=diag(c(0.45,0.90,0.34,0.45)),
cst1=0.0)

print(data2 <- pred.persist(data1,x="X",label="41"))
print(unclass(select.fdata(data1,date=paste(38:40)))$X)
print(unclass(select.fdata(data2,date=paste(39:41))))

predict.far Forecasting of FARX(1) model

Description

Forecasting using FAR(1) or FARX(1) model

26 predict.far

Usage

S3 method for class 'far'
predict(object, ..., newdata=NULL, label, na.rm=TRUE, positive=FALSE)

Arguments

object A far object result of the far function.

newdata A data matrix (one column for each observation) used to predict the FAR(1)
model from the values in newdata, or NULL to predict one step forward with the
data in object.

label A vector of character giving the dates to associate to the predicted observations.

na.rm Logical. Does the n.a. need to be removed.

positive Logical. Does the result must be forced to positive values.

... Additional arguments.

Details

This function computes one step forward prediction for a far model.

Use the newdata option to input the past values, and the label option value to define the labels for
the new observations. Notices that the output as the same length as newdata in the case of a FAR
model, and the length of newdata minus one in the case of a FARX model. This is due to the time
shift of the exogeneous variable: Xt+1 and Yt are used in the computation of Ŷt+1.

In some special context, the user may need to suppress the na.rm observations with the na.rm
option, or force the prediction to be positive with the positive option (in this case the result will
be maximum of 0 and the predicted value).

Value

A fdata object.

Author(s)

J. Damon

See Also

far, pred.persist, predict.kerfon.

Examples

Simulation of a FARX process
data1 <- simul.farx(m=10,n=400,base=base.simul.far(20,5),

base.exo=base.simul.far(20,5),
d.a=matrix(c(0.5,0),nrow=1,ncol=2),
alpha.conj=matrix(c(0.2,0),nrow=1,ncol=2),
d.rho=diag(c(0.45,0.90,0.34,0.45)),
alpha=diag(c(0.5,0.23,0.018)),
d.rho.exo=diag(c(0.45,0.90,0.34,0.45)),

predict.kerfon 27

cst1=0.0)

Cross validation (joined and separate)
model1.cv <- far.cv(data=data1, y="X", x="Z", kn=8, ncv=10, cvcrit="X",

center=FALSE, na.rm=FALSE, joined=TRUE)
model2.cv <- far.cv(data=data1, y="X", x="Z", kn=c(4,4), ncv=10, cvcrit="X",

center=FALSE, na.rm=FALSE, joined=FALSE)
print(model1.cv)
print(model2.cv)
k1 <- model1.cv$minL2[1]
k2 <- model2.cv$minL2[1:2]

Modelization of the FARX process (joined and separate)
model1 <- far(data=data1, y="X", x="Z", kn=k1,

center=FALSE, na.rm=FALSE, joined=TRUE)
model2 <- far(data=data1, y="X", x="Z", kn=k2,

center=FALSE, na.rm=FALSE, joined=FALSE)

Predicting values
pred1 <- predict(model1,newdata=data1)
pred2 <- predict(model2,newdata=data1)
Persistence
persist1 <- pred.persist(select.fdata(data1,date=1:399),x="X")
Real values
real1 <- select.fdata(data1,date=2:400)

errors0 <- persist1[[1]]-real1[[1]]
errors1 <- pred1[[1]]-real1[[1]]
errors2 <- pred2[[1]]-real1[[1]]

Norm of observations
summary(real1)
Persistence
summary(as.fdata(errors0))
FARX models
summary(as.fdata(errors1))
summary(as.fdata(errors2))

predict.kerfon Forecasting of functional kernel model

Description

Computation of the prediction based on a functional kernel model

Usage

S3 method for class 'kerfon'
predict(object, ..., newdata=NULL, label, na.rm=TRUE, positive=FALSE)

28 predict.kerfon

Arguments

object A kerfon object result of the kerfon function.

newdata A fdata object used in the kerfon model to compute the prediction, or NULL to
predict one step forward with the data in object.

label A vector of character giving the dates to associate to the predicted observations.

na.rm Logical. Does the n.a. need to be removed.

positive Logical. Does the result must be forced to positive values.

