
Package ‘kergp’
July 22, 2025

Type Package

Title Gaussian Process Laboratory

Version 0.5.8

Date 2024-11-19

Description Gaussian process regression with an emphasis on kernels.
Quantitative and qualitative inputs are accepted. Some pre-defined
kernels are available, such as radial or tensor-sum for
quantitative inputs, and compound symmetry, low rank, group kernel
for qualitative inputs. The user can define new kernels and
composite kernels through a formula mechanism. Useful methods
include parameter estimation by maximum likelihood, simulation,
prediction and leave-one-out validation.

License GPL-3

Depends Rcpp (>= 0.10.5), methods, testthat, nloptr, lattice

Suggests DiceKriging, DiceDesign, inline, foreach, knitr, ggplot2,
reshape2, corrplot

Imports MASS, numDeriv, stats4, doParallel, doFuture, utils

LinkingTo Rcpp

RoxygenNote 6.0.1

Collate 'CovFormulas.R' 'allGenerics.R' 'checkGrad.R' 'covComp.R'
'covMan.R' 'covQual.R' 'q1CompSymm.R' 'q1Symm.R' 'q1LowRank.R'
'covQualNested.R' 'covQualOrd.R' 'covRadial.R' 'covTS.R'
'covTP.R' 'covANOVA.R' 'covZZAll.R' 'gp.R' 'kFuns.R'
'kernelNorm.R' 'kernels1d_Call.R' 'logLikFuns.R' 'methodGLS.R'
'methodMLE.R' 'miscUtils.R' 'prinKrige.R' 'q1Diag.R'
'simulate_gp.R' 'warpFuns.R'

NeedsCompilation yes

Author Yves Deville [aut] (ORCID: <https://orcid.org/0000-0002-1233-488X>),
David Ginsbourger [aut] (ORCID:

<https://orcid.org/0000-0003-2724-2678>),
Olivier Roustant [aut, cre],
Nicolas Durrande [ctb]

1

https://orcid.org/0000-0002-1233-488X
https://orcid.org/0000-0003-2724-2678

2 Contents

Maintainer Olivier Roustant <roustant@insa-toulouse.fr>

Repository CRAN

Date/Publication 2024-11-19 14:40:03 UTC

Contents
kergp-package . 3
as.list, covTP-method . 7
checkGrad . 9
checkPar . 10
checkX . 11
checkX-methods . 12
coef-methods . 13
coef<- . 14
coefLower . 14
contr.helmod . 15
corLevCompSymm . 15
corLevDiag . 17
corLevLowRank . 18
corLevSymm . 20
covAll-class . 22
covANOVA . 23
covANOVA-class . 25
covComp . 27
covComp-class . 29
covMan . 30
covMan-class . 33
covMat . 35
covMat-methods . 36
covOrd . 37
covOrd-class . 39
covQual-class . 41
covQualNested . 44
covQualNested-class . 46
covRadial . 48
covRadial-class . 50
covTP . 52
covTP-class . 54
covTS . 56
covTS-class . 58
gls . 60
gls-methods . 60
gp . 62
hasGrad . 68
influence.gp . 69
inputNames . 70
k1Exp . 71

kergp-package 3

k1Matern3_2 . 72
kernelName . 74
kGauss . 74
kMatern . 75
mle . 76
mle-methods . 76
npar . 82
npar-methods . 83
optimMethods . 83
parMap . 84
parMap-methods . 85
parNamesSymm . 86
parseCovFormula . 86
plot . 88
plot.gp . 89
plot.simulate.gp . 90
predict.gp . 91
prinKrige . 93
q1CompSymm . 94
q1Diag . 96
q1LowRank . 97
q1Symm . 98
scores . 99
shapeSlot . 100
simulate, covAll-method . 101
simulate.gp . 102
simulPar . 105
simulPar,covAll-method . 106
symIndices . 106
translude . 107
varVec . 108
varVec-methods . 108
warpNorm . 110

Index 111

kergp-package Gaussian Process Laboratory

Description

Laboratory Package for Gaussian Process interpolation, regression and simulation, with an empha-
sis on user-defined covariance kernels.

4 kergp-package

Details

Package: kergp
Type: Package
Title: Gaussian Process Laboratory
Version: 0.5.8
Date: 2024-11-19
Authors@R: c(person(given = "Yves", family = "Deville", role = "aut", email = "deville.yves@alpestat.com", comment = c(ORCID = "0000-0002-1233-488X")), person(given = "David", family = "Ginsbourger", role = "aut", email = "david.ginsbourger@stat.unibe.ch", comment = c(ORCID = "0000-0003-2724-2678")), person(given = "Olivier", family = "Roustant", role = c("aut", "cre"), email = "roustant@insa-toulouse.fr"), person(given = "Nicolas", family = "Durrande", role = "ctb"))
Description: Gaussian process regression with an emphasis on kernels. Quantitative and qualitative inputs are accepted. Some pre-defined kernels are available, such as radial or tensor-sum for quantitative inputs, and compound symmetry, low rank, group kernel for qualitative inputs. The user can define new kernels and composite kernels through a formula mechanism. Useful methods include parameter estimation by maximum likelihood, simulation, prediction and leave-one-out validation.
License: GPL-3
Depends: Rcpp (>= 0.10.5), methods, testthat, nloptr, lattice
Suggests: DiceKriging, DiceDesign, inline, foreach, knitr, ggplot2, reshape2, corrplot
Imports: MASS, numDeriv, stats4, doParallel, doFuture, utils
LinkingTo: Rcpp
RoxygenNote: 6.0.1
Collate: ’CovFormulas.R’ ’allGenerics.R’ ’checkGrad.R’ ’covComp.R’ ’covMan.R’ ’covQual.R’ ’q1CompSymm.R’ ’q1Symm.R’ ’q1LowRank.R’ ’covQualNested.R’ ’covQualOrd.R’ ’covRadial.R’ ’covTS.R’ ’covTP.R’ ’covANOVA.R’ ’covZZAll.R’ ’gp.R’ ’kFuns.R’ ’kernelNorm.R’ ’kernels1d_Call.R’ ’logLikFuns.R’ ’methodGLS.R’ ’methodMLE.R’ ’miscUtils.R’ ’prinKrige.R’ ’q1Diag.R’ ’simulate_gp.R’ ’warpFuns.R’
Author: Yves Deville [aut] (<https://orcid.org/0000-0002-1233-488X>), David Ginsbourger [aut] (<https://orcid.org/0000-0003-2724-2678>), Olivier Roustant [aut, cre], Nicolas Durrande [ctb]
Maintainer: Olivier Roustant <roustant@insa-toulouse.fr>

Warning

As a lab, kergp may strongly evolve in its future life. Users interested in stable software for the
Analysis of Computer Experiments are encouraged to use other packages such as DiceKriging
instead.

Note

This package was developed within the frame of the ReDice Consortium, gathering industrial part-
ners (CEA, EDF, IFPEN, IRSN, Renault) and academic partners (Mines Saint-Étienne, INRIA, and
the University of Bern) around advanced methods for Computer Experiments.

