Version: | 1.0.2 |
Date: | 2025-04-08 |
Title: | Fit Growth Curves to Fish Data |
Depends: | R (≥ 2.10), RTMB |
Suggests: | areaplot |
LazyData: | yes |
Description: | Fit growth models to otoliths and/or tagging data, using the 'RTMB' package and maximum likelihood. The otoliths (or similar measurements of age) provide direct observed coordinates of age and length. The tagging data provide information about the observed length at release and length at recapture at a later time, where the age at release is unknown and estimated as a vector of parameters. The growth models provided by this package can be fitted to otoliths only, tagging data only, or a combination of the two. Growth variability can be modelled as constant or increasing with length. |
License: | GPL-3 |
URL: | https://github.com/arni-magnusson/fishgrowth |
Encoding: | UTF-8 |
RoxygenNote: | 7.3.2 |
NeedsCompilation: | no |
Packaged: | 2025-04-08 01:25:42 UTC; arnim |
Author: | Arni Magnusson [aut, cre], Mark Maunder [aut] |
Maintainer: | Arni Magnusson <thisisarni@gmail.com> |
Repository: | CRAN |
Date/Publication: | 2025-04-08 04:10:02 UTC |
Fit Growth Curves to Fish Data
Description
Fit growth models to otoliths and/or tagging data, using the
RTMB
package and maximum likelihood.
The otoliths (or similar measurements of age) provide direct observed coordinates of age and length. The tagging data provide information about the observed length at release and length at recapture at a later time, where the age at release is unknown and estimated as a vector of parameters.
The growth models provided by this package can be fitted to otoliths only, tagging data only, or a combination of the two. Growth variability can be modelled as constant or increasing with length.
Details
Growth models:
gcm | growth cessation |
gompertz | Gompertz |
gompertzo | Gompertz (old style) |
richards | Richards |
richardso | Richards (old style) |
schnute3 | Schnute Case 3 |
vonbert | von Bertalanffy |
vonberto | von Bertalanffy (old style) |
Utilities:
pred_band | prediction band |
Example data:
otoliths_had | otoliths (haddock) |
otoliths_skj | otoliths (skipjack) |
tags_skj | tags (skipjack) |
Note
The parameter estimation method follows the statistical approach of Maunder et al. (2018), which stems from Aires-da-Silva et al. (2015), Eveson et al. (2004), and Laslett et al. (2002), collectively called the Laslett-Eveson-Polacheck approach.
Author(s)
Arni Magnusson and Mark Maunder.
References
Aires-da-Silva, A.M., Maunder, M.N., Schaefer, K.M., and Fuller, D.W. (2015). Improved growth estimates from integrated analysis of direct aging and tag-recapture data: An illustration with bigeye tuna (Thunnus obesus) of the eastern Pacific Ocean with implications for management. Fisheries Research, 163, 119–126. doi:10.1016/j.fishres.2014.04.001.
Maunder, M.N., Deriso, R.B., Schaefer, K.M., Fuller, D.W., Aires-da-Silva, A.M., Minte-Vera, C.V., and Campana, S.E. (2018). The growth cessation model: a growth model for species showing a near cessation in growth with application to bigeye tuna (Thunnus obesus). Marine Biology, 165, 76. doi:10.1007/s00227-018-3336-9.
Eveson, J.P., Laslett, G.M., and Polacheck, T. (2004). An integrated model for growth incorporating tag-recapture, length-frequency, and direct aging data. Canadian Journal of Fisheries and Aquatic Sciences, 61, 292–306. doi:10.1139/f03-163.
Laslett, G.M., Eveson, J.P., and Polacheck, T. (2002). A flexible maximum likelihood approach for fitting growth curves to tag-recapture data. Canadian Journal of Fisheries and Aquatic Sciences, 59, 976–986. doi:10.1139/f02-069.
See Also
Useful links:
Growth Cessation Model
Description
Fit a growth cessation model (GCM) to otoliths and/or tags.
Usage
gcm(par, data, silent = TRUE, ...)
gcm_curve(t, L0, rmax, k, t50)
gcm_objfun(par, data)
Arguments
par |
a parameter list. |
data |
a data list. |
silent |
passed to |
... |
passed to |
t |
age (vector). |
L0 |
predicted length at age 0. |
rmax |
shape parameter that determines the initial slope. |
k |
shape parameter that determines how quickly the growth curve reaches the asymptotic maximum. |
t50 |
shape parameter that determines the logistic function midpoint. |
Details
The main function gcm
creates a model object, ready for parameter
estimation. The auxiliary functions gcm_curve
and gcm_objfun
are called by the main function to calculate the regression curve and
objective function value. The user can also call the auxiliary functions
directly for plotting and model exploration.
The par
list contains the following elements:
-
L0
, predicted length at age 0 -
log_rmax
, shape parameter that determines the initial slope -
log_k
, shape parameter that determines how quickly the growth curve reaches the asymptotic maximum -
t50
, shape parameter that determines the logistic function midpoint -
log_sigma_min
, growth variability at the shortest observed length in the data -
log_sigma_max
(*), growth variability at the longest observed length in the data -
log_age
(*), age at release of tagged individuals (vector)
*: The parameter log_sigma_max
can be omitted to estimate growth
variability that does not vary with length. The parameter vector
log_age
can be omitted to fit to otoliths only.
The data
list contains the following elements:
-
Aoto
(*), age from otoliths (vector) -
Loto
(*), length from otoliths (vector) -
Lrel
(*), length at release of tagged individuals (vector) -
Lrec
(*), length at recapture of tagged individuals (vector) -
liberty
(*), time at liberty of tagged individuals in years (vector)
*: The data vectors Aoto
and Loto
can be omitted to fit to
tagging data only. The data vectors Lrel
, Lrec
, and
liberty
can be omitted to fit to otoliths only.
Value
The gcm
function returns a TMB model object, produced by
MakeADFun
.
The gcm_curve
function returns a numeric vector of predicted length at
age.
The gcm_objfun
function returns the negative log-likelihood as a
single number, describing the goodness of fit of par
to the
data
.
Note
The growth cessation model (Maunder et al. 2018) predicts length at age as:
\hat L_t ~=~ L_0 ~+~ r_{\max}\!\left[\,\frac{\log\left(1+e^{-kt_{50}}
\right) \;-\;\log\left(1+e^{k(t-t_{50})}\right)}{k}\;+\;t\:\right]
The variability of length at age increases linearly with length,
\sigma_L ~=~ \alpha \,+\, \beta \hat L
where the slope is \beta=(\sigma_{\max}-\sigma_{\min}) /
(L_{\max}-L_{\min})
, the
intercept is \alpha=\sigma_{\min} - \beta L_{\min}
, and L_{\min}
and L_{\max}
are the
shortest and longest observed lengths in the data. Alternatively, growth
variability can be modelled as a constant
\sigma_L=\sigma_{\min}
that does not vary with
length, by omitting log_sigma_max
from the parameter list (see above).
The negative log-likelihood is calculated by comparing the observed and predicted lengths:
nll_Loto <- -dnorm(Loto, Loto_hat, sigma_Loto, TRUE) nll_Lrel <- -dnorm(Lrel, Lrel_hat, sigma_Lrel, TRUE) nll_Lrec <- -dnorm(Lrec, Lrec_hat, sigma_Lrec, TRUE) nll <- sum(nll_Loto) + sum(nll_Lrel) + sum(nll_Lrec)
References
Maunder, M.N., Deriso, R.B., Schaefer, K.M., Fuller, D.W., Aires-da-Silva, A.M., Minte-Vera, C.V., and Campana, S.E. (2018). The growth cessation model: a growth model for species showing a near cessation in growth with application to bigeye tuna (Thunnus obesus). Marine Biology, 165, 76. doi:10.1007/s00227-018-3336-9.
The fishgrowth-package
help page includes references describing
the parameter estimation method.
See Also
gcm
, gompertz
, gompertzo
,
richards
, richardso
, schnute3
,
vonbert
, and vonberto
are alternative growth
models.
pred_band
calculates a prediction band for a fitted growth
model.
otoliths_had
, otoliths_skj
, and
tags_skj
are example datasets.
fishgrowth-package
gives an overview of the package.
Examples
# Model 1: Fit to haddock otoliths
# Explore initial parameter values
plot(len~age, otoliths_had, xlim=c(0,18), ylim=c(0,105), pch=16,
col="#0080a010")
x <- seq(1, 18, 0.1)
lines(x, gcm_curve(x, L0=5, rmax=20, k=0.15, t50=0), lty=3)
# Prepare parameters and data
init <- list(L0=5, log_rmax=log(20), log_k=log(0.15), t50=-1,
log_sigma_min=log(3), log_sigma_max=log(3))
dat <- list(Aoto=otoliths_had$age, Loto=otoliths_had$len)
gcm_objfun(init, dat)
# Fit model
model <- gcm(init, dat)
fit <- nlminb(model$par, model$fn, model$gr,
control=list(eval.max=1e4, iter.max=1e4))
report <- model$report()
sdreport <- sdreport(model)
# Plot results
Lhat <- with(report, gcm_curve(x, L0, rmax, k, t50))
lines(x, Lhat, lwd=2, col=2)
legend("bottomright", c("initial curve","model fit"), col=c(1,2), lty=c(3,1),
lwd=c(1,2), bty="n", inset=0.02, y.intersp=1.25)
# Model summary
report[c("L0", "rmax", "k", "t50", "sigma_min", "sigma_max")]
fit[-1]
summary(sdreport)
# Plot 95% prediction band
band <- pred_band(x, model)
areaplot::confplot(cbind(lower,upper)~age, band, xlim=c(0,18), ylim=c(0,100),
ylab="len", col="mistyrose")
points(len~age, otoliths_had, xlim=c(0,18), ylim=c(0,100),
pch=16, col="#0080a010")
lines(x, Lhat, lwd=2, col=2)
lines(lower~age, band, lty=1, lwd=0.5, col=2)
lines(upper~age, band, lty=1, lwd=0.5, col=2)
#############################################################################
# Model 2: Fit to skipjack otoliths and tags
# Explore initial parameter values
plot(len~age, otoliths_skj, xlim=c(0,4), ylim=c(0,100))
x <- seq(0, 4, 0.1)
points(lenRel~I(lenRel/60), tags_skj, col=4)
points(lenRec~I(lenRel/60+liberty), tags_skj, col=3)
lines(x, gcm_curve(x, L0=20, rmax=120, k=2, t50=0), lty=2)
legend("bottomright", c("otoliths","tag releases","tac recaptures",
"initial curve"), col=c(1,4,3,1), pch=c(1,1,1,NA), lty=c(0,0,0,2),
lwd=c(1.2,1.2,1.2,1), bty="n", inset=0.02, y.intersp=1.25)
# Prepare parameters and data
init <- list(L0=20, log_rmax=log(120), log_k=log(4), t50=0,
log_sigma_min=log(3), log_sigma_max=log(3),
log_age=log(tags_skj$lenRel/60))
dat <- list(Aoto=otoliths_skj$age, Loto=otoliths_skj$len,
Lrel=tags_skj$lenRel, Lrec=tags_skj$lenRec,
liberty=tags_skj$liberty)
gcm_objfun(init, dat)
# Fit model
model <- gcm(init, dat)
fit <- nlminb(model$par, model$fn, model$gr,
control=list(eval.max=1e4, iter.max=1e4))
report <- model$report()
sdreport <- sdreport(model)
# Plot results
plot(len~age, otoliths_skj, xlim=c(0,4), ylim=c(0,100))
points(report$age, report$Lrel, col=4)
points(report$age+report$liberty, report$Lrec, col=3)
Lhat <- with(report, gcm_curve(x, L0, rmax, k, t50))
lines(x, Lhat, lwd=2)
legend("bottomright", c("otoliths","tag releases","tac recaptures",
"model fit"), col=c(1,4,3,1), pch=c(1,1,1,NA), lty=c(0,0,0,1),
lwd=c(1.2,1.2,1.2,2), bty="n", inset=0.02, y.intersp=1.25)
# Model summary
report[c("L0", "rmax", "k", "t50", "sigma_min", "sigma_max")]
fit[-1]
head(summary(sdreport), 6)
#############################################################################
# Model 3: Stepwise estimation procedure, described by Maunder et al. (2018)
# - estimate L0 and rmax using linear regression on younger fish
# - estimate k and t50 using GCM and all data, keeping L0 and rmax fixed
# Estimate L0 and rmax
plot(otoliths_skj, xlim=c(0,4), ylim=c(0,100))
fm <- lm(len~age, otoliths_skj)
abline(fm)
L0 <- coef(fm)[[1]]
rmax <- coef(fm)[[2]]
# Explore initial parameter values (k, t50, age)
t <- seq(0, 4, by=0.1)
points(t, gcm_curve(t, L0, rmax, k=3, t50=2), col="gray")
points(lenRel~I(lenRel/50), tags_skj, col=4)
points(lenRec~I(lenRel/50+liberty), tags_skj, col=3)
legend("bottomright", c("otoliths","tag releases","tac recaptures",
"linear regression (otoliths)"), col=c(1,4,3,1), pch=c(1,1,1,NA),
lty=c(0,0,0,1), lwd=c(1.2,1.2,1.2,2), bty="n", inset=0.02,
y.intersp=1.25)
# Prepare parameters
init <- list(L0=L0, log_rmax=log(rmax), log_k=log(3), t50=2,
log_sigma_min=log(3), log_sigma_max=log(3),
log_age=log(tags_skj$lenRel/50))
# Fit model
map <- list(L0=factor(NA), log_rmax=factor(NA)) # fix L0 and rmax
model <- gcm(init, dat, map=map)
fit <- nlminb(model$par, model$fn, model$gr,
control=list(eval.max=1e4,iter.max=1e4))
report <- model$report()
sdreport <- sdreport(model)
# Plot results
plot(len~age, otoliths_skj, xlim=c(0,4), ylim=c(0,100))
points(report$age, report$Lrel, col=4)
points(report$age+report$liberty, report$Lrec, col=3)
Lhat <- with(report, gcm_curve(x, L0, rmax, k, t50))
lines(x, Lhat, lwd=2)
legend("bottomright", c("otoliths","tag releases","tac recaptures",
"model fit"), col=c(1,4,3,1), pch=c(1,1,1,NA), lty=c(0,0,0,1),
lwd=c(1.2,1.2,1.2,2), bty="n", inset=0.02, y.intersp=1.25)
# Model summary
report[c("L0", "rmax", "k", "t50", "sigma_min", "sigma_max")]
fit[-1]
head(summary(sdreport), 6)
Gompertz Growth Model
Description
Fit a Gompertz growth model to otoliths and/or tags, using the Schnute parametrization.