... Additional arguments.

Details

This function computes one step forward prediction for a kerfon model.

Use the newdata option to input the past values, and the label option value to define the labels for
the new observations. Notices that the output as the same length as newdata.

In some special context, the user may need to suppress the na.rm observations with the na.rm
option, or force the prediction to be positive with the positive option (in this case the result will
be maximum of 0 and the predicted value).

Value

A fdata object.

Author(s)

J. Damon

See Also

kerfon

Examples

Simulation of a FARX process
data1 <- simul.farx(m=10,n=400,base=base.simul.far(20,5),

base.exo=base.simul.far(20,5),
d.a=matrix(c(0.5,0),nrow=1,ncol=2),
alpha.conj=matrix(c(0.2,0),nrow=1,ncol=2),
d.rho=diag(c(0.45,0.90,0.34,0.45)),
alpha=diag(c(0.5,0.23,0.018)),
d.rho.exo=diag(c(0.45,0.90,0.34,0.45)),
cst1=0.0)

Cross validation
model1 <- kerfon(data=data1, x="X", r=10, na.rm=TRUE)

print(model1)

Predicting values
pred1 <- predict(model1,newdata=select.fdata(data1,date=1:399))

select.fdata 29

Persistence
persist1 <- pred.persist(select.fdata(data1,date=1:399),x="X")
Real values
real1 <- select.fdata(data1,date=2:400)

errors0 <- persist1[[1]]-real1[[1]]
errors1 <- pred1[[1]]-real1[[1]]

Norm of observations
summary(real1)
Persistence
summary(as.fdata(errors0))
kerfon model
summary(as.fdata(errors1))

select.fdata Subscript of fdata

Description

Use this function to subscript some functional observations of a functional data.

Usage

select.fdata(data, date, name)

Arguments

data A fdata object.

date A vector of character containing the chosen dates (could be NULL).

name A vector giving the chosen name (could be NULL).

Details

This function select one or several variables from data and can also subset the dates. This is useful
in order to study the endogenous variables of a FARX process.

Value

A fdata object.

Author(s)

J. Damon

See Also

fdata

30 simul.far

Examples

Simulation of a FARX process
data1 <- simul.farx(m=10,n=400,base=base.simul.far(20,5),

base.exo=base.simul.far(20,5),
d.a=matrix(c(0.5,0),nrow=1,ncol=2),
alpha.conj=matrix(c(0.2,0),nrow=1,ncol=2),
d.rho=diag(c(0.45,0.90,0.34,0.45)),
alpha=diag(c(0.5,0.23,0.018)),
d.rho.exo=diag(c(0.45,0.90,0.34,0.45)),
cst1=0.0)

print(data1)
print(data1.X <- select.fdata(data1,name="X"))
print(data2 <- select.fdata(data1,date=paste((1:5)*5)))
date.fdata(data2)

simul.far FAR(1) process simulation

Description

Simulation of a FAR process using a Gram-Schmidt basis.

Usage

simul.far(m=12,
n=100,
base=base.simul.far(24, 5),
d.rho=diag(c(0.45, 0.9, 0.34, 0.45)),
alpha=diag(c(0.5, 0.23, 0.018)),
cst1=0.05)

Arguments

m Integer. Number of discretization points.

n Integer. Number of observations.

base A functional basis expressed as a matrix, as the matrix created by base.simul.far
or with orthonormalization.

d.rho Numerical matrix. Expression of the first bloc of the linear operator in the Gram-
Schmidt basis.

alpha Numerical matrix. Expression of the first bloc of the covariance operator in the
Gram-Schmidt basis.

cst1 Numeric. Perturbation coefficient on the linear operator.

simul.far 31

Details

This function simulate a FAR(1) process with a strong white noise.

The simulation is realized in two steps.

First step, the function compute a FAR(1) process Tn in a functional space (that we call in the sequel
H) using a simple equation and the d.rho, alpha and cst parameters.

Second step, the process Tn is projected in the canonical basis using the base linear projector.