Author(s)

Yves Deville (Alpestat), David Ginsbourger (University of Bern), Olivier Roustant (INSA Toulouse),
with contributions from Nicolas Durrande (Mines Saint-Étienne).

Maintainer: Olivier Roustant, <roustant@insa-toulouse.fr>

References

Nicolas Durrande, David Ginsbourger, Olivier Roustant (2012). "Additive covariance kernels for
high-dimensional gaussian process modeling". Annales de la Faculté des Sciences de Toulouse, 21
(3): 481-499, doi:10.5802/afst.1342.

Nicolas Durrande, David Ginsbourger, Olivier Roustant, Laurent Carraro (2013). "ANOVA kernels
and RKHS of zero mean functions for model-based sensitivity analysis". Journal of Multivariate
Analysis, 115, 57-67, doi:10.1016/j.jmva.2012.08.016.

https://doi.org/10.5802/afst.1342
https://doi.org/10.1016/j.jmva.2012.08.016

kergp-package 5

David Ginsbourger, Xavier Bay, Olivier Roustant, Laurent Carraro (2012). "Argumentwise invari-
ant kernels for the approximation of invariant functions". Annales de la Faculté des Sciences de
Toulouse, 21 (3): 501-527, doi:10.5802/afst.1343.

David Ginsbourger, Nicolas Durrande, Olivier Roustant (2013). "Kernels and designs for modelling
invariant functions: From group invariance to additivity" mODa 10 - Advances in Model-Oriented
Design and Analysis. Contributions to Statistics, 107-115, doi:10.1007/9783319002187_13.

Olivier Roustant, David Ginsbourger, Yves Deville (2012). "DiceKriging, DiceOptim: Two R
Packages for the Analysis of Computer Experiments by Kriging-Based Metamodeling and Opti-
mization". Journal of Statistical Software, 51(1), 1-55, doi:10.18637/jss.v051.i01.

Examples

--
Gaussian process modelling of function with invariance properties,
by using an argumentwise invariant kernel
--

-- define manually an argumentwise invariant kernel --

kernFun <- function(x1, x2, par) {
h <- (abs(x1) - abs(x2)) / par[1]
S <- sum(h^2)
d2 <- exp(-S)
K <- par[2] * d2
d1 <- 2 * K * S / par[1]
attr(K, "gradient") <- c(theta = d1, sigma2 = d2)
return(K)

}

quicker: with Rcpp; see also an example with package inline
in "gp" doc. file. Note that the Rcpp "sugar" fucntions are
vectorized, so no for loops is required.

Not run:

cppFunction('
NumericVector cppKernFun(NumericVector x1, NumericVector x2,

NumericVector par){
int n1 = x1.size();
double S, d1, d2;
NumericVector K(1), h(n1);
h = (abs(x1) - abs(x2)) / par[0]; // sugar function "abs"
S = sum(h * h); // sugar "*" and "sum"
d2 = exp(-S);
K[0] = par[1] * d2;
d1 = 2 * K[0] * S / par[0];
K.attr("gradient") = NumericVector::create(Named("theta", d1),

Named("sigma2", d2));
return K;

https://doi.org/10.5802/afst.1343
https://doi.org/10.1007/978-3-319-00218-7_13
https://doi.org/10.18637/jss.v051.i01

6 kergp-package

}')

End(Not run)

Below: with the R-based code for the kernel namely 'kernFun'.
You can also replace 'kernFun' by 'cppKernFun' for speed.

covSymGauss <- covMan(kernel = kernFun,
hasGrad = TRUE,
label = "argumentwise invariant",
d = 2,
parLower = c(theta = 0.0, sigma2 = 0.0),
parUpper = c(theta = Inf, sigma2 = Inf),
parNames = c("theta", "sigma2"),
par = c(theta = 0.5, sigma2 = 2))

covSymGauss

-- simulate a path from the corresponding GP --

nGrid <- 24; n <- nGrid^2; d <- 2
xGrid <- seq(from = -1, to = 1, length.out = nGrid)
Xgrid <- expand.grid(x1 = xGrid, x2 = xGrid)

Kmat <- covMat(object = covSymGauss, X = Xgrid,
compGrad = FALSE, index = 1L)

library(MASS)
set.seed(1)
ygrid <- mvrnorm(mu = rep(0, n), Sigma = Kmat)

-- extract a design and the corr. response from the grid --

nDesign <- 25
tab <- subset(cbind(Xgrid, ygrid), x1 > 0 & x2 > 0)
rowIndex <- seq(1, nrow(tab), length = nDesign)
X <- tab[rowIndex, 1:2]
y <- tab[rowIndex, 3]

opar <- par(mfrow = c(1, 3))
contour(x = xGrid, y = xGrid,

z = matrix(ygrid, nrow = nGrid, ncol = nGrid),
nlevels = 15)

abline(h = 0, v = 0, col = "SpringGreen3")
points(x2 ~ x1, data = X, type = "p", pch = 21,

col = "orangered", bg = "yellow", cex = 0.8)
title("GRF Simulation")

-- Fit the Gaussian process model (trend + covariance parameters) --

as.list, covTP-method 7

covSymGauss
symgp <- gp(formula = y ~ 1, data = data.frame(y, X),

inputs = names(X),
cov = covSymGauss,
parCovIni = c(0.1, 2),
varNoiseIni = 1.0e-8,
varNoiseLower = 0.9e-8, varNoiseUpper = 1.1e-8)

mind that the noise is not a symmetric kernel
so varNoiseUpper should be chosen as small as possible.

summary(symgp)

-- predict and compare --

predSymgp <- predict(object = symgp, newdata = Xgrid, type = "UK")

contour(x = xGrid, y = xGrid,
z = matrix(predSymgp$mean, nrow = nGrid, ncol = nGrid),
nlevels = 15)

abline(h = 0, v = 0, col = "SpringGreen3")
points(x2 ~ x1, data = X, type = "p", pch = 21,

col = "orangered", bg = "yellow", cex = 0.8)
title("Kriging mean")

contour(x = xGrid, y = xGrid,
z = matrix(predSymgp$sd, nrow = nGrid, ncol = nGrid),
nlevels = 15)

abline(h = 0, v = 0, col = "SpringGreen3")
points(x2 ~ x1, data = X, type = "p", pch = 21,

col = "orangered", bg = "yellow", cex = 0.8)
title("Kriging s.d.")

par(opar)

as.list, covTP-method Coerce a covTP Object into a List

Description

Coerce a covTP object representing a Tensor-Product covariance kernel on the d-dimensional Eu-
clidean space into a list containing d one-dimensional kernels.

Usage

S4 method for signature 'covTP'
as.list(x)

Arguments

x A covTP object representing a Tensor-Product covariance kernel.

8 as.list, covTP-method

Value

A list with length d or d + 1 where d is the "dimension" slot x@d of the object x. The first d
elements of the list are one-dimensional correlation kernel objects with class "covTP". When x is
a covariance kernel (as opposed to a correlation kernel), the list contains one more element which
gives the variance.

Caution

When x is not a correlation kernel the (d + 1)-th element of the returned list may be different in
future versions: it may be a constant covariance kernel.