Usage
gompertz(par, data, silent = TRUE, ...)
gompertz_curve(t, L1, L2, k, t1, t2)
gompertz_objfun(par, data)
Arguments
par |
a parameter list. |
data |
a data list. |
silent |
passed to |
... |
passed to |
t |
age (vector). |
L1 |
predicted length at age |
L2 |
predicted length at age |
k |
growth coefficient. |
t1 |
age where predicted length is |
t2 |
age where predicted length is |
Details
The main function gompertz
creates a model object, ready for parameter
estimation. The auxiliary functions gompertz_curve
and
gompertz_objfun
are called by the main function to calculate the
regression curve and objective function value. The user can also call the
auxiliary functions directly for plotting and model exploration.
The par
list contains the following elements:
-
log_L1
, predicted length at aget1
-
log_L2
, predicted length at aget2
-
log_k
, growth coefficient -
log_sigma_min
, growth variability at the shortest observed length in the data -
log_sigma_max
(*), growth variability at the longest observed length in the data -
log_age
(*), age at release of tagged individuals (vector)
*: The parameter log_sigma_max
can be omitted to estimate growth
variability that does not vary with length. The parameter vector
log_age
can be omitted to fit to otoliths only.
The data
list contains the following elements:
-
Aoto
(*), age from otoliths (vector) -
Loto
(*), length from otoliths (vector) -
Lrel
(*), length at release of tagged individuals (vector) -
Lrec
(*), length at recapture of tagged individuals (vector) -
liberty
(*), time at liberty of tagged individuals in years (vector) -
t1
, age where predicted length isL1
-
t2
, age where predicted length isL2
*: The data vectors Aoto
and Loto
can be omitted to fit to
tagging data only. The data vectors Lrel
, Lrec
, and
liberty
can be omitted to fit to otoliths only.
Value
The gompertz
function returns a TMB model object, produced by
MakeADFun
.
The gompertz_curve
function returns a numeric vector of predicted
length at age.
The gompertz_objfun
function returns the negative log-likelihood as a
single number, describing the goodness of fit of par
to the
data
.
Note
The Schnute parametrization used in gompertz
reduces parameter
correlation and improves convergence reliability compared to the traditional
parametrization used in gompertzo
. Therefore, the
gompertz
parametrization can be recommended for general usage, as both
parametrizations produce the same growth curve. However, there can be some
use cases where the traditional parametrization (Linf
, k
,
tau
) is preferred over the Schnute parametrization (L1
,
L2
, k
).
Gompertz is a special case of the Richards (1959) model, where b=0
. If
the best model fit of a richards
model to a particular dataset
involves a very small estimated value of b
, then the gompertz
model offers a preferable parametrization, as it produces the same curve
using fewer parameters.
The Gompertz (1825) growth model, as parametrized by Schnute (1981, Eq. 16) predicts length at age as:
\hat L_t ~=~ L_1\exp\!\left[\,\log(L_2/L_1)\,
\frac{1-e^{-k(t-t_1)}}{1-e^{-k(t_2-t_1)}}\,\right]
The variability of length at age increases linearly with length,
\sigma_L ~=~ \alpha \,+\, \beta \hat L
where the slope is \beta=(\sigma_{\max}-\sigma_{\min}) /
(L_{\max}-L_{\min})
, the
intercept is \alpha=\sigma_{\min} - \beta L_{\min}
, and L_{\min}
and L_{\max}
are the
shortest and longest observed lengths in the data. Alternatively, growth
variability can be modelled as a constant
\sigma_L=\sigma_{\min}
that does not vary with
length, by omitting log_sigma_max
from the parameter list (see above).
The negative log-likelihood is calculated by comparing the observed and predicted lengths:
nll_Loto <- -dnorm(Loto, Loto_hat, sigma_Loto, TRUE) nll_Lrel <- -dnorm(Lrel, Lrel_hat, sigma_Lrel, TRUE) nll_Lrec <- -dnorm(Lrec, Lrec_hat, sigma_Lrec, TRUE) nll <- sum(nll_Loto) + sum(nll_Lrel) + sum(nll_Lrec)
References
Gompertz, B. (1825). On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies. Philosophical Transactions of the Royal Society, 115, 513-583.
Schnute, J. (1981). A versatile growth model with statistically stable parameters. Canadian Journal of Fisheries and Aquatic Science, 38, 1128-1140. doi:10.1139/f81-153.
The fishgrowth-package
help page includes references describing
the parameter estimation method.
See Also
gcm
, gompertz
, gompertzo
,
richards
, richards
, schnute3
,
vonbert
, and vonberto
are alternative growth
models.
pred_band
calculates a prediction band for a fitted growth
model.
otoliths_had
, otoliths_skj
, and
tags_skj
are example datasets.
fishgrowth-package
gives an overview of the package.
Examples
# Model 1: Fit to haddock otoliths
# Explore initial parameter values
plot(len~age, otoliths_had, xlim=c(0,18), ylim=c(0,105), pch=16,
col="#0080a010")
x <- seq(1, 18, 0.1)
lines(x, gompertz_curve(x, L1=15, L2=70, k=0.4, t1=1, t2=10), lty=3)
# Prepare parameters and data
init <- list(log_L1=log(20), log_L2=log(70), log_k=log(0.1),
log_sigma_min=log(3), log_sigma_max=log(3))
dat <- list(Aoto=otoliths_had$age, Loto=otoliths_had$len, t1=1, t2=10)
gompertz_objfun(init, dat)
# Fit model
model <- gompertz(init, dat)
fit <- nlminb(model$par, model$fn, model$gr,
control=list(eval.max=1e4, iter.max=1e4))
report <- model$report()
sdreport <- sdreport(model)
# Plot results
Lhat <- with(report, gompertz_curve(x, L1, L2, k, t1, t2))
lines(x, Lhat, lwd=2, col=2)
legend("bottomright", c("initial curve","model fit"), col=c(1,2), lty=c(3,1),
lwd=c(1,2), bty="n", inset=0.02, y.intersp=1.25)
# Model summary
report[c("L1", "L2", "k", "sigma_min", "sigma_max")]
fit[-1]
summary(sdreport)
# Plot 95% prediction band
band <- pred_band(x, model)
areaplot::confplot(cbind(lower,upper)~age, band, xlim=c(0,18), ylim=c(0,100),
ylab="len", col="mistyrose")
points(len~age, otoliths_had, xlim=c(0,18), ylim=c(0,100),
pch=16, col="#0080a010")
lines(x, Lhat, lwd=2, col=2)
lines(lower~age, band, lty=1, lwd=0.5, col=2)
lines(upper~age, band, lty=1, lwd=0.5, col=2)
#############################################################################
# Model 2: Fit to skipjack otoliths and tags
# Explore initial parameter values
plot(len~age, otoliths_skj, xlim=c(0,4), ylim=c(0,100))
x <- seq(0, 4, 0.1)
points(lenRel~I(lenRel/60), tags_skj, col=4)
points(lenRec~I(lenRel/60+liberty), tags_skj, col=3)
lines(x, gompertz_curve(x, L1=28, L2=74, k=1, t1=0, t2=4), lty=2)
legend("bottomright", c("otoliths","tag releases","tac recaptures",
"initial curve"), col=c(1,4,3,1), pch=c(1,1,1,NA), lty=c(0,0,0,2),
lwd=c(1.2,1.2,1.2,1), bty="n", inset=0.02, y.intersp=1.25)
# Prepare parameters and data
init <- list(log_L1=log(28), log_L2=log(74), log_k=log(1),
log_sigma_min=log(3), log_sigma_max=log(3),
log_age=log(tags_skj$lenRel/60))
dat <- list(Aoto=otoliths_skj$age, Loto=otoliths_skj$len,
Lrel=tags_skj$lenRel, Lrec=tags_skj$lenRec,
liberty=tags_skj$liberty, t1=0, t2=4)
gompertz_objfun(init, dat)
# Fit model
model <- gompertz(init, dat)
fit <- nlminb(model$par, model$fn, model$gr,
control=list(eval.max=1e4, iter.max=1e4))
report <- model$report()
sdreport <- sdreport(model)
# Plot results
plot(len~age, otoliths_skj, xlim=c(0,4), ylim=c(0,100))
points(report$age, report$Lrel, col=4)
points(report$age+report$liberty, report$Lrec, col=3)
Lhat <- with(report, gompertz_curve(x, L1, L2, k, t1, t2))
lines(x, Lhat, lwd=2)
legend("bottomright", c("otoliths","tag releases","tac recaptures",
"model fit"), col=c(1,4,3,1), pch=c(1,1,1,NA), lty=c(0,0,0,1),
lwd=c(1.2,1.2,1.2,2), bty="n", inset=0.02, y.intersp=1.25)
# Model summary
report[c("L1", "L2", "k", "sigma_min", "sigma_max")]
fit[-1]
head(summary(sdreport), 5)
#############################################################################
# Model 3: Fit to skipjack otoliths only
init <- list(log_L1=log(28), log_L2=log(74), log_k=log(1),
log_sigma_min=log(3), log_sigma_max=log(3))
dat <- list(Aoto=otoliths_skj$age, Loto=otoliths_skj$len, t1=0, t2=4)
model <- gompertz(init, dat)
fit <- nlminb(model$par, model$fn, model$gr,
control=list(eval.max=1e4, iter.max=1e4))
model$report()[c("L1", "L2", "k", "sigma_min", "sigma_max")]
#############################################################################
# Model 4: Fit to skipjack otoliths only,
# but now estimating constant sigma instead of sigma varying by length
# We do this by omitting log_sigma_max
init <- list(log_L1=log(28), log_L2=log(74), log_k=log(1),
log_sigma_min=log(3))
dat <- list(Aoto=otoliths_skj$age, Loto=otoliths_skj$len, t1=0, t2=4)
model <- gompertz(init, dat)
fit <- nlminb(model$par, model$fn, model$gr,
control=list(eval.max=1e4, iter.max=1e4))
model$report()[c("L1", "L2", "k", "sigma_min")]
#############################################################################
# Model 5: Fit to skipjack tags only
init <- list(log_L1=log(28), log_L2=log(74), log_k=log(1),
log_sigma_min=log(3), log_sigma_max=log(3),
log_age=log(tags_skj$lenRel/60))
dat <- list(Lrel=tags_skj$lenRel, Lrec=tags_skj$lenRec,
liberty=tags_skj$liberty, t1=0, t2=4)
model <- gompertz(init, dat)
fit <- nlminb(model$par, model$fn, model$gr,
control=list(eval.max=1e4, iter.max=1e4))
model$report()[c("L1", "L2", "k", "sigma_min", "sigma_max")]
Gompertz Growth Model (Old Style)
Description
Fit a Gompertz growth model to otoliths and/or tags, using a traditional parametrization.