The base basis need to be a orthonormal basis wide enought. In the contrary, the function use the
orthonormalization function to make it so. Notice that the size of this matrix corresponds to the
dimension of the "modelization space" H (let’s call it m2). Of course, the larger m2 the better the
functionnal approximation is. Whatever, keep in mind that m2=2m is a good compromise, in order
to avoid the memory limits.

In H, the linear operator ρ is expressed as:(
d.rho 0
0 eps.rho

)
Where d.rho is the matrix provided in the call, the two 0 are in fact two blocks of 0, and eps.rho is
a diagonal matrix having on his diagonal the terms:

(εk+1, εk+2, . . . , εm2)

where

εi =
cst1

i2
+

1− cst1

ei

and k is the length of the d.rho diagonal.

The d.rho matrix can be viewed as the information and the eps.rho matrix as a perturbation. In this
logic, the norm of eps.rho need to be smaller than the one of d.rho.

In H, CT , the covariance operator of Tn, is defined by:(
m2 ∗ alpha 0

0 eps.alpha

)
Where alpha is the matrix provided in the call, the two 0 are in fact two blocks of 0, and eps.alpha
is a diagonal matrix having on his diagonal the terms:

(ϵk+1, ϵk+2, . . . , ϵm2)

where

ϵi =
cst1

i

Value

A fdata object containing one variable ("var") which is a FAR(1) process of length n with p dis-
cretization points.

32 simul.far.sde

Note

To simulate Tn, the function creates a white noise En having the following covariance operator:

CT − ρ ∗ CT ∗ t(ρ)

where t(.) is the transposition operator. Tn is the computed using the equation:

Tn+1 = ρ ∗ Tn + En

Author(s)

J. Damon, S. Guillas

See Also

simul.far.sde, simul.far.wiener, simul.farx, simul.wiener, base.simul.far.

Examples

far1 <- simul.far(m=64,n=100)
summary(far1)
print(far(far1,kn=4))
par(mfrow=c(2,1))
plot(far1,date=1)
plot(select.fdata(far1,date=1:5),whole=TRUE,separator=TRUE)

simul.far.sde FAR-SDE process simulation

Description

Simulation of a FAR process following an Stochastic Differential Equation

Usage

simul.far.sde(coef=c(0.4, 0.8), n=80, p=32, sigma=1)

Arguments

coef Numerical vertor. It contains the two values of the coefficients (a1 and a2, see
details for more informations).

n Integer. The number of observations generated.

p Integer. The number of discretization points.

sigma Numeric. The standard deviation (see details for more informations).

simul.far.sde 33

Details

This function implements the simulation proposed by Besse and Cardot (1996) to simulate a FAR
process following the Stochastic Differential Equation:

dX(2) + a2.dX + a1.X = sigma.dW

Where dX(2) and dX stand respectively for the second and first derivate of the process X, and W
is a brownian process.

The coefficients a1 and a2 are the two first elements of coef.

The simulation use a order one approximation inspired by the work of Milstein, as described in
Besse and Cardot (1996).

Value

A fdata object containing one variable ("var") which is a FAR(1) process of length n with p dis-
cretization points.

Author(s)

J. Damon

References

Besse, P. and Cardot, H. (1996). Approximation spline de la prévision d’un processus fonctionnel
autorégressif d’ordre 1. Revue Canadienne de Statistique/Canadian Journal of Statistics, 24, 467–
487.

See Also

simul.far, simul.far.wiener, simul.farx, simul.wiener.

Examples

far1 <- simul.far.sde()
summary(far1)
print(far(far1,kn=2))
par(mfrow=c(2,1))
plot(far1,date=1)
plot(select.fdata(far1,date=1:5),whole=TRUE,separator=TRUE)

34 simul.far.wiener

simul.far.wiener FAR(1) process simulation with Wiener noise

Description

Simulation of a FAR(1) process using a Wiener noise.

Usage

simul.far.wiener(m=64, n=128,
d.rho=diag(c(0.45, 0.9, 0.34, 0.45)), cst1=0.05, m2=NULL)

Arguments

m Integer. Number of discretization points.

n Integer. Number of observations.

d.rho Numerical matrix. Expression of the first bloc of the linear operator in the
Karhunen-Loève basis.

cst1 Numeric. Perturbation coefficient on the linear operator.

m2 Integer. Length of the Karhunen-Loève expansion (2m by default).