See Also

covTP and covTP-class.

Examples

set.seed(123)
d <- 6
myCov1 <- covTP(d = d, cov = "corr")
coef(myCov1) <- as.vector(simulPar(myCov1, nsim = 1))
as.list(myCov1)

more examples and check the value of a 'covMat'
L <- list()
myCov <- list()

myCov[[1]] <- covTP(d = d, cov = "corr")
coef(myCov[[1]]) <- as.vector(simulPar(myCov[[1]], nsim = 1))
L[[1]] <- as.list(myCov[[1]])

myCov[[2]] <- covTP(k1Fun1 = k1Fun1PowExp, d = d, cov = "corr")
coef(myCov[[2]]) <- as.vector(simulPar(myCov[[2]], nsim = 1))
L[[2]] <- as.list(myCov[[2]])

myCov[[3]] <- covTP(k1Fun1 = k1Fun1PowExp, d = d, iso1 = 0L, cov = "corr")
coef(myCov[[3]]) <- as.vector(simulPar(myCov[[3]], nsim = 1))
L[[3]] <- as.list(myCov[[3]])

n <- 10
X <- matrix(runif(n * d), nrow = n,

dimnames = list(NULL, paste("x", 1:d, sep = "")))
for (iTest in 1:3) {

C <- covMat(L[[iTest]][[1]], X[, 1, drop = FALSE])
for (j in 2:d) {

C <- C * covMat(L[[iTest]][[j]], X[, j, drop = FALSE])
}
CTest <- covMat(myCov[[iTest]], X)
print(max(abs(abs(C - CTest))))

}

checkGrad 9

checkGrad Check the Gradient Provided in a covMan Object

Description

Check the gradient provided in a covMan object.

Usage

checkGrad(object, sym = TRUE,
x1 = NULL, n1 = 10,
x2 = NULL, n2 = NULL,
XLower = NULL, XUpper = NULL,
plot = TRUE)

Arguments

object A covMan object.

sym Logical. If TRUE, the check is done assuming that x2 is identical to x1, so the
provided values for x2 and n2 (if any) will be ignored.

x1 Matrix to be used as the first argument of the kernel.

n1 Number of rows for the matrix x1. Used only when x1 is not provided.

x2 Matrix to be used as the second argument of the kernel.

n2 Number of rows for the matrix x2. Used only when x2 is not provided.

XLower Vector of lower bounds to draw x1 and x2 when needed.

XUpper Vector of upper bounds to draw x1 and x2 when needed.

plot Logical. If TRUE, a plot is shown comparing the two arrays of gradients.

Details

Each of the two matrices x1 and x2 with n1 and n2 rows can be given or instead be drawn at random.
The matrix of kernel values with dimension c(n1, n2) is computed, together with its gradient with
dimension c(n1, n2, npar) where npar is the number of parameters of the kernel. A numerical
differentiation w.r.t. the kernel parameters is performed for the kernel value at x1 and x2, and
the result is compared to that provided by the kernel function (the function described in the slot
named "kernel" of object). Note that the value of the parameter vector is the value provided by
coef(object) and it can be changed by using the replacement method `coef<-` if needed.

Value

A list of results related to the Jacobians

test Max of the absolute difference between the gradient obtained by numeric differ-
entiation and the gradient provided by the kernel object.

10 checkPar

Jnum, J Jacobians (arrays) computed with numDeriv::jacobian and provided by the
kernel object.

x1, x2, K The matrices used for the check, and the matrix of kernel values with dimension
c(n1, n2). The element x2 can be NULL if the determination of the matrix x2
was not necessary.

Caution

For now the function only works when object has class "covMan".

Note

As a rule of thumb, a gradient coded without error gives a value of test less than 1e-4, and usually
the value is much smaller than that.

Author(s)

Yves Deville

checkPar Check Length and Names of a Vector of Values for Parameters or
Bounds

Description

Check length/names for a vector of values for parameters or bounds.

Usage

checkPar(value, parN, parNames, default)

Arguments

value Numeric vector of values.

parN Number of wanted values.

parNames character. Names of the wanted values.

default numeric. Default value.

Value

A numeric vector.

checkX 11

Examples

checkPar(value = c(1, 2), parN = 2L, parNames = c("theta", "sigma2"),
default = 1.0)

checkPar(value = NULL, parN = 2L, parNames = c("theta", "sigma2"),
default = 1.0)

checkPar(value = c("sigma2" = 100, "theta" = 1),
parN = 2L, parNames = c("theta", "sigma2"),
default = 1.0)

checkX Generic function: Check the Compatibility of a Design Matrix with a
Given Covariance Object

Description

Generic function to check the compatibility of a design matrix with a covariance object.

Usage

checkX(object, X, ...)

Arguments

object A covariance kernel object.

X A design matrix.

... Other arguments for methods.

Value

A matrix with columns taken from X and with column names identical to inputNames(object).

See Also

The inputNames method.

12 checkX-methods

checkX-methods Check the Compatibility of a Design with a Given Covariance Object

Description

Check the compatibility of a design matrix with a covariance object.

Usage

S4 method for signature 'covAll'
checkX(object, X, strict = FALSE, ...)

Arguments

object A covariance kernel object.

X A design matrix or data frame.

strict Logical. If TRUE, the character vectors colnames(X) and inputNames(object)
must be the same sets, and hence have the same length. If FALSE the vector
inputNames(object) must be a subset of colnames(X) which then can have
unused columns.

... Not used yet.

Details

The matrix X must have the number of columns expected from the covariance kernel object descrip-
tion, and it must have named columns conforming to the kernel input names as returned by the
inputNames method. If the two sets of names are identical but the names are in a different order,
the columns are permuted in order to be in the same order as the input names. If the names sets
differ, an error occurs.

Value

A matrix with columns names identical to the input names attached with the kernel object, i.e.
inputNames(object). The columns are copies of those found under the same names in X, but are
put in the order of inputNames(object). When an input name does not exist in colnames(X) an
error occurs.

See Also

The inputNames method.

coef-methods 13

coef-methods Extract Coefficients of a Covariance Kernel Object as Vector, List or
Matrix

Description

Extract some of or all the coefficients of a covariance kernel object as vector, list or matrix.

Usage

S4 method for signature 'covMan'
coef(object)

S4 method for signature 'covTS'
coef(object, type = "all", as = "vector")

Arguments

object An object representing a covariance kernel, the coefficient of which will be ex-
tracted.

type Character string or vector specifying which type(s) of coefficients in the struc-
ture will be extracted. Can be "all" (all coefficients are extracted) or any pa-
rameter name(s) of the corresponding kernel.

as Character string specifying the output structure to be used. The default is "vector",
leading to a numeric vector. Using "list" one gets a list of numeric vectors,
one by kernel parameter. Finally, using "matrix" one gets a matrix with one
row by input (or dimension) and one column by (selected) kernel parameter.

Value

A numeric vector of coefficients or a structure as specified by as containing the coefficients selected
by type.

See Also

The coef<- replacement method which takes a vector of replacement values.