Usage
gompertzo(par, data, silent = TRUE, ...)
gompertzo_curve(t, Linf, k, tau)
gompertzo_objfun(par, data)
Arguments
par |
a parameter list. |
data |
a data list. |
silent |
passed to |
... |
passed to |
t |
age (vector). |
Linf |
asymptotic maximum length. |
k |
growth coefficient. |
tau |
location parameter. |
Details
The main function gompertzo
creates a model object, ready for
parameter estimation. The auxiliary functions gompertzo_curve
and
gompertzo_objfun
are called by the main function to calculate the
regression curve and objective function value. The user can also call the
auxiliary functions directly for plotting and model exploration.
The par
list contains the following elements:
-
log_Linf
, asymptotic maximum length -
log_k
, growth coefficient -
tau
, location parameter -
log_sigma_min
, growth variability at the shortest observed length in the data -
log_sigma_max
(*), growth variability at the longest observed length in the data -
log_age
(*), age at release of tagged individuals (vector)
*: The parameter log_sigma_max
can be omitted to estimate growth
variability that does not vary with length. The parameter vector
log_age
can be omitted to fit to otoliths only.
The data
list contains the following elements:
-
Aoto
(*), age from otoliths (vector) -
Loto
(*), length from otoliths (vector) -
Lrel
(*), length at release of tagged individuals (vector) -
Lrec
(*), length at recapture of tagged individuals (vector) -
liberty
(*), time at liberty of tagged individuals in years (vector)
*: The data vectors Aoto
and Loto
can be omitted to fit to
tagging data only. The data vectors Lrel
, Lrec
, and
liberty
can be omitted to fit to otoliths only.
Value
The gompertzo
function returns a TMB model object, produced by
MakeADFun
.
The gompertzo_curve
function returns a numeric vector of predicted
length at age.
The gompertzo_objfun
function returns the negative log-likelihood as a
single number, describing the goodness of fit of par
to the
data
.
Note
The Schnute parametrization used in gompertz
reduces parameter
correlation and improves convergence reliability compared to the traditional
parametrization used in gompertzo
. Therefore, the gompertz
parametrization can be recommended for general usage, as both
parametrizations produce the same growth curve. However, there can be some
use cases where the traditional parametrization (Linf
, k
,
tau
) is preferred over the Schnute parametrization (L1
,
L2
, k
).
Gompertz is a special case of the Richards (1959) model, where b=0
. If
the best model fit of a richards
model to a particular dataset
involves a very small estimated value of b
, then the gompertz
model offers a preferable parametrization, as it produces the same curve
using fewer parameters.
The Gompertz (1825) growth model, as parametrized by Ricker (1979, Eq. 23) predicts length at age as:
\hat L_t ~=~ L_\infty\exp\!\big(\!\!-\!e^{-k(t-\tau)}\big)
The variability of length at age increases linearly with length,
\sigma_L ~=~ \alpha \,+\, \beta \hat L
where the slope is \beta=(\sigma_{\max}-\sigma_{\min}) /
(L_{\max}-L_{\min})
, the
intercept is \alpha=\sigma_{\min} - \beta L_{\min}
, and L_{\min}
and L_{\max}
are the
shortest and longest observed lengths in the data. Alternatively, growth
variability can be modelled as a constant
\sigma_L=\sigma_{\min}
that does not vary with
length, by omitting log_sigma_max
from the parameter list (see above).
The negative log-likelihood is calculated by comparing the observed and predicted lengths:
nll_Loto <- -dnorm(Loto, Loto_hat, sigma_Loto, TRUE) nll_Lrel <- -dnorm(Lrel, Lrel_hat, sigma_Lrel, TRUE) nll_Lrec <- -dnorm(Lrec, Lrec_hat, sigma_Lrec, TRUE) nll <- sum(nll_Loto) + sum(nll_Lrel) + sum(nll_Lrec)
References
Gompertz, B. (1825). On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies. Philosophical Transactions of the Royal Society, 115, 513-583.
Ricker, W.E. (1979). Growth rates and models. In: W.S. Hoar et al. (eds.) Fish physiology 8: Bioenergetics and growth. New York: Academic Press, pp. 677-743.
The fishgrowth-package
help page includes references describing
the parameter estimation method.
See Also
gcm
, gompertz
, gompertzo
,
richards
, richards
, schnute3
,
vonbert
, and vonberto
are alternative growth
models.
pred_band
calculates a prediction band for a fitted growth
model.
otoliths_had
, otoliths_skj
, and
tags_skj
are example datasets.
fishgrowth-package
gives an overview of the package.
Examples
# Model 1: Fit to haddock otoliths
# Explore initial parameter values
plot(len~age, otoliths_had, xlim=c(0,18), ylim=c(0,105), pch=16,
col="#0080a010")
x <- seq(1, 18, 0.1)
lines(x, gompertzo_curve(x, Linf=73, k=0.4, tau=2), lty=3)
# Prepare parameters and data
init <- list(log_Linf=log(73), log_k=log(0.4), tau=2,
log_sigma_min=log(3), log_sigma_max=log(3))
dat <- list(Aoto=otoliths_had$age, Loto=otoliths_had$len)
gompertzo_objfun(init, dat)
# Fit model
model <- gompertzo(init, dat)
fit <- nlminb(model$par, model$fn, model$gr,
control=list(eval.max=1e4, iter.max=1e4))
report <- model$report()
sdreport <- sdreport(model)
# Plot results
Lhat <- with(report, gompertzo_curve(x, Linf, k, tau))
lines(x, Lhat, lwd=2, col=2)
legend("bottomright", c("initial curve","model fit"), col=c(1,2), lty=c(3,1),
lwd=c(1,2), bty="n", inset=0.02, y.intersp=1.25)
# Model summary
report[c("Linf", "k", "tau", "sigma_min", "sigma_max")]
fit[-1]
summary(sdreport)
# Plot 95% prediction band
band <- pred_band(x, model)
areaplot::confplot(cbind(lower,upper)~age, band, xlim=c(0,18), ylim=c(0,100),
ylab="len", col="mistyrose")
points(len~age, otoliths_had, xlim=c(0,18), ylim=c(0,100),
pch=16, col="#0080a010")
lines(x, Lhat, lwd=2, col=2)
lines(lower~age, band, lty=1, lwd=0.5, col=2)
lines(upper~age, band, lty=1, lwd=0.5, col=2)
#############################################################################
# Model 2: Fit to skipjack otoliths and tags
# Explore initial parameter values
plot(len~age, otoliths_skj, xlim=c(0,4), ylim=c(0,100))
x <- seq(0, 4, 0.1)
points(lenRel~I(lenRel/60), tags_skj, col=4)
points(lenRec~I(lenRel/60+liberty), tags_skj, col=3)
lines(x, gompertzo_curve(x, Linf=75, k=1, tau=0), lty=2)
legend("bottomright", c("otoliths","tag releases","tac recaptures",
"initial curve"), col=c(1,4,3,1), pch=c(1,1,1,NA), lty=c(0,0,0,2),
lwd=c(1.2,1.2,1.2,1), bty="n", inset=0.02, y.intersp=1.25)
# Prepare parameters and data
init <- list(log_Linf=log(75), log_k=log(1), tau=0,
log_sigma_min=log(3), log_sigma_max=log(3),
log_age=log(tags_skj$lenRel/60))
dat <- list(Aoto=otoliths_skj$age, Loto=otoliths_skj$len,
Lrel=tags_skj$lenRel, Lrec=tags_skj$lenRec,
liberty=tags_skj$liberty)
gompertzo_objfun(init, dat)
# Fit model
model <- gompertzo(init, dat)
fit <- nlminb(model$par, model$fn, model$gr,
control=list(eval.max=1e4, iter.max=1e4))
report <- model$report()
sdreport <- sdreport(model)
# Plot results
plot(len~age, otoliths_skj, xlim=c(0,4), ylim=c(0,100))
points(report$age, report$Lrel, col=4)
points(report$age+report$liberty, report$Lrec, col=3)
Lhat <- with(report, gompertzo_curve(x, Linf, k, tau))
lines(x, Lhat, lwd=2)
legend("bottomright", c("otoliths","tag releases","tac recaptures",
"model fit"), col=c(1,4,3,1), pch=c(1,1,1,NA), lty=c(0,0,0,1),
lwd=c(1.2,1.2,1.2,2), bty="n", inset=0.02, y.intersp=1.25)
# Model summary
report[c("Linf", "k", "tau", "sigma_min", "sigma_max")]
fit[-1]
head(summary(sdreport), 5)
#############################################################################
# Model 3: Fit to skipjack otoliths only
init <- list(log_Linf=log(75), log_k=log(1), tau=0,
log_sigma_min=log(3), log_sigma_max=log(3))
dat <- list(Aoto=otoliths_skj$age, Loto=otoliths_skj$len)
model <- gompertzo(init, dat)
fit <- nlminb(model$par, model$fn, model$gr,
control=list(eval.max=1e4, iter.max=1e4))
model$report()[c("Linf", "k", "tau", "sigma_min", "sigma_max")]
#############################################################################
# Model 4: Fit to skipjack otoliths only,
# but now estimating constant sigma instead of sigma varying by length
# We do this by omitting log_sigma_max
init <- list(log_Linf=log(75), log_k=log(1), tau=0,
log_sigma_min=log(3))
dat <- list(Aoto=otoliths_skj$age, Loto=otoliths_skj$len)
model <- gompertzo(init, dat)
fit <- nlminb(model$par, model$fn, model$gr,
control=list(eval.max=1e4, iter.max=1e4))
model$report()[c("Linf", "k", "tau", "sigma_min")]
#############################################################################
# Model 5: Fit to skipjack tags only
init <- list(log_Linf=log(75), log_k=log(1), tau=0,
log_sigma_min=log(3), log_sigma_max=log(3),
log_age=log(tags_skj$lenRel/60))
dat <- list(Lrel=tags_skj$lenRel, Lrec=tags_skj$lenRec,
liberty=tags_skj$liberty)
model <- gompertzo(init, dat)
fit <- nlminb(model$par, model$fn, model$gr,
control=list(eval.max=1e4, iter.max=1e4))
model$report()[c("Linf", "k", "tau", "sigma_min", "sigma_max")]
Otolith Data (Haddock)
Description
Otolith data for Icelandic haddock from the Icelandic spring bottom trawl survey 2011-2020.