Details

This function simulate a FAR(1) process with a Wiener noise. As for the simul.wiener, the func-
tion use the Karhunen-Loève expansion of the noise. The FAR(1) process, defined by its linear
operator (see far for more details), is computed in the Karhunen-Loève basis then projected in the
natural basis. The parameters given in input (d.rho and cst1) are expressed in the Karhunen-Loève
basis.

The linear operator, expressed in the Karhunen-Loève basis, is of the form:(
d.rho 0
0 eps.rho

)
Where d.rho is the matrix provided in ths call, the two 0 are in fact two blocks of 0, and eps.rho is
a diagonal matrix having on his diagonal the terms:

(εk+1, εk+2, . . . , εm2)

where

εi =
cst1

i2
+

1− cst1

ei

and k is the length of the d.rho diagonal.

The d.rho matrix can be viewed as the information and the eps.rho matrix as a perturbation. In this
logic, the norm of eps.rho need to be smaller than the one of d.rho.

simul.farx 35

Value

A fdata object containing one variable ("var") which is a FAR(1) process of length n with m dis-
cretization points.

Author(s)

J. Damon

References

Pumo, B. (1992). Estimation et Prévision de Processus Autoregressifs Fonctionnels. Applications
aux Processus à Temps Continu. PhD Thesis, University Paris 6, Pierre et Marie Curie.

See Also

fdata, far , simul.far.wiener.

Examples

far1 <- simul.far.wiener(m=64,n=100)
summary(far1)
print(far(far1,kn=4))
par(mfrow=c(2,1))
plot(far1,date=1)
plot(select.fdata(far1,date=1:5),whole=TRUE,separator=TRUE)

simul.farx FARX(1) process simulation

Description

Simulation of functional data with exogenous variables using a Gram-Schmidt basis.

Usage

simul.farx(m=12,n=100,base=base.simul.far(24,5),
base.exo=base.simul.far(24,5),
d.a=matrix(c(0.5,0),nrow=1,ncol=2),
alpha.conj=matrix(c(0.2,0),nrow=1,ncol=2),
d.rho=diag(c(0.45,0.90,0.34,0.45)),
alpha=diag(c(0.5,0.23,0.018)),
d.rho.exo=diag(c(0.45,0.90,0.34,0.45)),
cst1=0.05)

theoretical.coef(m=12,base=base.simul.far(24,5),
base.exo=NULL,
d.rho=diag(c(0.45,0.90,0.34,0.45)),
d.a=NULL,
d.rho.exo=NULL,

36 simul.farx

alpha=diag(c(0.5,0.23,0.018)),
alpha.conj=NULL,
cst1=0.05)

Arguments

m Integer. Number of discretization points.

n Integer. Number of observations.

base A functional basis expressed as a matrix, as the matrix created by base.simul.far
or with orthonormalization.

base.exo A functional basis expressed as a matrix, as the matrix created by base.simul.far
or with orthonormalization.

d.rho Numerical matrix. Part of the linear operator in the Gram-Schmidt basis (see
details for more informations).

d.a Numerical matrix. Part of the linear operator in the Gram-Schmidt basis (see
details for more informations).

d.rho.exo Numerical matrix. Part of the linear operator in the Gram-Schmidt basis (see
details for more informations).

alpha Numerical matrix. Part of the linear operator in the Gram-Schmidt basis (see
details for more informations).

alpha.conj Numerical matrix. Part of the linear operator in the Gram-Schmidt basis (see
details for more informations).

cst1 Numeric. Perturbation coefficient on the linear operator.

Details

The simul.farx function simulates a FARX(1) process with one endogeneous variable, one exoge-
neous variable and a strong white noise. To do so, the function uses the fact that a FARX(1) model
can be seen as a FAR(1) model in a wider space. Therefore, the method is very similar to the one
used by the function simul.far.

The simulation is realized in two steps.

First step, the function compute a FAR(1) process Tn in a functional space (that we call in the sequel
H) using a simple equation and the given parameters. Tn is of the form (T1n, T2n) where T1n and
T2n are respectively the endogeneous and the exogeneous parts of the process.