Examples

d <- 3
myCov1 <- covTS(d = d, kernel = "k1Exp", dep = c(range = "input"),

value = c(range = 1.1))
myCov1
versatile 'coef' method
coef(myCov1)
coef(myCov1, as = "matrix")
coef(myCov1, as = "list")
coef(myCov1, as = "matrix", type = "range")

14 coefLower

coef(myCov1) <- c(0.2, 0.3, 0.4, 4, 16, 25)
coef(myCov1, as = "matrix")

coef<- Generic Function: Replacement of Coefficient Values

Description

Generic function for the replacement of coefficient values.

Usage

`coef<-`(object, ..., value)

Arguments

object Object having a numeric vector of coefficients, typically a covariance kernel
object.

... Other arguments for methods.

value The value of the coefficients to be set.

Value

The modified object.

coefLower Extract or Set Lower/Upper Bounds on Coefficients

Description

Extract or set lower/upper bounds on coefficients for covariance kernel objects.

Usage

coefLower(object, ...)
coefUpper(object, ...)

Arguments

object A covariance kernel object.

... Other arguments for methods.

Value

The lower or upper bounds on the covariance kernel parameters.

contr.helmod 15

contr.helmod Modified Helmert Contrast Matrix

Description

Modified Helmert contrast (or coding) matrix.

Usage

contr.helmod(n)

Arguments

n Integer.

Details

The returned matrix is a scaled version of contr.helmert(A).

Value

An orthogonal matrix with n rows and n - 1 columns. The columns form a basis of the subspace
orthogonal to a vector of n ones.

Examples

A <- contr.helmod(6)
crossprod(A)

corLevCompSymm Correlation Matrix for the Compound Symmetry Structure

Description

Compute the correlation matrix for a the compound symmetry structure.

Usage

corLevCompSymm(par, nlevels, levels, lowerSQRT = FALSE, compGrad = TRUE,
cov = FALSE, impl = c("C", "R"))

16 corLevCompSymm

Arguments

par Numeric vector of length 1 if cov is TRUE or with length 2 else. The first element
is the correlation coefficient and the second one (when it exists) is the variance.

nlevels Number of levels.

levels Character representing the levels.

lowerSQRT Logical. When TRUE the (lower) Cholesky root L of the correlation matrix C is
returned instead of the correlation matrix.

compGrad Logical. Should the gradient be computed?

cov Logical.
If TRUE the matrix is a covariance matrix (or its Cholesky root) rather than a
correlation matrix and the last element in par is the variance.

impl A character telling which of the C and R implementations should be chosen.

Value

A correlation matrix (or its Cholesky root) with the optional gradient attribute.

Note

When lowerSQRT is FALSE, the implementation used is always in R because no gain would then
result from an implementation in C.

Author(s)

Yves Deville

Examples

checkGrad <- TRUE
lowerSQRT <- FALSE
nlevels <- 12
set.seed(1234)
par <- runif(1L, min = 0, max = pi)

##==
Compare R and C implementations for 'lowerSQRT = TRUE'
##==
tR <- system.time(TR <- corLevCompSymm(nlevels = nlevels, par = par,

lowerSQRT = lowerSQRT, impl = "R"))
tC <- system.time(T <- corLevCompSymm(nlevels = nlevels, par = par,

lowerSQRT = lowerSQRT))
tC2 <- system.time(T2 <- corLevCompSymm(nlevels = nlevels, par = par,

lowerSQRT = lowerSQRT, compGrad = FALSE))
time
rbind(R = tR, C = tC, C2 = tC2)

results
max(abs(T - TR))
max(abs(T2 - TR))

corLevDiag 17

##===
Compare the gradients
##===

if (checkGrad) {

library(numDeriv)

##=======================
lower SQRT case only
##========================
JR <- jacobian(fun = corLevCompSymm, x = par, nlevels = nlevels,

lowerSQRT = lowerSQRT, impl = "R", method = "complex")
J <- attr(T, "gradient")

redim and compare.
dim(JR) <- dim(J)
max(abs(J - JR))
nG <- length(JR)
plot(1:nG, as.vector(JR), type = "p", pch = 21, col = "SpringGreen3",

cex = 0.8, ylim = range(J, JR),
main = paste("gradient check, lowerSQRT =", lowerSQRT))

points(x = 1:nG, y = as.vector(J), pch = 16, cex = 0.6, col = "orangered")
}

corLevDiag Correlation or Covariance Matrix for a Diagonal Structure

Description

Compute the correlation or covariance matrix for a diagonal structure.

Usage

corLevDiag(par, nlevels, levels, lowerSQRT = FALSE, compGrad = TRUE,
cov = 0)

Arguments

par A numeric vector with length npVar where npVar is the number of variance
parameters, namely 0, 1 or nlevels corresponding to the values of cov: 0, 1
and 2.

nlevels Number of levels.

levels Character representing the levels.

lowerSQRT Logical. When TRUE the (lower) Cholesky root L of the correlation or covariance
matrix C is returned instead of the correlation matrix.

18 corLevLowRank

compGrad Logical. Should the gradient be computed?

cov Integer 0, 1 or 2. If cov is 0, the matrix is a correlation matrix (or its Cholesky
root) i.e. an identity matrix. If cov is 1 or 2, the matrix is a covariance (or
its square root) with constant variance vector for code = 1 and with arbitrary
variance vector for code = 2.

Value

A correlation matrix (or its Cholesky root) with the optional gradient attribute.

Examples

set.seed(123)
checkGrad <- TRUE
nlevels <- 12
sigma2 <- rexp(n = nlevels)
T0 <- corLevDiag(nlevels = nlevels, par = sigma2, cov = 2)
L0 <- corLevDiag(nlevels = nlevels, par = sigma2, cov = 2,

lowerSQRT = TRUE)

corLevLowRank Correlation Matrix for a Low-Rank Structure

Description

Compute the correlation matrix for a low-rank structure.

Usage

corLevLowRank(par, nlevels, rank, levels,
lowerSQRT = FALSE, compGrad = TRUE,
cov = 0, impl = c("C", "R"))

Arguments

par A numeric vector with length npCor + npVar where npCor = (rank - 1) * (nlevels
- rank / 2) is the number of correlation parameters, and npVar is the number
of variance parameters, which depends on the value of cov. The value of npVar
is 0, 1 or nlevels corresponding to the values of cov: 0, 1 and 2. The corre-
lation parameters are assumed to be located at the head of par i.e. at indices 1
to npCor. The variance parameter(s) are assumed to be at the tail, i.e. at indices
npCor +1 to npCor + npVar.

nlevels Number of levels m.

rank The rank, which must be >1 and < nlevels.

levels Character representing the levels.

corLevLowRank 19

lowerSQRT Logical. When TRUE a lower-triangular root L of the correlation or covariance
matrix C is returned instead of the correlation matrix. Note that this matrix can
have negative diagonal elements hence is not a (pivoted) Cholesky root.

compGrad Logical. Should the gradient be computed? This is only possible for the C
implementation.

cov Integer 0, 1 or 2. If cov is 0, the matrix is a correlation matrix (or its root). If cov
is 1 or 2, the matrix is a covariance (or its root) with constant variance vector
for code = 1 and with arbitrary variance for code = 2. The variance parameters
par are located at the tail of the par vector, so at locations npCor + 1 to npCor +
nlevels when code = 2 where npCor is the number of correlation parameters.

impl A character telling which of the C and R implementations should be chosen.
The R implementation is only for checks and should not be used.