Usage
otoliths_had
Format
Data frame containing two columns:
age | age (years) |
len | length (cm) |
Note
The data were contributed by the Icelandic Marine and Freshwater Research Institute. The otoliths were collected following the sampling protocol described in the survey manual (Sólmundsson et al. 2020).
Source
Sólmundsson, J., Karlsson, H., Björnsson, H., Jónsdóttir, I.G., Jakobsdóttir, K.B., and Bogason, V. (2020). A manual for the Icelandic groundfish survey in spring 2020. Marine and Freshwater Research in Iceland HV 2020-08.
See Also
gcm
, gompertz
, gompertzo
,
richards
, richardso
, schnute3
,
vonbert
, and vonberto
are alternative growth
models.
otoliths_had
, otoliths_skj
, and tags_skj
are example datasets.
fishgrowth-package
gives an overview of the package.
Examples
head(otoliths_had)
Otolith Data (Skipjack)
Description
Simulated otolith data, loosely based on a skipjack tuna dataset analyzed by Macdonald et al. (2022).
Usage
otoliths_skj
Format
Data frame containing two columns:
age | age (years) |
len | length (cm) |
Details
The simulation code that was used to produce this dataset is included in the package:
file.show(system.file(package="fishgrowth", "sim/simulate.R"))
Source
Macdonald, J., Day, J., Magnusson, A., Maunder, M., Aoki, Y., Matsubara, N., Tsuda, Y., McKechnie, S., Teears, T., Leroy, B., Castillo-Jordán, C., Hampton, J., and Hamer, P. (2022). Review and new analyses of skipjack growth in the Western and Central Pacific Ocean. Western and Central Pacific Fisheries Commission Report WCPFC-SC18-2022/SA-IP-06. https://meetings.wcpfc.int/node/16254.
See Also
gcm
, gompertz
, gompertzo
,
richards
, richardso
, schnute3
,
vonbert
, and vonberto
are alternative growth
models.
otoliths_had
, otoliths_skj
, and tags_skj
are example datasets.
fishgrowth-package
gives an overview of the package.
Examples
otoliths_skj
Prediction Band
Description
Calculate a prediction band for a fitted growth curve.
Usage
pred_band(age, model, level = 0.95)
Arguments
age |
a vector of ages to calculate the prediction band. |
model |
a fitted growth model. |
level |
significance level. |
Value
A data frame containing five columns:
age |
age |
Lhat |
predicted length |
sigma |
growth variability |
lower |
lower limit of prediction band |
upper |
upper limit of prediction band |
Note
The variability of length at age (sigma
) increases linearly with
length:
\sigma_L ~=~ \alpha \,+\, \beta \hat L
This calculation of sigma
is demonstrated in the example below.
The lower
and upper
limits of the prediction band are
calculated as \hat L \pm 1.96\sigma_L
at the
95% significance level.
See Also
gcm
, gompertz
, gompertzo
,
richards
, richardso
, schnute3
,
vonbert
, and vonberto
are alternative growth
models.
fishgrowth-package
gives an overview of the package.
Examples
# Fit a model
init <- list(log_L1=log(20), log_L2=log(70), log_k=log(0.1),
log_sigma_min=log(3), log_sigma_max=log(3))
dat <- list(Aoto=otoliths_had$age, Loto=otoliths_had$len, t1=1, t2=10)
model <- vonbert(init, dat)
fit <- nlminb(model$par, model$fn, model$gr,
control=list(eval.max=1e4, iter.max=1e4))
# Calculate 95% prediction band
x <- seq(1, 18, 0.5)
band <- pred_band(x, model)
# Plot 95% prediction band
areaplot::confplot(cbind(lower,upper)~age, band, xlim=c(0,18), ylim=c(0,100),
ylab="len", col="mistyrose")
points(len~age, otoliths_had, xlim=c(0,18), ylim=c(0,100),
pch=16, col="#0080a010")
lines(Lhat~age, band, lwd=2, col=2)
lines(lower~age, band, lty=1, lwd=0.5, col=2)
lines(upper~age, band, lty=1, lwd=0.5, col=2)
# Calculate sigma by hand
report <- model$report()
alpha <- report$sigma_intercept
beta <- report$sigma_slope
Lhat <- band$Lhat
alpha + beta * Lhat # same values as band$sigma calculated by pred_band()
Richards Growth Model
Description
Fit a Richards growth model to otoliths and/or tags, using the Schnute parametrization.
Usage
richards(par, data, silent = TRUE, ...)
richards_curve(t, L1, L2, k, b, t1, t2)
richards_objfun(par, data)
Arguments
par |
a parameter list. |
data |
a data list. |
silent |
passed to |
... |
passed to |
t |
age (vector). |
L1 |
predicted length at age |
L2 |
predicted length at age |
k |
growth coefficient. |
b |
shape parameter. |
t1 |
age where predicted length is |
t2 |
age where predicted length is |
Details
The main function richards
creates a model object, ready for parameter
estimation. The auxiliary functions richards_curve
and
richards_objfun
are called by the main function to calculate the
regression curve and objective function value. The user can also call the
auxiliary functions directly for plotting and model exploration.
The par
list contains the following elements:
-
log_L1
, predicted length at aget1
-
log_L2
, predicted length at aget2
-
log_k
, growth coefficient -
b
, shape parameter -
log_sigma_min
, growth variability at the shortest observed length in the data -
log_sigma_max
(*), growth variability at the longest observed length in the data -
log_age
(*), age at release of tagged individuals (vector)
*: The parameter log_sigma_max
can be omitted to estimate growth
variability that does not vary with length. The parameter vector
log_age
can be omitted to fit to otoliths only.
The data
list contains the following elements:
-
Aoto
(*), age from otoliths (vector) -
Loto
(*), length from otoliths (vector) -
Lrel
(*), length at release of tagged individuals (vector) -
Lrec
(*), length at recapture of tagged individuals (vector) -
liberty
(*), time at liberty of tagged individuals in years (vector) -
t1
, age where predicted length isL1
-
t2
, age where predicted length isL2
*: The data vectors Aoto
and Loto
can be omitted to fit to
tagging data only. The data vectors Lrel
, Lrec
, and
liberty
can be omitted to fit to otoliths only.
Value
The richards
function returns a TMB model object, produced by
MakeADFun
.
The richards_curve
function returns a numeric vector of predicted
length at age.
The richards_objfun
function returns the negative log-likelihood as a
single number, describing the goodness of fit of par
to the
data
.
Note
The Schnute parametrization used in richards
reduces parameter
correlation and improves convergence reliability compared to the traditional
parametrization used in richardso
. Therefore, the
richards
parametrization can be recommended for general usage, as both
parametrizations produce the same growth curve. However, there can be some
use cases where the traditional parametrization (Linf
, k
,
tau
, b
) is preferred over the Schnute parametrization
(L1
, L2
, k
, b
).
The Richards (1959) growth model, as parametrized by Schnute (1981, Eq. 15), predicts length at age as:
\hat L_t ~=~ \left[\:L_1^b\;+\;(L_2^b-L_1^b)\,
\frac{1-e^{-k(t-t_1)}}{1-e^{-k(t_2-t_1)}}\,\right]^{1/b}
The variability of length at age increases linearly with length,
\sigma_L ~=~ \alpha \,+\, \beta \hat L
where the slope is \beta=(\sigma_{\max}-\sigma_{\min}) /
(L_{\max}-L_{\min})
, the
intercept is \alpha=\sigma_{\min} - \beta L_{\min}
, and L_{\min}
and L_{\max}
are the
shortest and longest observed lengths in the data. Alternatively, growth
variability can be modelled as a constant
\sigma_L=\sigma_{\min}
that does not vary with
length, by omitting log_sigma_max
from the parameter list (see above).
The negative log-likelihood is calculated by comparing the observed and predicted lengths:
nll_Loto <- -dnorm(Loto, Loto_hat, sigma_Loto, TRUE) nll_Lrel <- -dnorm(Lrel, Lrel_hat, sigma_Lrel, TRUE) nll_Lrec <- -dnorm(Lrec, Lrec_hat, sigma_Lrec, TRUE) nll <- sum(nll_Loto) + sum(nll_Lrel) + sum(nll_Lrec)
References
Richards, F.J. (1959). A flexible growth function for empirical use. Journal of Experimental Botany, 10, 290-300. https://www.jstor.org/stable/23686557.
Schnute, J. (1981). A versatile growth model with statistically stable parameters. Canadian Journal of Fisheries and Aquatic Science, 38, 1128-1140. doi:10.1139/f81-153.
The fishgrowth-package
help page includes references describing
the parameter estimation method.
See Also
gcm
, gompertz
, gompertzo
,
richards
, richardso
, schnute3
,
vonbert
, and vonberto
are alternative growth
models.
pred_band
calculates a prediction band for a fitted growth
model.
otoliths_had
, otoliths_skj
, and
tags_skj
are example datasets.
fishgrowth-package
gives an overview of the package.
