Type: | Package |
Title: | Simulated Grouped Hyper Data Frame |
Version: | 0.2.0 |
Description: | An intuitive interface to simulate (1) superimposed (marked) point patterns with vectorized parameterization of random point pattern and distribution of marks; and (2) grouped hyper data frame based on population parameters and subject-specific random effects. |
RoxygenNote: | 7.3.3 |
Encoding: | UTF-8 |
License: | GPL-2 |
Language: | en-US |
URL: | https://github.com/tingtingzhan/groupedHyperframe.random |
Depends: | R (≥ 4.5), groupedHyperframe (≥ 0.3.0) |
Imports: | cli, MASS, spatstat.geom, spatstat.random |
Suggests: | knitr, quarto, rmarkdown, magrittr |
VignetteBuilder: | quarto |
NeedsCompilation: | no |
Packaged: | 2025-10-14 01:36:27 UTC; tingtingzhan |
Author: | Tingting Zhan |
Maintainer: | Tingting Zhan <tingtingzhan@gmail.com> |
Repository: | CRAN |
Date/Publication: | 2025-10-14 10:40:07 UTC |
groupedHyperframe.random: Simulated Grouped Hyper Data Frame
Description
An intuitive interface to simulate (1) superimposed (marked) point patterns with vectorized parameterization of random point pattern and distribution of marks; and (2) grouped hyper data frame based on population parameters and subject-specific random effects.
Note
Help files of individual functions are intentionally suppressed in the pdf
manual.
Users are encouraged to get started with
vignette('intro', package = 'groupedHyperframe.random')
Author(s)
Maintainer: Tingting Zhan tingtingzhan@gmail.com (ORCID)
Authors:
Inna Chervoneva Inna.Chervoneva@jefferson.edu (ORCID)
See Also
Useful links:
Simulate (Marked) Point Pattern
Description
To generate ppp.object(s), with none or one or multiple marks.
Usage
.rppp(
...,
dots,
win = square(),
n = 1L,
element1 = TRUE,
envir = parent.frame()
)
Arguments
... |
see vignettes |
dots |
(for internal use) list of one or more named lists.
The first list specifies the parameters to
generate the |
win |
|
n |
integer scalar,
number of ppp.objects to generate.
Default |
element1 |
logical scalar, whether to return
a ppp.object,
instead of a length- |
envir |
environment, in which to evaluate the |
Value
Function .rppp()
returns a ppp.object if (n==1L)&element1
,
otherwise returns a length-n
solist
(which also has class 'ppplist'
).
The returned ppp.object(s) contain only
x
- and y
-coords,
if only one call is present in the ...
dyn-dots argument.
Otherwise, they contain one or more marks
according to the rest of the call(s) in the ...
argument.
Note
The name rppp()
is too aggressive, which might be claimed in future by package spatstat.random.
Therefore we name this function .rppp()
as if it is hidden (see parameter all.names
of function ls).
Simulate groupedHyperframe
Description
Simulate groupedHyperframe
Usage
grouped_rppp(..., n, win = square(), envir = parent.frame())
Arguments
... |
see examples, for now |
n |
integer vector, numbers of ppp.objects to generate for each set of parameters |
win |
|
envir |
Value
Function grouped_rppp()
returns a groupedHyperframe.
Expand Types of Sigma
in mvrnorm
Description
To accommodate more types of Sigma
in function mvrnorm.
Usage
mvrnorm2(n, mu, sd, Sigma = diag(x = sd^2, nrow = d, ncol = d), ...)
Arguments
n |
integer scalar, sample size |
mu |
|
sd |
|
Sigma |
|
... |
additional parameter of function mvrnorm |
Details
Argument of parameter sd
could be
Then a diagonal matrix with vector sd^2
on the diagonal elements
is used as the variance-covariance
matrix \Sigma
Value
Function mvrnorm2()
returns a double matrix.
Note
Workhorse function mvrnorm from package MASS is faster than ?mvtnorm::rmvnorm
.
Generate Random factor
Description
..
Usage
rfactor(n, prob, levels = as.character(seq_len(nprob)))
Arguments
n |
integer scalar |
prob |
numeric vector, see function sample.int |
levels |
Details
Function rfactor()
is a wrapper of sample.int.
Value
Function rfactor()
returns a factor.
Note
Function rmultinom is not what we need!
Examples
rfactor(n = 100L, prob = c(4,2,3))
rfactor(n = 100L, prob = c(4,2,3), levels = letters[1:3])