Details

The correlation matrix with size m is the general symmetric correlation matrix with rank ≤ r where
r is given, as described by Rapisarda et al. It depends on (r − 1) × (m − r/2)/2 parameters θij
where the indices i and j are such that 1 ≤ j < i for i ≤ r or such that 1 ≤ j < r for r < i ≤ n.
The parameters θij are angles and are to be taken to be in [0, 2π) if j = 1 and in [0, π) otherwise.

Value

A correlation matrix (or its root) with the optional gradient attribute.

Note

This function is essentially for internal use and the corresponding correlation or covariance kernels
are created as covQual objects by using the q1LowRank creator.

Here the parameters θij are used in row order rather than in the column order. This order simplifies
the computation of the gradient.

References

Francesco Rapisarda, Damanio Brigo, Fabio Mercurio (2007). "Parameterizing Correlations a Ge-
ometric Interpretation". IMA Journal of Management Mathematics, 18(1): 55-73.

Igor Grubišić, Raoul Pietersz (2007). "Efficient Rank Reduction of Correlation Matrices". Linear
Algebra and its Applications, 422: 629-653.

See Also

The q1LowRank creator of a corresponding kernel object with class "covQual", and the similar
corLevSymm function for the full-rank case.

20 corLevSymm

corLevSymm Correlation Matrix for a General Symmetric Correlation Structure

Description

Compute the correlation matrix for a general symmetric correlation structure.

Usage

corLevSymm(par, nlevels, levels, lowerSQRT = FALSE, compGrad = TRUE,
cov = 0, impl = c("C", "R"))

Arguments

par A numeric vector with length npCor + npVar where npCor = nlevels * (nlevels
- 1) / 2 is the number of correlation parameters, and npVar is the number of
variance parameters, which depends on the value of cov. The value of npVar
is 0, 1 or nlevels corresponding to the values of cov: 0, 1 and 2. The corre-
lation parameters are assumed to be located at the head of par i.e. at indices 1
to npCor. The variance parameter(s) are assumed to be at the tail, i.e. at indices
npCor + 1 to npCor + npVar.

nlevels Number of levels.

levels Character representing the levels.

lowerSQRT Logical. When TRUE the (lower) Cholesky root L of the correlation or covariance
matrix C is returned instead of the correlation matrix.

compGrad Logical. Should the gradient be computed? This is only possible for the C
implementation.

cov Integer 0, 1 or 2. If cov is 0, the matrix is a correlation matrix (or its Cholesky
root). If cov is 1 or 2, the matrix is a covariance (or its Cholesky root) with
constant variance vector for code = 1 and with arbitrary variance for code = 2.
The variance parameters par are located at the tail of the par vector, so at loca-
tions npCor + 1 to npCor + nlevels when code = 2 where npCor is the number
of correlation parameters, i.e. nlevels * (nlevels - 1) / 2.

impl A character telling which of the C and R implementations should be chosen.

Details

The correlation matrix with dimension n is the general symmetric correlation matrix as described by
Pinheiro and Bates and implemented in the nlme package. It depends on n× (n− 1)/2 parameters
θij where the indices i and j are such that 1 ≤ j < i ≤ n. The parameters θij are angles and are to
be taken to be in [0, π) for a one-to-one parameterisation.

Value

A correlation matrix (or its Cholesky root) with the optional gradient attribute.

corLevSymm 21

Note

This function is essentially for internal use and the corresponding correlation or covariance kernels
are created as covQual objects by using the q1Symm creator.

The parameters θij are used in row order rather than in the column order as in the reference or in
the nlme package. This order simplifies the computation of the gradients.

References

Jose C. Pinheiro and Douglas M. Bates (1996). "Unconstrained Parameterizations for Variance-
Covariance matrices". Statistics and Computing, 6(3) pp. 289-296.

Jose C. Pinheiro and Douglas M. Bates (2000) Mixed-Effects Models in S and S-PLUS, Springer.

See Also

The corSymm correlation structure in the nlme package.

Examples

checkGrad <- TRUE
nlevels <- 12
npar <- nlevels * (nlevels - 1) / 2
par <- runif(npar, min = 0, max = pi)
##==
Compare R and C implementations for 'lowerSQRT = TRUE'
##==
tR <- system.time(TR <- corLevSymm(nlevels = nlevels,

par = par, lowerSQRT = TRUE, impl = "R"))
tC <- system.time(T <- corLevSymm(nlevels = nlevels, par = par,

lowerSQRT = TRUE))
tC2 <- system.time(T2 <- corLevSymm(nlevels = nlevels, par = par,

lowerSQRT = TRUE, compGrad = FALSE))
time
rbind(R = tR, C = tC, C2 = tC2)

results
max(abs(T - TR))
max(abs(T2 - TR))

##==
Compare R and C implementations for 'lowerSQRT = FALSE'
##==
tR <- system.time(TRF <- corLevSymm(nlevels = nlevels, par = par,

lowerSQRT = FALSE, impl = "R"))
tC <- system.time(TCF <- corLevSymm(nlevels = nlevels, par = par,

compGrad = FALSE, lowerSQRT = FALSE))
tC2 <- system.time(TCF2 <- corLevSymm(nlevels = nlevels, par = par,

compGrad = TRUE, lowerSQRT = FALSE))
rbind(R = tR, C = tC, C2 = tC2)
max(abs(TCF - TRF))
max(abs(TCF2 - TRF))

22 covAll-class

##===
Compare the gradients
##===

if (checkGrad) {

library(numDeriv)

##==================
lower SQRT case
##==================
JR <- jacobian(fun = corLevSymm, x = par, nlevels = nlevels,

lowerSQRT = TRUE, method = "complex", impl = "R")
J <- attr(T, "gradient")

redim and compare.
dim(JR) <- dim(J)
max(abs(J - JR))
nG <- length(JR)
plot(1:nG, as.vector(JR), type = "p", pch = 21, col = "SpringGreen3",

cex = 0.8, ylim = range(J, JR),
main = "gradient check, lowerSQRT = TRUE")

points(x = 1:nG, y = as.vector(J), pch = 16, cex = 0.6, col = "orangered")

##==================
Symmetric case
##==================
JR <- jacobian(fun = corLevSymm, x = par, nlevels = nlevels,

lowerSQRT = FALSE, impl = "R", method = "complex")
J <- attr(TCF2, "gradient")

redim and compare.
dim(JR) <- dim(J)
max(abs(J - JR))
nG <- length(JR)
plot(1:nG, as.vector(JR), type = "p", pch = 21, col = "SpringGreen3",

cex = 0.8,
ylim = range(J, JR),
main = "gradient check, lowerSQRT = FALSE")

points(x = 1:nG, y = as.vector(J), pch = 16, cex = 0.6, col = "orangered")
}

covAll-class Virtual Class "covAll"

Description

Virtual class "covAll", union of classes including "covTS", "covMan".

covANOVA 23

Methods

checkX signature(object = "covAll", X = "matrix"): checks the compatibility of a design
with a given covariance object.

checkX signature(object = "covAll", X = "data.frame"): checks the compatibility of a de-
sign with a given covariance object.

inputNames signature(object = "covAll"): returns the character vector of input names.

hasGrad signature(object = "covAll"): returns the logical slot hasGrad.

simulPar signature(object = "covTS"): simulates random values for the parameters.