Examples
# Model 1: Fit to haddock otoliths
# Explore initial parameter values
plot(len~age, otoliths_had, xlim=c(0,18), ylim=c(0,105), pch=16,
col="#0080a010")
x <- seq(1, 18, 0.1)
lines(x, richards_curve(x, L1=18, L2=67, k=0.1, b=1, t1=1, t2=10), lty=3)
# Prepare parameters and data
init <- list(log_L1=log(18), log_L2=log(67), log_k=log(0.1), b=1,
log_sigma_min=log(3), log_sigma_max=log(3))
dat <- list(Aoto=otoliths_had$age, Loto=otoliths_had$len, t1=1, t2=10)
richards_objfun(init, dat)
# Fit model
model <- richards(init, dat)
fit <- nlminb(model$par, model$fn, model$gr,
control=list(eval.max=1e4, iter.max=1e4))
report <- model$report()
sdreport <- sdreport(model)
# Plot results
Lhat <- with(report, richards_curve(x, L1, L2, k, b, t1, t2))
lines(x, Lhat, lwd=2, col=2)
legend("bottomright", c("initial curve","model fit"), col=c(1,2), lty=c(3,1),
lwd=c(1,2), bty="n", inset=0.02, y.intersp=1.25)
# Model summary
report[c("L1", "L2", "k", "b", "sigma_min", "sigma_max")]
fit[-1]
summary(sdreport)
# Plot 95% prediction band
band <- pred_band(x, model)
areaplot::confplot(cbind(lower,upper)~age, band, xlim=c(0,18), ylim=c(0,100),
ylab="len", col="mistyrose")
points(len~age, otoliths_had, xlim=c(0,18), ylim=c(0,100),
pch=16, col="#0080a010")
lines(x, Lhat, lwd=2, col=2)
lines(lower~age, band, lty=1, lwd=0.5, col=2)
lines(upper~age, band, lty=1, lwd=0.5, col=2)
#############################################################################
# Model 2: Fit to skipjack otoliths and tags
# Explore initial parameter values
plot(len~age, otoliths_skj, xlim=c(0,4), ylim=c(0,100))
x <- seq(0, 4, 0.1)
points(lenRel~I(lenRel/60), tags_skj, col=4)
points(lenRec~I(lenRel/60+liberty), tags_skj, col=3)
lines(x, richards_curve(x, L1=25, L2=75, k=0.8, b=1, t1=0, t2=4), lty=2)
legend("bottomright", c("otoliths","tag releases","tac recaptures",
"initial curve"), col=c(1,4,3,1), pch=c(1,1,1,NA), lty=c(0,0,0,2),
lwd=c(1.2,1.2,1.2,1), bty="n", inset=0.02, y.intersp=1.25)
# Prepare parameters and data
init <- list(log_L1=log(25), log_L2=log(75), log_k=log(0.8), b=1,
log_sigma_min=log(3), log_sigma_max=log(3),
log_age=log(tags_skj$lenRel/60))
dat <- list(Aoto=otoliths_skj$age, Loto=otoliths_skj$len,
Lrel=tags_skj$lenRel, Lrec=tags_skj$lenRec,
liberty=tags_skj$liberty, t1=0, t2=4)
richards_objfun(init, dat)
# Fit model
model <- richards(init, dat)
fit <- nlminb(model$par, model$fn, model$gr,
control=list(eval.max=1e4, iter.max=1e4))
report <- model$report()
sdreport <- sdreport(model)
# Plot results
plot(len~age, otoliths_skj, xlim=c(0,4), ylim=c(0,100))
points(report$age, report$Lrel, col=4)
points(report$age+report$liberty, report$Lrec, col=3)
Lhat <- with(report, richards_curve(x, L1, L2, k, b, t1, t2))
lines(x, Lhat, lwd=2)
legend("bottomright", c("otoliths","tag releases","tac recaptures",
"model fit"), col=c(1,4,3,1), pch=c(1,1,1,NA), lty=c(0,0,0,1),
lwd=c(1.2,1.2,1.2,2), bty="n", inset=0.02, y.intersp=1.25)
# Model summary
report[c("L1", "L2", "k", "b", "sigma_min", "sigma_max")]
fit[-1]
head(summary(sdreport), 6)
#############################################################################
# Model 3: Fit to skipjack otoliths only
init <- list(log_L1=log(25), log_L2=log(75), log_k=log(0.8), b=1,
log_sigma_min=log(3), log_sigma_max=log(3))
dat <- list(Aoto=otoliths_skj$age, Loto=otoliths_skj$len, t1=0, t2=4)
model <- richards(init, dat)
fit <- nlminb(model$par, model$fn, model$gr,
control=list(eval.max=1e4, iter.max=1e4))
model$report()[c("L1", "L2", "k", "b", "sigma_min", "sigma_max")]
#############################################################################
# Model 4: Fit to skipjack otoliths only,
# but now estimating constant sigma instead of sigma varying by length
# We do this by omitting log_sigma_max
init <- list(log_L1=log(25), log_L2=log(75), log_k=log(0.8), b=1,
log_sigma_min=log(3))
dat <- list(Aoto=otoliths_skj$age, Loto=otoliths_skj$len, t1=0, t2=4)
model <- richards(init, dat)
fit <- nlminb(model$par, model$fn, model$gr,
control=list(eval.max=1e4, iter.max=1e4))
model$report()[c("L1", "L2", "k", "b", "sigma_min")]
#############################################################################
# Model 5: Fit to skipjack tags only
init <- list(log_L1=log(25), log_L2=log(75), log_k=log(0.8), b=1,
log_sigma_min=log(3), log_sigma_max=log(3),
log_age=log(tags_skj$lenRel/60))
dat <- list(Lrel=tags_skj$lenRel, Lrec=tags_skj$lenRec,
liberty=tags_skj$liberty, t1=0, t2=4)
model <- richards(init, dat)
fit <- nlminb(model$par, model$fn, model$gr,
control=list(eval.max=1e4, iter.max=1e4))
model$report()[c("L1", "L2", "k", "b", "sigma_min", "sigma_max")]
Richards Growth Model (Old Style)
Description
Fit a Richards growth model to otoliths and/or tags, using a traditional parametrization.
Usage
richardso(par, data, silent = TRUE, ...)
richardso_curve(t, Linf, k, tau, b)
richardso_objfun(par, data)
Arguments
par |
a parameter list. |
data |
a data list. |
silent |
passed to |
... |
passed to |
t |
age (vector). |
Linf |
asymptotic maximum length. |
k |
growth coefficient. |
tau |
location parameter. |
b |
shape parameter. |
Details
The main function richardso
creates a model object, ready for
parameter estimation. The auxiliary functions richardso_curve
and
richardso_objfun
are called by the main function to calculate the
regression curve and objective function value. The user can also call the
auxiliary functions directly for plotting and model exploration.
The par
list contains the following elements:
-
log_Linf
, asymptotic maximum length -
log_k
, growth coefficient -
tau
, location parameter -
b
, shape parameter -
log_sigma_min
, growth variability at the shortest observed length in the data -
log_sigma_max
(*), growth variability at the longest observed length in the data -
log_age
(*), age at release of tagged individuals (vector)
*: The parameter log_sigma_max
can be omitted to estimate growth
variability that does not vary with length. The parameter vector
log_age
can be omitted to fit to otoliths only.
The data
list contains the following elements:
-
Aoto
(*), age from otoliths (vector) -
Loto
(*), length from otoliths (vector) -
Lrel
(*), length at release of tagged individuals (vector) -
Lrec
(*), length at recapture of tagged individuals (vector) -
liberty
(*), time at liberty of tagged individuals in years (vector)
*: The data vectors Aoto
and Loto
can be omitted to fit to
tagging data only. The data vectors Lrel
, Lrec
, and
liberty
can be omitted to fit to otoliths only.
Value
The richardso
function returns a TMB model object, produced by
MakeADFun
.
The richardso_curve
function returns a numeric vector of predicted
length at age.
The richardso_objfun
function returns the negative log-likelihood as a
single number, describing the goodness of fit of par
to the
data
.
Note
The Schnute parametrization used in richards
reduces parameter
correlation and improves convergence reliability compared to the traditional
parametrization used in richardso
. Therefore, the
richards
parametrization can be recommended for general usage, as both
parametrizations produce the same growth curve. However, there can be some
use cases where the traditional parametrization (Linf
, k
,
tau
, b
) is preferred over the Schnute parametrization
(L1
, L2
, k
, b
).
The Richards (1959) growth model, as parametrized by Tjørve and Tjørve (2010, Eq. 4), predicts length at age as:
\hat L_t ~=~ L_\infty\left(1\,-\,\frac{1}{b}\,
e^{-k(t-\tau)}\right)^{\!b}
The variability of length at age increases linearly with length,
\sigma_L ~=~ \alpha \,+\, \beta \hat L
where the slope is \beta=(\sigma_{\max}-\sigma_{\min}) /
(L_{\max}-L_{\min})
, the
intercept is \alpha=\sigma_{\min} - \beta L_{\min}
, and L_{\min}
and L_{\max}
are the
shortest and longest observed lengths in the data. Alternatively, growth
variability can be modelled as a constant
\sigma_L=\sigma_{\min}
that does not vary with
length, by omitting log_sigma_max
from the parameter list (see above).
The negative log-likelihood is calculated by comparing the observed and predicted lengths:
nll_Loto <- -dnorm(Loto, Loto_hat, sigma_Loto, TRUE) nll_Lrel <- -dnorm(Lrel, Lrel_hat, sigma_Lrel, TRUE) nll_Lrec <- -dnorm(Lrec, Lrec_hat, sigma_Lrec, TRUE) nll <- sum(nll_Loto) + sum(nll_Lrel) + sum(nll_Lrec)
References
Richards, F.J. (1959). A flexible growth function for empirical use. Journal of Experimental Botany, 10, 290-300. https://www.jstor.org/stable/23686557.
Tjørve, E. and Tjørve, K.M.C. (2010). A unified approach to the Richards-model family for use in growth analyses: Why we need only two model forms. Journal of Theoretical Biology, 267, 417-425.
The fishgrowth-package
help page includes references describing
the parameter estimation method.
See Also
gcm
, gompertz
, gompertzo
,
richards
, richardso
, schnute3
,
vonbert
, and vonberto
are alternative growth
models.
pred_band
calculates a prediction band for a fitted growth
model.
otoliths_had
, otoliths_skj
, and
tags_skj
are example datasets.
fishgrowth-package
gives an overview of the package.
Examples
# Model 1: Fit to haddock otoliths
# Explore initial parameter values
plot(len~age, otoliths_had, xlim=c(0,18), ylim=c(0,105), pch=16,
col="#0080a010")
x <- seq(1, 18, 0.1)
lines(x, richardso_curve(x, Linf=100, k=0.1, tau=-1, b=1), lty=3)
# Prepare parameters and data
init <- list(log_Linf=log(100), log_k=log(0.1), tau=-1, b=1,
log_sigma_min=log(3), log_sigma_max=log(3))
dat <- list(Aoto=otoliths_had$age, Loto=otoliths_had$len)
richardso_objfun(init, dat)
# Fit model
model <- richardso(init, dat)
fit <- nlminb(model$par, model$fn, model$gr,
control=list(eval.max=1e4, iter.max=1e4))
report <- model$report()
sdreport <- sdreport(model)
# Plot results
Lhat <- with(report, richardso_curve(x, Linf, k, tau, b))
lines(x, Lhat, lwd=2, col=2)
legend("bottomright", c("initial curve","model fit"), col=c(1,2), lty=c(3,1),
lwd=c(1,2), bty="n", inset=0.02, y.intersp=1.25)
# Model summary
report[c("Linf", "k", "tau", "b", "sigma_min", "sigma_max")]
fit[-1]
summary(sdreport)
# Plot 95% prediction band
band <- pred_band(x, model)
areaplot::confplot(cbind(lower,upper)~age, band, xlim=c(0,18), ylim=c(0,100),
ylab="len", col="mistyrose")
points(len~age, otoliths_had, xlim=c(0,18), ylim=c(0,100),
pch=16, col="#0080a010")
lines(x, Lhat, lwd=2, col=2)
lines(lower~age, band, lty=1, lwd=0.5, col=2)
lines(upper~age, band, lty=1, lwd=0.5, col=2)
#############################################################################
# Model 2: Fit to skipjack otoliths and tags
# Explore initial parameter values
plot(len~age, otoliths_skj, xlim=c(0,4), ylim=c(0,100))
x <- seq(0, 4, 0.1)
points(lenRel~I(lenRel/60), tags_skj, col=4)
points(lenRec~I(lenRel/60+liberty), tags_skj, col=3)
lines(x, richardso_curve(x, Linf=80, k=0.8, tau=-0.5, b=1), lty=2)
legend("bottomright", c("otoliths","tag releases","tac recaptures",
"initial curve"), col=c(1,4,3,1), pch=c(1,1,1,NA), lty=c(0,0,0,2),
lwd=c(1.2,1.2,1.2,1), bty="n", inset=0.02, y.intersp=1.25)
# Prepare parameters and data
init <- list(log_Linf=log(80), log_k=log(0.8), tau=-0.5, b=1,
log_sigma_min=log(3), log_sigma_max=log(3),
log_age=log(tags_skj$lenRel/60))
dat <- list(Aoto=otoliths_skj$age, Loto=otoliths_skj$len,
Lrel=tags_skj$lenRel, Lrec=tags_skj$lenRec,
liberty=tags_skj$liberty)
richardso_objfun(init, dat)
# Fit model
model <- richardso(init, dat)
fit <- nlminb(model$par, model$fn, model$gr,
control=list(eval.max=1e4, iter.max=1e4))
report <- model$report()
sdreport <- sdreport(model)
# Plot results
plot(len~age, otoliths_skj, xlim=c(0,4), ylim=c(0,100))
points(report$age, report$Lrel, col=4)
points(report$age+report$liberty, report$Lrec, col=3)
Lhat <- with(report, richardso_curve(x, Linf, k, tau, b))
lines(x, Lhat, lwd=2)
legend("bottomright", c("otoliths","tag releases","tac recaptures",
"model fit"), col=c(1,4,3,1), pch=c(1,1,1,NA), lty=c(0,0,0,1),
lwd=c(1.2,1.2,1.2,2), bty="n", inset=0.02, y.intersp=1.25)
# Model summary
report[c("Linf", "k", "tau", "b", "sigma_min", "sigma_max")]
fit[-1]
head(summary(sdreport), 6)
#############################################################################
# Model 3: Fit to skipjack otoliths only
init <- list(log_Linf=log(80), log_k=log(0.8), tau=-0.5, b=1,
log_sigma_min=log(3), log_sigma_max=log(3))
dat <- list(Aoto=otoliths_skj$age, Loto=otoliths_skj$len)
model <- richardso(init, dat)
fit <- nlminb(model$par, model$fn, model$gr,
control=list(eval.max=1e4, iter.max=1e4))
model$report()[c("Linf", "k", "tau", "b", "sigma_min", "sigma_max")]
#############################################################################
# Model 4: Fit to skipjack otoliths only,
# but now estimating constant sigma instead of sigma varying by length
# We do this by omitting log_sigma_max
init <- list(log_Linf=log(80), log_k=log(0.8), tau=-0.5, b=1,
log_sigma_min=log(3))
dat <- list(Aoto=otoliths_skj$age, Loto=otoliths_skj$len)
model <- richardso(init, dat)
fit <- nlminb(model$par, model$fn, model$gr,
control=list(eval.max=1e4, iter.max=1e4))
model$report()[c("Linf", "k", "tau", "b", "sigma_min")]
#############################################################################
# Model 5: Fit to skipjack tags only
init <- list(log_Linf=log(80), log_k=log(0.8), tau=-0.5, b=1,
log_sigma_min=log(3), log_sigma_max=log(3),
log_age=log(tags_skj$lenRel/60))
dat <- list(Lrel=tags_skj$lenRel, Lrec=tags_skj$lenRec,
liberty=tags_skj$liberty)
model <- richardso(init, dat) # using 1e3 to keep CRAN checks fast,
fit <- nlminb(model$par, model$fn, model$gr, # but try 1e4 to get
control=list(eval.max=1e3, iter.max=1e3)) # better convergence
model$report()[c("Linf", "k", "tau", "b", "sigma_min", "sigma_max")]
Schnute Case 3 Model
Description
Fit a Schnute Case 3 model to otoliths and/or tags.