Second step, the process Tn is projected in the canonical basis using the base and base.exo linear
projectors to give the endogeneous (Xn) and the exogeneous (Zn) variables respectively.

Those two basis need to be orthonormal and wide enought. In the contrary, the function use the
orthonormalization function to make it so. Notice that the size of this matrix corresponds to
the dimension of the "modelization space" H (let’s call it m2 = m12 + m22). Of course, the
larger m2 the better the functionnal approximation is. Whatever, keep in mind that m2=2m is a good
compromise, in order to avoid the memory limits.

In H, the linear operator ρ is expressed as:(
d.rho.mod d.a

0 d.rho.exo.mod

)

simul.farx 37

Where d.rho.mod and d.rho.exo.mod are modified version of the provided d.rho and d.rho.exo
respectively to avoid 0 on their diagonal. More precisely, the 0 on their diaginals are replaced by:

(εk+1, εk+2, . . . , εm2)

where

εi =
cst1

i2
+

1− cst1

ei

and k is the position in the d.rho or d.r.ho.exo diagonal.

In H, CT , the covariance operator of Tn, is defined by:(
alpha.mod alpha.conj.mod

t(alpha.conj.mod) alpha.exo

)
Where alpha.mod and alpha.exo.mod are modified versions of m12∗alpha and m22∗alpha.conj
respectively to avoid 0 on their diagonal. More precisely, the 0 on their diaginals are replaced by:

(ϵk+1, ϵk+2, . . . , ϵm2b)

where

ϵi =
cst1

i

alpha.exo is a matrix representation of the covariance operator of T2n and is obtained by inverting
the following relation:

alpha.conj.mod = d.rho.exo.mod∗alpha.conj.mod∗t(d.rho.mod)+d.rho.exo.mod∗mod.alpha∗t(d.a)

The theoretical.coef function is provided to help the user making comparison. Calling this
function with the same parameters that where used in a simulation (realized with simul.farx or
simul.far), we obtain the parameters used internaly by the function to make the simulation. Those
values can therefore be compared to those obtained with the estimation function far (examples are
provided below).

Value

A fdata object containing two variables ("X" the endogeous variable, and "Z" the exogeneous
variable) which is a FARX(1) process of length n with p discretization points.

Note

To simulate Tn, the function creates a white noise En having the following covariance operator:

CT − ρ ∗ CT ∗ t(ρ)

where t(.) is the transposition operator. Tn is the computed using the equation:

Tn+1 = ρ ∗ Tn + En

38 simul.wiener

Author(s)

J. Damon, S. Guillas

See Also

simul.far.sde, simul.far.wiener, simul.far, simul.wiener.

Examples

Simulation of a FARX process
data1 <- simul.farx(m=10,n=400,base=base.simul.far(20,5),

base.exo=base.simul.far(20,5),
d.a=matrix(c(0.5,0),nrow=1,ncol=2),
alpha.conj=matrix(c(0.2,0),nrow=1,ncol=2),
d.rho=diag(c(0.45,0.90,0.34,0.45)),
alpha=diag(c(0.5,0.23,0.018)),
d.rho.exo=diag(c(0.45,0.90,0.34,0.45)),
cst1=0.0)

Modelisation of the FARX process (joined and separate)
model1 <- far(data1,k=4,joined=TRUE)
model2 <- far(data1,k=c(3,1),joined=FALSE)

Calculation of the theoretical coefficients
coef.theo <- theoretical.coef(m=10,base=base.simul.far(20,5),

base.exo=base.simul.far(20,5),
d.a=matrix(c(0.5,0),nrow=1,ncol=2),
alpha.conj=matrix(c(0.2,0),nrow=1,ncol=2),
d.rho=diag(c(0.45,0.90,0.34,0.45)),
alpha=diag(c(0.5,0.23,0.018)),
d.rho.exo=diag(c(0.45,0.90,0.34,0.45)),
cst1=0.0)

Joined coefficient
round(coef(model1),2)
coef.theo$rho.T

Separate coefficient
round(coef(model2),2)
coef.theo$rho.X.Z

simul.wiener Wiener process simulation

Description

Simulation of Wiener processes.

simul.wiener 39

Usage

simul.wiener(m=64, n=1, m2=NULL)

Arguments

m Integer. Number of discretization points.

n Integer. Number of observations.

m2 Integer. Length of the Karhunen-Loève expansion (2m by default).