Examples

showClass("covAll")

covANOVA Creator for the Class "covANOVA"

Description

Creator for the class "covANOVA".

Usage

covANOVA(k1Fun1 = k1Fun1Gauss,
cov = c("corr", "homo"),
iso = 0, iso1 = 1L,
hasGrad = TRUE,
inputs = NULL,
d = NULL,
parNames,
par = NULL, parLower = NULL, parUpper = NULL,
label = "ANOVA kernel",
...)

Arguments

k1Fun1 A kernel function of a scalar numeric variable, and possibly of an extra "shape"
parameter. This function can also return the first-order derivative or the two-first
order derivatives as an attribute with name "der" and with a matrix content.
When an extra shape parameter exists, the gradient can also be returned as an
attribute with name "gradient", see Examples later. The name of the function
can be given as a character string.

cov A character string specifying the value of the variance parameter δ for the co-
variance kernel. Contrarily to other kernel classes, that parameter is not equal
to the variance. Thus, mind that choosing ("corr") corresponds to δ = 1 but
does not correspond to a correlation kernel, see details below. Partial matching
is allowed.

24 covANOVA

iso Integer. The value 1L corresponds to an isotropic covariance, with all the inputs
sharing the same range value.

iso1 Integer. This applies only when k1Fun1 contains one or more parameters that
can be called ’shape’ parameters. At now, only one such parameter can be found
in k1Fun1 and consequently iso1 must be of length one. With iso1 = 0 the
shape parameter in k1Fun1 will generate d parameters in the covANOVA object
with their name suffixed by the dimension. When iso1 is 1 only one shape
parameter will be created in the covANOVA object.

hasGrad Integer or logical. Tells if the value returned by the function k1Fun1 has an
attribute named "der" giving the derivative(s).

inputs Character. Names of the inputs.
d Integer. Number of inputs.
parNames Names of the parameters. By default, ranges are prefixed "theta_" in the non-

iso case and the range is named "theta" in the iso case.
par Numeric values for the parameters. Can be NA.
parLower Numeric values for the lower bounds on the parameters. Can be -Inf.
parUpper Numeric values for the upper bounds on the parameters. Can be Inf.
label A short description of the kernel object.
... Other arguments passed to the method new.

Details

A ANOVA kernel on the d-dimensional Euclidean space takes the form

K(x, x′) = δ2
d∏

ℓ=1

(1 + τ2ℓ κ(rℓ))

where κ(r) is a suitable correlation kernel for a one-dimensional input, and rℓ is given by rℓ :=
[xℓ − x′

ℓ]/θℓ for ℓ = 1 to d.

In this default form, the ANOVA kernel depends on 2d + 1 parameters: the ranges θℓ > 0, the
variance ratios τ2ℓ , and the variance parameter δ2.

An isotropic form uses the same range θ for all inputs, i.e. sets θℓ = θ for all ℓ. This is obtained by
using iso = TRUE.

A correlation version uses δ2 = 1. This is obtained by using cov = "corr". Mind that it does not
correspond to a correlation kernel. Indeed, in general, the variance is equal to

K(x, x) = δ2
d∏

ℓ=1

(1 + τ2ℓ).

Finally, the correlation kernel κ(r) can depend on a "shape" parameter, e.g. have the form κ(r; α).
The extra shape parameter α will be considered then as a parameter of the resulting ANOVA kernel,
making it possible to estimate it by ML along with the range(s) and the variance.

Value

An object with class "covANOVA".

covANOVA-class 25

Examples

Not run:
if (require(DiceKriging)) {

a 16-points factorial design and the corresponding response
d <- 2; n <- 16; x <- seq(from = 0.0, to = 1.0, length.out = 4)
X <- expand.grid(x1 = x, x2 = x)
y <- apply(X, 1, DiceKriging::branin)

kriging model with matern5_2 covariance structure, constant
trend. A crucial point is to set the upper bounds!
mycov <- covANOVA(k1Fun1 = k1Fun1Matern5_2, d = 2, cov = "homo")
coefUpper(mycov) <- c(2.0, 2.0, 5.0, 5.0, 1e10)
mygp <- gp(y ~ 1, data = data.frame(X, y),

cov = mycov, multistart = 100, noise = TRUE)

nGrid <- 50; xGrid <- seq(from = 0, to = 1, length.out = nGrid)
XGrid <- expand.grid(x1 = xGrid, x2 = xGrid)
yGrid <- apply(XGrid, 1, DiceKriging::branin)
pgp <- predict(mygp, XGrid)$mean

mykm <- km(design = X, response = y)
pkm <- predict(mykm, XGrid, "UK")$mean
c("km" = sqrt(mean((yGrid - pkm)^2)),

"gp" = sqrt(mean((yGrid - pgp)^2)))

}

End(Not run)

covANOVA-class Class "covANOVA"

Description

S4 class representing a Tensor Product (ANOVA) covariance kernel.

Objects from the Class

Objects can be created by calls of the form new("covANOVA", ...) or by using the covANOVA
function.

Slots

k1Fun1: Object of class "function" A function of a scalar numeric variable.

k1Fun1Char: Object of class "character" describing the function in the slot k1Fun1.

hasGrad: Object of class "logical". Tells if the value returned by the function kern1Fun has an
attribute named "der" giving the derivative(s).

26 covANOVA-class

cov: Object of class "integer". The value 1L corresponds to a general covariance kernel. The
value of 0L sets the variance parameter to 1, which does not correspond to a correlation kernel.
See Section ’details’ of covANOVA.

iso: Object of class "integer". The value 1L corresponds to an isotropic covariance, with all the
inputs sharing the same range value.

iso1: Object of class "integer" used only when the function in the slot k1Fun1 depends on pa-
rameters i.e. has more than one formal argument. NOT IMPLEMENTED YET.

label: Object of class "character". Short description of the object.

d: Object of class "integer". Dimension, i.e. number of inputs.

inputNames: Object of class "optCharacter". Names of the inputs.

parLower: Object of class "numeric". Numeric values for the lower bounds on the parameters.
Can be -Inf.

parUpper: Object of class "numeric". Numeric values for the upper bounds on the parameters.
Can be Inf.

par: Object of class "numeric". Numeric values for the parameters. Can be NA.

kern1ParN1: Object of class "integer". The number of parameters in k1Fun1 (such as a shape).

parN1: Object of class "integer". Number of parameters of the function kern1Fun (such as a
shape).

parN: Object of class "integer". Number of parameters for the object. The include: direct pa-
rameters in the function kern1Fun, ranges, and variance.

kern1ParNames: Object of class "character". Names of the direct parameters.

kernParNames: Object of class "character". Names of the parameters.