Usage
schnute3(par, data, silent = TRUE, ...)
schnute3_curve(t, L1, L2, b, t1, t2)
schnute3_objfun(par, data)
Arguments
par |
a parameter list. |
data |
a data list. |
silent |
passed to |
... |
passed to |
t |
age (vector). |
L1 |
predicted length at age |
L2 |
predicted length at age |
b |
shape parameter. |
t1 |
age where predicted length is |
t2 |
age where predicted length is |
Details
The main function schnute3
creates a model object, ready for parameter
estimation. The auxiliary functions schnute3_curve
and
schnute3_objfun
are called by the main function to calculate the
regression curve and objective function value. The user can also call the
auxiliary functions directly for plotting and model exploration.
The par
list contains the following elements:
-
log_L1
, predicted length at aget1
-
log_L2
, predicted length at aget2
-
b
, shape parameter -
log_sigma_min
, growth variability at the shortest observed length in the data -
log_sigma_max
(*), growth variability at the longest observed length in the data -
log_age
(*), age at release of tagged individuals (vector)
*: The parameter log_sigma_max
can be omitted to estimate growth
variability that does not vary with length. The parameter vector
log_age
can be omitted to fit to otoliths only.
The data
list contains the following elements:
-
Aoto
(*), age from otoliths (vector) -
Loto
(*), length from otoliths (vector) -
Lrel
(*), length at release of tagged individuals (vector) -
Lrec
(*), length at recapture of tagged individuals (vector) -
liberty
(*), time at liberty of tagged individuals in years (vector) -
t1
, age where predicted length isL1
-
t2
, age where predicted length isL2
*: The data vectors Aoto
and Loto
can be omitted to fit to
tagging data only. The data vectors Lrel
, Lrec
, and
liberty
can be omitted to fit to otoliths only.
Value
The schnute3
function returns a TMB model object, produced by
MakeADFun
.
The schnute3_curve
function returns a numeric vector of predicted
length at age.
The schnute3_objfun
function returns the negative log-likelihood as a
single number, describing the goodness of fit of par
to the
data
.
Note
The Schnute Case 3 model is a special case of the Richards (1959) model,
where k=0
. If the best model fit of a richards
model to a
particular dataset involves a very small estimated value of k
, then the
schnute3
model offers a preferable parametrization, as it produces the
same curve using fewer parameters.
The Schnute Case 3 model (Schnute 1981, Eq. 17) predicts length at age as:
\hat L_t ~=~ \left[\;L_1^b\;+\;(L_2^b-L_1^b)\,
\frac{t-t_1}{t_2-t_1}\,\right]^{1/b}
The variability of length at age increases linearly with length,
\sigma_L ~=~ \alpha \,+\, \beta \hat L
where the slope is \beta=(\sigma_{\max}-\sigma_{\min}) /
(L_{\max}-L_{\min})
, the
intercept is \alpha=\sigma_{\min} - \beta L_{\min}
, and L_{\min}
and L_{\max}
are the
shortest and longest observed lengths in the data. Alternatively, growth
variability can be modelled as a constant
\sigma_L=\sigma_{\min}
that does not vary with
length, by omitting log_sigma_max
from the parameter list (see above).
The negative log-likelihood is calculated by comparing the observed and predicted lengths:
nll_Loto <- -dnorm(Loto, Loto_hat, sigma_Loto, TRUE) nll_Lrel <- -dnorm(Lrel, Lrel_hat, sigma_Lrel, TRUE) nll_Lrec <- -dnorm(Lrec, Lrec_hat, sigma_Lrec, TRUE) nll <- sum(nll_Loto) + sum(nll_Lrel) + sum(nll_Lrec)
References
Richards, F.J. (1959). A flexible growth function for empirical use. Journal of Experimental Botany, 10, 290-300. https://www.jstor.org/stable/23686557.
Schnute, J. (1981). A versatile growth model with statistically stable parameters. Canadian Journal of Fisheries and Aquatic Science, 38, 1128-1140. doi:10.1139/f81-153.
The fishgrowth-package
help page includes references describing
the parameter estimation method.
See Also
gcm
, gompertz
, gompertzo
,
richards
, richardso
, schnute3
,
vonbert
, and vonberto
are alternative growth
models.
pred_band
calculates a prediction band for a fitted growth
model.
otoliths_had
, otoliths_skj
, and
tags_skj
are example datasets.
fishgrowth-package
gives an overview of the package.
Examples
# Model 1: Fit to haddock otoliths
# Explore initial parameter values
plot(len~age, otoliths_had, xlim=c(0,18), ylim=c(0,105), pch=16,
col="#0080a010")
x <- seq(1, 18, 0.1)
lines(x, schnute3_curve(x, L1=15, L2=70, b=2, t1=1, t2=10), lty=3)
# Prepare parameters and data
init <- list(log_L1=log(15), log_L2=log(70), b=2,
log_sigma_min=log(3), log_sigma_max=log(3))
dat <- list(Aoto=otoliths_had$age, Loto=otoliths_had$len, t1=1, t2=10)
schnute3_objfun(init, dat)
# Fit model
model <- schnute3(init, dat)
fit <- nlminb(model$par, model$fn, model$gr,
control=list(eval.max=1e4, iter.max=1e4))
report <- model$report()
sdreport <- sdreport(model)
# Plot results
Lhat <- with(report, schnute3_curve(x, L1, L2, b, t1, t2))
lines(x, Lhat, lwd=2, col=2)
legend("bottomright", c("initial curve","model fit"), col=c(1,2), lty=c(3,1),
lwd=c(1,2), bty="n", inset=0.02, y.intersp=1.25)
# Model summary
report[c("L1", "L2", "b", "sigma_min", "sigma_max")]
fit[-1]
summary(sdreport)
# Plot 95% prediction band
band <- pred_band(x, model)
areaplot::confplot(cbind(lower,upper)~age, band, xlim=c(0,18), ylim=c(0,100),
ylab="len", col="mistyrose")
points(len~age, otoliths_had, xlim=c(0,18), ylim=c(0,100),
pch=16, col="#0080a010")
lines(x, Lhat, lwd=2, col=2)
lines(lower~age, band, lty=1, lwd=0.5, col=2)
lines(upper~age, band, lty=1, lwd=0.5, col=2)
#############################################################################
# Model 2: Fit to skipjack otoliths and tags
# Explore initial parameter values
plot(len~age, otoliths_skj, xlim=c(0,4), ylim=c(0,100))
x <- seq(0, 4, 0.1)
points(lenRel~I(lenRel/60), tags_skj, col=4)
points(lenRec~I(lenRel/60+liberty), tags_skj, col=3)
lines(x, schnute3_curve(x, L1=25, L2=75, b=3, t1=0, t2=4), lty=2)
legend("bottomright", c("otoliths","tag releases","tac recaptures",
"initial curve"), col=c(1,4,3,1), pch=c(1,1,1,NA), lty=c(0,0,0,2),
lwd=c(1.2,1.2,1.2,1), bty="n", inset=0.02, y.intersp=1.25)
# Prepare parameters and data
init <- list(log_L1=log(25), log_L2=log(75), b=3,
log_sigma_min=log(3), log_sigma_max=log(3),
log_age=log(tags_skj$lenRel/60))
dat <- list(Aoto=otoliths_skj$age, Loto=otoliths_skj$len,
Lrel=tags_skj$lenRel, Lrec=tags_skj$lenRec,
liberty=tags_skj$liberty, t1=0, t2=4)
schnute3_objfun(init, dat)
# Fit model
model <- schnute3(init, dat)
fit <- nlminb(model$par, model$fn, model$gr,
control=list(eval.max=1e4, iter.max=1e4))
report <- model$report()
sdreport <- sdreport(model)
# Plot results
plot(len~age, otoliths_skj, xlim=c(0,4), ylim=c(0,100))
points(report$age, report$Lrel, col=4)
points(report$age+report$liberty, report$Lrec, col=3)
Lhat <- with(report, schnute3_curve(x, L1, L2, b, t1, t2))
lines(x, Lhat, lwd=2)
legend("bottomright", c("otoliths","tag releases","tac recaptures",
"model fit"), col=c(1,4,3,1), pch=c(1,1,1,NA), lty=c(0,0,0,1),
lwd=c(1.2,1.2,1.2,2), bty="n", inset=0.02, y.intersp=1.25)
# Model summary
report[c("L1", "L2", "b", "sigma_min", "sigma_max")]
fit[-1]
head(summary(sdreport), 5)
#############################################################################
# Model 3: Fit to skipjack otoliths only
init <- list(log_L1=log(25), log_L2=log(75), b=3,
log_sigma_min=log(3), log_sigma_max=log(3))
dat <- list(Aoto=otoliths_skj$age, Loto=otoliths_skj$len, t1=0, t2=4)
model <- schnute3(init, dat)
fit <- nlminb(model$par, model$fn, model$gr,
control=list(eval.max=1e4, iter.max=1e4))
model$report()[c("L1", "L2", "b", "sigma_min", "sigma_max")]
#############################################################################
# Model 4: Fit to skipjack otoliths only,
# but now estimating constant sigma instead of sigma varying by length
# We do this by omitting log_sigma_max
init <- list(log_L1=log(25), log_L2=log(75), b=3,
log_sigma_min=log(3))
dat <- list(Aoto=otoliths_skj$age, Loto=otoliths_skj$len, t1=0, t2=4)
model <- schnute3(init, dat)
fit <- nlminb(model$par, model$fn, model$gr,
control=list(eval.max=1e4, iter.max=1e4))
model$report()[c("L1", "L2", "b", "sigma_min")]
#############################################################################
# Model 5: Fit to skipjack tags only
init <- list(log_L1=log(25), log_L2=log(75), b=3,
log_sigma_min=log(3), log_sigma_max=log(3),
log_age=log(tags_skj$lenRel/60))
dat <- list(Lrel=tags_skj$lenRel, Lrec=tags_skj$lenRec,
liberty=tags_skj$liberty, t1=0, t2=4)
model <- schnute3(init, dat)
fit <- nlminb(model$par, model$fn, model$gr,
control=list(eval.max=1e4, iter.max=1e4))
model$report()[c("L1", "L2", "b", "sigma_min", "sigma_max")]
Tagging Data (Skipjack)
Description
Simulated tagging data, loosely based on a skipjack tuna dataset analyzed by Macdonald et al. (2022).