Details

This function use the known Karhunen-Loève expansion of Wiener processes to simulate observa-
tions of such a process.

The option m2 is internally used to set the length of the expansion. This expansion need to be larger
than the number of discretization points, but a too important value may slow down the generation.
The default value as been chosen as a compromise.

Value

A fdata object containing one variable ("var") which is a Wiener process of length n with m dis-
cretization points.

Author(s)

J. Damon

References

Pumo, B. (1992). Estimation et Prévision de Processus Autoregressifs Fonctionnels. Applications
aux Processus à Temps Continu. PhD Thesis, University Paris 6, Pierre et Marie Curie.

See Also

simul.far.sde, simul.far.wiener, simul.farx, simul.far.

Examples

noise <- simul.wiener(m=64,n=100,m2=512)
summary(noise)
par(mfrow=c(2,1))
plot(noise,date=1)
plot(select.fdata(noise,date=1:5),whole=TRUE,separator=TRUE)

Index

∗ NA
is.na.fdata, 16

∗ algebra
base.simul.far, 2
BaseK2BaseC, 3
coef.far, 4
interpol.matrix, 14
invgen, 15
orthonormalization, 21

∗ aplot
plot.fdata, 23

∗ hplot
multplot, 20

∗ manip
select.fdata, 29

∗ methods
predict.far, 25

∗ misc
date.fdata, 5
fdata, 13
pred.persist, 24
simul.far, 30
simul.far.sde, 32
simul.far.wiener, 34
simul.wiener, 38

∗ models
far, 8
far.cv, 11
predict.kerfon, 27

∗ nonlinear
kerfon, 17

∗ ts
date.fdata, 5
far, 8
far.cv, 11
fdata, 13
kerfon, 17
maxfdata, 19
plot.fdata, 23

pred.persist, 24
predict.far, 25
predict.kerfon, 27
simul.far, 30
simul.far.sde, 32
simul.far.wiener, 34
simul.farx, 35
simul.wiener, 38

∗ univar
fapply, 7
maxfdata, 19

apply, 7
as.fdata (fdata), 13

base.simul.far, 2, 30, 32, 36
BaseK2BaseC, 3

coef, 5
coef.far, 4

date.fdata, 5

eigen, 16

fapply, 7, 19
far, 4, 5, 8, 11–14, 26, 34, 35
far.cv, 9, 10, 11
fdata, 3, 6, 12, 13, 21, 23, 28, 29, 35

interpol.matrix, 14
invgen, 15
is.na.fdata, 16

kerfon, 13, 14, 17, 28

lapply, 7

maxfdata, 14, 19
multplot, 14, 20, 23

NA, 17

40

INDEX 41

orthonormalization, 21, 30, 31, 36

plot.far (far), 8
plot.fdata, 20, 21, 23
pred.persist, 24, 26
predict.far, 10, 25, 25
predict.kerfon, 18, 25, 26, 27
print, 18
print.far (far), 8
print.fdata (fdata), 13
print.kerfon (kerfon), 17
print.summary.fdata (fdata), 13

select.fdata, 29
simul.far, 15, 30, 33, 36, 38, 39
simul.far.sde, 32, 32, 38, 39
simul.far.wiener, 4, 32, 33, 34, 35, 38, 39
simul.farx, 2, 3, 15, 32, 33, 35, 39
simul.wiener, 4, 32–34, 38, 38
solve, 16
summary.fdata (fdata), 13
svd, 16

theoretical.coef, 15
theoretical.coef (simul.farx), 35

	base.simul.far
	BaseK2BaseC
	coef.far
	date.fdata
	fapply
	far
	far.cv
	fdata
	interpol.matrix
	invgen
	is.na.fdata
	kerfon
	maxfdata
	multplot
	orthonormalization
	plot.fdata
	pred.persist
	predict.far
	predict.kerfon
	select.fdata
	simul.far
	simul.far.sde
	simul.far.wiener
	simul.farx
	simul.wiener
	Index