Extends

Class "covAll", directly.

Methods

coef signature(object = "covANOVA"): Get the vector of values for the parameters.

coef<- signature(object = "covANOVA", value = "numeric"): Set the vector of values for the
parameters.

coefLower signature(object = "covANOVA"): Get the vector of lower bounds on the parame-
ters.

coefLower<- signature(object = "covANOVA"): Set the vector of lower bounds on the parame-
ters.

coefUpper signature(object = "covANOVA"): Get the vector of upper bounds on the parame-
ters.

coefUpper<- signature(object = "covANOVA"): Set the vector of upper bounds on the parame-
ters.

covMat signature(object = "covANOVA"): Compute the covariance matrix for given sites.

npar signature(object = "covANOVA"): Get the number of parameters.

covComp 27

scores signature(object = "covANOVA"): Compute the scores i.e. the derivatives w.r.t. the pa-
rameters of the contribution of the covariance in the log-likelihood of a gp.

show signature(object = "covANOVA"): Print or show the object.

varVec signature(object = "covANOVA"): Compute the variance vector for given sites.

See Also

covTP.

Examples

showClass("covANOVA")

covComp Creator for the Class "covComp" for Composite Covariance Kernels

Description

Creator for the class "covComp" for Composite Covariance kernels.

Usage

covComp(formula, where = .GlobalEnv, topParLower = NULL,
topParUpper = NULL, trace = 0, ...)

Arguments

formula A formula. See Examples.

where An environment where the covariance kernels objects and top parameters will
be looked for.

topParLower A numeric vector of lower bounds for the "top" parameters.

topParUpper A numeric vector of upper bounds for the "top" parameters.

trace Integer level of verbosity.

... Not used yet. For passing other slot values.

Details

A covariance object is built using formula which involves kernel objects inheriting from the class
"covAll" and possibly of other scalar numeric parameters called top parameters. The formula can
be thought of as involving the covariance matrices rather than the kernel objects, each kernel object
say obj being replaced by covMat(obj, X) for some design matrix or data frame X. Indeed, the sum
or the product of two kernel objects lead to a covariance which is simply the sum or product of the
kernel covariances. The top parameters are considered as parameters of the covariance structure,
as well as the parameters of the covariance objects used in the formula. Their value at the creation
time will be used and thus will serve as initial value in estimation.

28 covComp

Value

An object with S4 class "covComp".

Caution

The class definition and its creator are to regarded as a DRAFT, many changes being necessary until
a stable implementation will be reached. The functions relating to this class are not for final users
of GP models, but rather to those interested in the conception and specification in view of a future
release of the kergp package.

Examples

===
build some kernels (with their inputNames) in the global environment
===

myCovExp3 <- kMatern(d = 3, nu = "1/2")
inputNames(myCovExp3) <- c("x", "y", "z")

myCovGauss2 <- kGauss(d = 2)
inputNames(myCovGauss2) <- c("temp1", "temp2")

k <- kMatern(d = 1)
inputNames(k) <- "x"

ell <- kMatern(d = 1)
inputNames(ell) <- "y"

tau2 <- 100
sigma2 <- 4

myCovComp <- covComp(formula = ~ tau2 * myCovGauss2() * myCovExp3() + sigma2 * k())

myCovComp1 <- covComp(formula = ~ myCovGauss2() * myCovExp3() + k())

inputNames(myCovComp)
coef(myCovComp)

n <- 5
set.seed(1234)
X <- data.frame(x = runif(n), y = runif(n), z = runif(n),

temp1 = runif(n), temp2 = runif(n))

C <- covMat(myCovComp, X = X)

Cg <- covMat(myCovComp, X = X, compGrad = TRUE)

Simulation: purely formal example, not meaningful.

Y <- simulate(myCovComp, X = X, nsim = 100)

covComp-class 29

covComp-class Class "covComp"

Description

Class "covComp" representing a composite kernel combining several kernels objects inheriting from
the class "covAll".

Objects from the Class

Objects can be created by calls of the form new("covComp", ...) or by using covComp.

Slots

def: Object of class "expression" defining the This is a parsed and cleaned version of the value
of the formula formal in covComp.

covAlls: Object of class "list" containing the kernel objects used by the formula. The coeffi-
cients of these kernels can be changed.

hasGrad: Object of class "logical": can we differentiate the kernel w.r.t. all its parameters?

label: Object of class "character" A label attached to the kernel to describe it.

d: Object of class "integer": dimension (or number of inputs).

parN: Object of class "integer": number of parameters.

parNames: Object of class "character": vector of parameter names. Its length is in slot parN.

inputNames: Object of class "character": names of the inputs used by the kernel.

topParN: Object of class "integer": number of top parameters.

topParNames: Object of class "character". Names of the top parameters.

topPar: Object of class "numeric". Values of the top parameters.

topParLower: Object of class "numeric". Lower bounds for the top parameters.

topParUpper: Object of class "numeric". Upper bounds for the top parameters.

parsedFormula: Object of class "list". Ugly draft for some slots to be added in the next versions.

Extends

Class "covAll", directly.

Methods

as.list signature(object = "covComp"): coerce object into a list of covariance kernels, each
inheriting from the virual class "covAll". This is useful e.g., to extract the coefficients or to
plot a covariance component.

checkX signature(object = "covComp", X = "data.frame"): check that the inputs exist with
suitable column names and suitable factor content. The levels should match the prescribed
levels. Returns a matrix with the input columns in the order prescribed by object.

30 covMan

coef, coef<- signature(object = "covComp"): extract or replace the vector of coefficients.

coefLower, coefUpper signature(object = "covComp"): extract the vector of Lower or Upper
bounds on the coefficients.

scores signature(object = "covComp"): return the vector of scores, i.e. the derivative of the
log-likelihood w.r.t. the parameter vector at the current parameter values.

See Also

The covComp creator.

Examples

showClass("covComp")

covMan Creator Function for covMan Objects

Description

Creator function for covMan objects representing a covariance kernel entered manually.

Usage

covMan(kernel, hasGrad = FALSE, acceptMatrix = FALSE,
inputs = paste("x", 1:d, sep = ""),
d = length(inputs), parNames,
par = NULL, parLower = NULL, parUpper = NULL,
label = "covMan", ...)

Arguments

kernel A (semi-)positive definite function. This must be an object of class "function"
with formal arguments named "x1", "x2" and "par". The first two formal argu-
ments are locations vectors or matrices. The third formal is for the vector θ of
all covariance parameters. An analytical gradient can be computed and returned
as an attribute of the result with name "gradient". See Details.

hasGrad Logical indicating whether the kernel function returns the gradient w.r.t. the
vector of parameters as a "gradient" attribute of the result. See Details

acceptMatrix Logical indicating whether kernel admits matrices as arguments. Default is
FALSE. See Examples below.

inputs Character vector giving the names of the inputs used as arguments of kernel.
Optional if d is given.

d Integer specifying the spatial dimension (equal to the number of inputs). Op-
tional if inputs is given.

parNames Vector of character strings containing the parameter names.

covMan 31

par, parLower, parUpper
Optional numeric vectors containing the parameter values, lower bounds and
upper bounds.

label Optional character string describing the kernel.