Usage
tags_skj
Format
Data frame containing three columns:
lenRel | length at release (cm) |
lenRec | length at recapture (cm) |
liberty | time at liberty (years) |
Details
The simulation code that was used to produce this dataset is included in the package:
file.show(system.file(package="fishgrowth", "sim/simulate.R"))
Source
Macdonald, J., Day, J., Magnusson, A., Maunder, M., Aoki, Y., Matsubara, N., Tsuda, Y., McKechnie, S., Teears, T., Leroy, B., Castillo-Jordán, C., Hampton, J., and Hamer, P. (2022). Review and new analyses of skipjack growth in the Western and Central Pacific Ocean. Western and Central Pacific Fisheries Commission Report WCPFC-SC18-2022/SA-IP-06. https://meetings.wcpfc.int/node/16254.
See Also
gcm
, gompertz
, gompertzo
,
richards
, richardso
, schnute3
,
vonbert
, and vonberto
are alternative growth
models.
otoliths_had
, otoliths_skj
, and tags_skj
are example datasets.
fishgrowth-package
gives an overview of the package.
Examples
head(tags_skj)
Von Bertalanffy Growth Model
Description
Fit a von Bertalanffy growth model to otoliths and/or tags, using the Schnute-Fournier parametrization.
Usage
vonbert(par, data, silent = TRUE, ...)
vonbert_curve(t, L1, L2, k, t1, t2)
vonbert_objfun(par, data)
Arguments
par |
a parameter list. |
data |
a data list. |
silent |
passed to |
... |
passed to |
t |
age (vector). |
L1 |
predicted length at age |
L2 |
predicted length at age |
k |
growth coefficient. |
t1 |
age where predicted length is |
t2 |
age where predicted length is |
Details
The main function vonbert
creates a model object, ready for parameter
estimation. The auxiliary functions vonbert_curve
and
vonbert_objfun
are called by the main function to calculate the
regression curve and objective function value. The user can also call the
auxiliary functions directly for plotting and model exploration.
The par
list contains the following elements:
-
log_L1
, predicted length at aget1
-
log_L2
, predicted length at aget2
-
log_k
, growth coefficient -
log_sigma_min
, growth variability at the shortest observed length in the data -
log_sigma_max
(*), growth variability at the longest observed length in the data -
log_age
(*), age at release of tagged individuals (vector)
*: The parameter log_sigma_max
can be omitted to estimate growth
variability that does not vary with length. The parameter vector
log_age
can be omitted to fit to otoliths only.
The data
list contains the following elements:
-
Aoto
(*), age from otoliths (vector) -
Loto
(*), length from otoliths (vector) -
Lrel
(*), length at release of tagged individuals (vector) -
Lrec
(*), length at recapture of tagged individuals (vector) -
liberty
(*), time at liberty of tagged individuals in years (vector) -
t1
, age where predicted length isL1
-
t2
, age where predicted length isL2
*: The data vectors Aoto
and Loto
can be omitted to fit to
tagging data only. The data vectors Lrel
, Lrec
, and
liberty
can be omitted to fit to otoliths only.
Value
The vonbert
function returns a TMB model object, produced by
MakeADFun
.
The vonbert_curve
function returns a numeric vector of predicted
length at age.
The vonbert_objfun
function returns the negative log-likelihood as a
single number, describing the goodness of fit of par
to the
data
.
Note
The Schnute-Fournier parametrization used in vonbert
reduces parameter
correlation and improves convergence reliability compared to the traditional
parametrization used in vonberto
. Therefore, the vonbert
parametrization can be recommended for general usage, as both
parametrizations produce the same growth curve. However, there can be some
use cases where the traditional parametrization (Linf
, k
,
t0
) is preferred over the Schnute-Fournier parametrization (L1
,
L2
, k
).
The von Bertalanffy (1938) growth model, as parametrized by Schnute and Fournier (1980), predicts length at age as:
\hat L_t ~=~ L_1 \;+\; (L_2-L_1)\,
\frac{1\,-\,e^{-k(t-t_1)}}{\,1\,-\,e^{-k(t_2-t_1)}\,}
The variability of length at age increases linearly with length,
\sigma_L ~=~ \alpha \,+\, \beta \hat L
where the slope is \beta=(\sigma_{\max}-\sigma_{\min}) /
(L_{\max}-L_{\min})
, the
intercept is \alpha=\sigma_{\min} - \beta L_{\min}
, and L_{\min}
and L_{\max}
are the
shortest and longest observed lengths in the data. Alternatively, growth
variability can be modelled as a constant
\sigma_L=\sigma_{\min}
that does not vary with
length, by omitting log_sigma_max
from the parameter list (see above).
The negative log-likelihood is calculated by comparing the observed and predicted lengths:
nll_Loto <- -dnorm(Loto, Loto_hat, sigma_Loto, TRUE) nll_Lrel <- -dnorm(Lrel, Lrel_hat, sigma_Lrel, TRUE) nll_Lrec <- -dnorm(Lrec, Lrec_hat, sigma_Lrec, TRUE) nll <- sum(nll_Loto) + sum(nll_Lrel) + sum(nll_Lrec)
References
von Bertalanffy, L. (1938). A quantitative theory of organic growth. Human Biology, 10, 181-213. https://www.jstor.org/stable/41447359.
Schnute, J. and Fournier, D. (1980). A new approach to length-frequency analysis: Growth structure. Canadian Journal of Fisheries and Aquatic Science, 37, 1337-1351. doi:10.1139/f80-172.
The fishgrowth-package
help page includes references describing
the parameter estimation method.
See Also
gcm
, gompertz
, gompertzo
,
richards
, richardso
, schnute3
,
vonbert
, and vonberto
are alternative growth models.
pred_band
calculates a prediction band for a fitted growth
model.
otoliths_had
, otoliths_skj
, and
tags_skj
are example datasets.
fishgrowth-package
gives an overview of the package.
Examples
# Model 1: Fit to haddock otoliths
# Explore initial parameter values
plot(len~age, otoliths_had, xlim=c(0,18), ylim=c(0,105), pch=16,
col="#0080a010")
x <- seq(1, 18, 0.1)
lines(x, vonbert_curve(x, L1=18, L2=67, k=0.1, t1=1, t2=10), lty=3)
# Prepare parameters and data
init <- list(log_L1=log(18), log_L2=log(67), log_k=log(0.1),
log_sigma_min=log(3), log_sigma_max=log(3))
dat <- list(Aoto=otoliths_had$age, Loto=otoliths_had$len, t1=1, t2=10)
vonbert_objfun(init, dat)
# Fit model
model <- vonbert(init, dat)
fit <- nlminb(model$par, model$fn, model$gr,
control=list(eval.max=1e4, iter.max=1e4))
report <- model$report()
sdreport <- sdreport(model)
# Plot results
Lhat <- with(report, vonbert_curve(x, L1, L2, k, t1, t2))
lines(x, Lhat, lwd=2, col=2)
legend("bottomright", c("initial curve","model fit"), col=c(1,2), lty=c(3,1),
lwd=c(1,2), bty="n", inset=0.02, y.intersp=1.25)
# Model summary
report[c("L1", "L2", "k", "sigma_min", "sigma_max")]
fit[-1]
summary(sdreport)
# Plot 95% prediction band
band <- pred_band(x, model)
areaplot::confplot(cbind(lower,upper)~age, band, xlim=c(0,18), ylim=c(0,100),
ylab="len", col="mistyrose")
points(len~age, otoliths_had, xlim=c(0,18), ylim=c(0,100),
pch=16, col="#0080a010")
lines(x, Lhat, lwd=2, col=2)
lines(lower~age, band, lty=1, lwd=0.5, col=2)
lines(upper~age, band, lty=1, lwd=0.5, col=2)
#############################################################################
# Model 2: Fit to skipjack otoliths and tags
# Explore initial parameter values
plot(len~age, otoliths_skj, xlim=c(0,4), ylim=c(0,100))
x <- seq(0, 4, 0.1)
points(lenRel~I(lenRel/60), tags_skj, col=4)
points(lenRec~I(lenRel/60+liberty), tags_skj, col=3)
lines(x, vonbert_curve(x, L1=25, L2=75, k=0.8, t1=0, t2=4), lty=2)
legend("bottomright", c("otoliths","tag releases","tac recaptures",
"initial curve"), col=c(1,4,3,1), pch=c(1,1,1,NA), lty=c(0,0,0,2),
lwd=c(1.2,1.2,1.2,1), bty="n", inset=0.02, y.intersp=1.25)
# Prepare parameters and data
init <- list(log_L1=log(25), log_L2=log(75), log_k=log(0.8),
log_sigma_min=log(3), log_sigma_max=log(3),
log_age=log(tags_skj$lenRel/60))
dat <- list(Aoto=otoliths_skj$age, Loto=otoliths_skj$len,
Lrel=tags_skj$lenRel, Lrec=tags_skj$lenRec,
liberty=tags_skj$liberty, t1=0, t2=4)
vonbert_objfun(init, dat)
# Fit model
model <- vonbert(init, dat)
fit <- nlminb(model$par, model$fn, model$gr,
control=list(eval.max=1e4, iter.max=1e4))
report <- model$report()
sdreport <- sdreport(model)
# Plot results
plot(len~age, otoliths_skj, xlim=c(0,4), ylim=c(0,100))
points(report$age, report$Lrel, col=4)
points(report$age+report$liberty, report$Lrec, col=3)
Lhat <- with(report, vonbert_curve(x, L1, L2, k, t1, t2))
lines(x, Lhat, lwd=2)
legend("bottomright", c("otoliths","tag releases","tac recaptures",
"model fit"), col=c(1,4,3,1), pch=c(1,1,1,NA), lty=c(0,0,0,1),
lwd=c(1.2,1.2,1.2,2), bty="n", inset=0.02, y.intersp=1.25)
# Model summary
report[c("L1", "L2", "k", "sigma_min", "sigma_max")]
fit[-1]
head(summary(sdreport), 5)
#############################################################################
# Model 3: Fit to skipjack otoliths only
init <- list(log_L1=log(25), log_L2=log(75), log_k=log(0.8),
log_sigma_min=log(3), log_sigma_max=log(3))
dat <- list(Aoto=otoliths_skj$age, Loto=otoliths_skj$len, t1=0, t2=4)
model <- vonbert(init, dat)
fit <- nlminb(model$par, model$fn, model$gr,
control=list(eval.max=1e4, iter.max=1e4))
model$report()[c("L1", "L2", "k", "sigma_min", "sigma_max")]
#############################################################################
# Model 4: Fit to skipjack otoliths only,
# but now estimating constant sigma instead of sigma varying by length
# We do this by omitting log_sigma_max
init <- list(log_L1=log(25), log_L2=log(75), log_k=log(0.8),
log_sigma_min=log(3))
dat <- list(Aoto=otoliths_skj$age, Loto=otoliths_skj$len, t1=0, t2=4)
model <- vonbert(init, dat)
fit <- nlminb(model$par, model$fn, model$gr,
control=list(eval.max=1e4, iter.max=1e4))
model$report()[c("L1", "L2", "k", "sigma_min")]
#############################################################################
# Model 5: Fit to skipjack tags only
init <- list(log_L1=log(25), log_L2=log(75), log_k=log(0.8),
log_sigma_min=log(3), log_sigma_max=log(3),
log_age=log(tags_skj$lenRel/60))
dat <- list(Lrel=tags_skj$lenRel, Lrec=tags_skj$lenRec,
liberty=tags_skj$liberty, t1=0, t2=4)
model <- vonbert(init, dat)
fit <- nlminb(model$par, model$fn, model$gr,
control=list(eval.max=1e4, iter.max=1e4))
model$report()[c("L1", "L2", "k", "sigma_min", "sigma_max")]
Von Bertalanffy Growth Model (Old Style)
Description
Fit a von Bertalanffy growth model to otoliths and/or tags, using a traditional parametrization.
Usage
vonberto(par, data, silent = TRUE, ...)
vonberto_curve(t, Linf, k, t0)
vonberto_objfun(par, data)
Arguments
par |
a parameter list. |
data |
a data list. |
silent |
passed to |
... |
passed to |
t |
age (vector). |
Linf |
asymptotic maximum length. |
k |
growth coefficient. |
t0 |
age where the predicted length is zero, the x-intercept. |
Details
The main function vonberto
creates a model object, ready for parameter
estimation. The auxiliary functions vonberto_curve
and
vonberto_objfun
are called by the main function to calculate the
regression curve and objective function value. The user can also call the
auxiliary functions directly for plotting and model exploration.
The par
list contains the following elements:
-
log_Linf
, asymptotic maximum length -
log_k
, growth coefficient -
to
, age where the predicted length is zero, the x-intercept -
log_sigma_min
, growth variability at the shortest observed length in the data -
log_sigma_max
(*), growth variability at the longest observed length in the data -
log_age
(*), age at release of tagged individuals (vector)
*: The parameter log_sigma_max
can be omitted to estimate growth
variability that does not vary with length. The parameter vector
log_age
can be omitted to fit to otoliths only.
The data
list contains the following elements:
-
Aoto
(*), age from otoliths (vector) -
Loto
(*), length from otoliths (vector) -
Lrel
(*), length at release of tagged individuals (vector) -
Lrec
(*), length at recapture of tagged individuals (vector) -
liberty
(*), time at liberty of tagged individuals in years (vector)
*: The data vectors Aoto
and Loto
can be omitted to fit to
tagging data only. The data vectors Lrel
, Lrec
, and
liberty
can be omitted to fit to otoliths only.
Value
The vonberto
function returns a TMB model object, produced by
MakeADFun
.
The vonberto_curve
function returns a numeric vector of predicted
length at age.
The vonberto_objfun
function returns the negative log-likelihood as a
single number, describing the goodness of fit of par
to the
data
.
Note
The Schnute-Fournier parametrization used in vonbert
reduces
parameter correlation and improves convergence reliability compared to the
traditional parametrization used in vonberto
. Therefore, the
vonbert
parametrization can be recommended for general usage, as both
parametrizations produce the same growth curve. However, there can be some
use cases where the traditional parametrization (Linf
, k
,
t0
) is preferred over the Schnute-Fournier parametrization (L1
,
L2
, k
).
The von Bertalanffy (1938) growth model, as parametrized by Beverton and Holt (1957), predicts length at age as:
\hat L_t ~=~ L_\infty\left(1\,-\,e^{-k(t-t_0)}\right)
The variability of length at age increases linearly with length,
\sigma_L ~=~ \alpha \,+\, \beta \hat L
where the slope is \beta=(\sigma_{\max}-\sigma_{\min}) /
(L_{\max}-L_{\min})
, the
intercept is \alpha=\sigma_{\min} - \beta L_{\min}
, and L_{\min}
and L_{\max}
are the
shortest and longest observed lengths in the data. Alternatively, growth
variability can be modelled as a constant
\sigma_L=\sigma_{\min}
that does not vary with
length, by omitting log_sigma_max
from the parameter list (see above).
The negative log-likelihood is calculated by comparing the observed and predicted lengths:
nll_Loto <- -dnorm(Loto, Loto_hat, sigma_Loto, TRUE) nll_Lrel <- -dnorm(Lrel, Lrel_hat, sigma_Lrel, TRUE) nll_Lrec <- -dnorm(Lrec, Lrec_hat, sigma_Lrec, TRUE) nll <- sum(nll_Loto) + sum(nll_Lrel) + sum(nll_Lrec)
References
von Bertalanffy, L. (1938). A quantitative theory of organic growth. Human Biology, 10, 181-213. https://www.jstor.org/stable/41447359.
Beverton, R.J.H. and Holt, S.J. (1957). On the dynamics of exploited fish populations. London: Her Majesty's Stationery Office.
The fishgrowth-package
help page includes references describing
the parameter estimation method.
See Also
gcm
, gompertz
, gompertzo
,
richards
, richards
, schnute3
,
vonbert
, and vonberto
are alternative growth models.
pred_band
calculates a prediction band for a fitted growth
model.
otoliths_had
, otoliths_skj
, and
tags_skj
are example datasets.
fishgrowth-package
gives an overview of the package.
Examples
# Model 1: Fit to haddock otoliths
# Explore initial parameter values
plot(len~age, otoliths_had, xlim=c(0,18), ylim=c(0,105), pch=16,
col="#0080a010")
x <- seq(1, 18, 0.1)
lines(x, vonberto_curve(x, Linf=100, k=0.1, t0=-1), lty=3)
# Prepare parameters and data
init <- list(log_Linf=log(100), log_k=log(0.1), t0=-1,
log_sigma_min=log(3), log_sigma_max=log(3))
dat <- list(Aoto=otoliths_had$age, Loto=otoliths_had$len)
vonberto_objfun(init, dat)
# Fit model
model <- vonberto(init, dat)
fit <- nlminb(model$par, model$fn, model$gr,
control=list(eval.max=1e4, iter.max=1e4))
report <- model$report()
sdreport <- sdreport(model)
# Plot results
Lhat <- with(report, vonberto_curve(x, Linf, k, t0))
lines(x, Lhat, lwd=2, col=2)
legend("bottomright", c("initial curve","model fit"), col=c(1,2), lty=c(3,1),
lwd=c(1,2), bty="n", inset=0.02, y.intersp=1.25)
# Model summary
report[c("Linf", "k", "t0", "sigma_min", "sigma_max")]
fit[-1]
summary(sdreport)
# Plot 95% prediction band
band <- pred_band(x, model)
areaplot::confplot(cbind(lower,upper)~age, band, xlim=c(0,18), ylim=c(0,100),
ylab="len", col="mistyrose")
points(len~age, otoliths_had, xlim=c(0,18), ylim=c(0,100),
pch=16, col="#0080a010")
lines(x, Lhat, lwd=2, col=2)
lines(lower~age, band, lty=1, lwd=0.5, col=2)
lines(upper~age, band, lty=1, lwd=0.5, col=2)
#############################################################################
# Model 2: Fit to skipjack otoliths and tags
# Explore initial parameter values
plot(len~age, otoliths_skj, xlim=c(0,4), ylim=c(0,100))
x <- seq(0, 4, 0.1)
points(lenRel~I(lenRel/60), tags_skj, col=4)
points(lenRec~I(lenRel/60+liberty), tags_skj, col=3)
lines(x, vonberto_curve(x, Linf=80, k=0.8, t0=-0.5), lty=2)
legend("bottomright", c("otoliths","tag releases","tac recaptures",
"initial curve"), col=c(1,4,3,1), pch=c(1,1,1,NA), lty=c(0,0,0,2),
lwd=c(1.2,1.2,1.2,1), bty="n", inset=0.02, y.intersp=1.25)
# Prepare parameters and data
init <- list(log_Linf=log(80), log_k=log(0.8), t0=-0.5,
log_sigma_min=log(3), log_sigma_max=log(3),
log_age=log(tags_skj$lenRel/60))
dat <- list(Aoto=otoliths_skj$age, Loto=otoliths_skj$len,
Lrel=tags_skj$lenRel, Lrec=tags_skj$lenRec,
liberty=tags_skj$liberty)
vonberto_objfun(init, dat)
# Fit model
model <- vonberto(init, dat)
fit <- nlminb(model$par, model$fn, model$gr,
control=list(eval.max=1e4, iter.max=1e4))
report <- model$report()
sdreport <- sdreport(model)
# Plot results
plot(len~age, otoliths_skj, xlim=c(0,4), ylim=c(0,100))
points(report$age, report$Lrel, col=4)
points(report$age+report$liberty, report$Lrec, col=3)
Lhat <- with(report, vonberto_curve(x, Linf, k, t0))
lines(x, Lhat, lwd=2)
legend("bottomright", c("otoliths","tag releases","tac recaptures",
"model fit"), col=c(1,4,3,1), pch=c(1,1,1,NA), lty=c(0,0,0,1),
lwd=c(1.2,1.2,1.2,2), bty="n", inset=0.02, y.intersp=1.25)
# Model summary
report[c("Linf", "k", "t0", "sigma_min", "sigma_max")]
fit[-1]
head(summary(sdreport), 5)
#############################################################################
# Model 3: Fit to skipjack otoliths only
init <- list(log_Linf=log(80), log_k=log(0.8), t0=-0.5,
log_sigma_min=log(3), log_sigma_max=log(3))
dat <- list(Aoto=otoliths_skj$age, Loto=otoliths_skj$len)
model <- vonberto(init, dat)
fit <- nlminb(model$par, model$fn, model$gr,
control=list(eval.max=1e4, iter.max=1e4))
model$report()[c("Linf", "k", "t0", "sigma_min", "sigma_max")]
#############################################################################
# Model 4: Fit to skipjack otoliths only,
# but now estimating constant sigma instead of sigma varying by length
# We do this by omitting log_sigma_max
init <- list(log_Linf=log(80), log_k=log(0.8), t0=-0.5,
log_sigma_min=log(3))
dat <- list(Aoto=otoliths_skj$age, Loto=otoliths_skj$len)
model <- vonberto(init, dat)
fit <- nlminb(model$par, model$fn, model$gr,
control=list(eval.max=1e4, iter.max=1e4))
model$report()[c("Linf", "k", "t0", "sigma_min")]
#############################################################################
# Model 5: Fit to skipjack tags only
init <- list(log_Linf=log(80), log_k=log(0.8), t0=-0.5,
log_sigma_min=log(3), log_sigma_max=log(3),
log_age=log(tags_skj$lenRel/60))
dat <- list(Lrel=tags_skj$lenRel, Lrec=tags_skj$lenRec,
liberty=tags_skj$liberty)
model <- vonberto(init, dat)
fit <- nlminb(model$par, model$fn, model$gr,
control=list(eval.max=1e4, iter.max=1e4))
model$report()[c("Linf", "k", "t0", "sigma_min", "sigma_max")]