... Not used at this stage.

Details

The formals and the returned value of the kernel function must be in accordance with the value of
acceptMatrix.

• When acceptMatrix is FALSE, the formal arguments x1 and x2 of kernel are numeric vectors
with length d. The returned result is a numeric vector of length 1. The attribute named
"gradient" of the returned value (if provided in accordance with the value of hasGrad) must
then be a numeric vector with length equal to the number of covariance parameters. It must
contain the derivative of the kernel value K(x1, x2; θ) with respect to the parameter vector
θ.

• When acceptMatrix is TRUE, the formals x1 and x2 are matrices with d columns and with n1

and n2 rows. The result is then a covariance matrix with n1 rows and n2 columns. The gradient
attribute (if provided in accordance with the value of hasGrad) must be a list with length equal
to the number of covariance parameters. The list element ℓ must contain a numeric matrix
with dimension (n1, n2) which is the derivative of the covariance matrix w.r.t. the covariance
parameter θℓ.

Note

The kernel function must be symmetric with respect to its first two arguments, and it must be
positive definite, which is not checked. If the function returns an object with a "gradient" attribute
but hasGrad was set to FALSE, the gradient will not be used in optimization.

The name of the class was motivated by earlier stages in the development.

Examples

myCovMan <-
covMan(

kernel = function(x1, x2, par) {
htilde <- (x1 - x2) / par[1]
SS2 <- sum(htilde^2)
d2 <- exp(-SS2)
kern <- par[2] * d2
d1 <- 2 * kern * SS2 / par[1]
attr(kern, "gradient") <- c(theta = d1, sigma2 = d2)
return(kern)

},
hasGrad = TRUE,
d = 1,
label = "myGauss",
parLower = c(theta = 0.0, sigma2 = 0.0),
parUpper = c(theta = Inf, sigma2 = Inf),
parNames = c("theta", "sigma2"),

32 covMan

par = c(NA, NA)
)

Let us now code the same kernel in C
kernCode <- "

SEXP kern, dkern;
int nprotect = 0, d;
double SS2 = 0.0, d2, z, *rkern, *rdkern;

d = LENGTH(x1);
PROTECT(kern = allocVector(REALSXP, 1)); nprotect++;
PROTECT(dkern = allocVector(REALSXP, 2)); nprotect++;
rkern = REAL(kern);
rdkern = REAL(dkern);

for (int i = 0; i < d; i++) {
z = (REAL(x1)[i] - REAL(x2)[i]) / REAL(par)[0];
SS2 += z * z;

}

d2 = exp(-SS2);
rkern[0] = REAL(par)[1] * d2;
rdkern[1] = d2;
rdkern[0] = 2 * rkern[0] * SS2 / REAL(par)[0];

SET_ATTR(kern, install(\"gradient\"), dkern);
UNPROTECT(nprotect);
return kern;

"

myCovMan

"inline" the C function into an R function: much more efficient!

Not run:
require(inline)
kernC <- cfunction(sig = signature(x1 = "numeric", x2 = "numeric",

par = "numeric"),
body = kernCode)

myCovMan <- covMan(kernel = kernC, hasGrad = TRUE, d = 1,
parNames = c("theta", "sigma2"))

myCovMan

End(Not run)

A kernel admitting matricial arguments
myCov <- covMan(

kernel = function(x1, x2, par) {
x1 : matrix of size n1xd
x2 : matrix of size n2xd

d <- ncol(x1)

covMan-class 33

SS2 <- 0
for (j in 1:d){

Aj <- outer(x1[, j], x2[, j], "-")
Aj2 <- Aj^2
SS2 <- SS2 + Aj2 / par[j]^2

}
D2 <- exp(-SS2)
kern <- par[d + 1] * D2

},
acceptMatrix = TRUE,
d = 2,
label = "myGauss",
parLower = c(theta1 = 0.0, theta2 = 0.0, sigma2 = 0.0),
parUpper = c(theta1 = Inf, theta2 = Inf, sigma2 = Inf),
parNames = c("theta1", "theta2", "sigma2"),
par = c(NA, NA, NA)

)

coef(myCov) <- c(0.5, 1, 4)
show(myCov)

computing the covariance kernel between two points
X <- matrix(c(0, 0), ncol = 2)
Xnew <- matrix(c(0.5, 1), ncol = 2)
colnames(X) <- colnames(Xnew) <- inputNames(myCov)
covMat(myCov, X) ## same points
covMat(myCov, X, Xnew) ## two different points

computing covariances between sets of given locations
X <- matrix(c(0, 0.5, 0.7, 0, 0.5, 1), ncol = 2)
t <- seq(0, 1, length.out = 3)
Xnew <- as.matrix(expand.grid(t, t))
colnames(X) <- colnames(Xnew) <- inputNames(myCov)
covMat(myCov, X) ## covariance matrix
covMat(myCov, X, Xnew) ## covariances between design and new data

covMan-class Class "covMan"

Description

S4 class representing a covariance kernel defined manually by a (semi-)positive definite function.

Objects from the Class

Objects can be created by calling new("covMan", ...) or by using the covMan function.

34 covMan-class

Slots

kernel: object of class "function" defining the kernel (supposed to be (semi-)positive definite).

hasGrad: logical indicating whether kernel returns the gradient (w.r.t. the vector of parameters)
as "gradient" attribute of the result.

acceptMatrix: logical indicating whether kernel admits matrix arguments. Default is FALSE.

label: object of class character, typically one or two words, used to describe the kernel.

d: object of class "integer", the spatial dimension or number of inputs of the covariance.

inputNames: object of class "character", vector of input names. Length d.

parLower: ,

parUpper: object of class "numeric", vector of (possibly infinite) lower/upper bounds on param-
eters.

par: object of class "numeric", numeric vector of parameter values.

parN: object of class "integer", total number of parameters.

kernParNames: object of class "character", name of the kernel parameters.

Methods

coef<- signature(object = "covMan"): replace the whole vector of coefficients, as required dur-
ing ML estimation.

coefLower<- signature(object = "covMan"): replacement method for lower bounds on cov-
Man coefficients.

coefLower signature(object = "covMan"): extracts the numeric values of the lower bounds.

coef signature(object = "covMan"): extracts the numeric values of the covariance parameters.

coefUpper<- signature(object = "covMan"): replacement method for upper bounds on cov-
Man coefficients.

coefUpper signature(object = "covMan"): ...

covMat signature(object = "covMan"): builds the covariance matrix or the cross covariance
matrix between two sets of locations for a covMan object.

scores signature(object = "covMan"): computes the scores (derivatives of the log-likelihood
w.r.t. the covariance parameters.

show signature(object = "covMan"): prints in a custom format.

Note

While the coef<- replacement method is typically intended for internal use during likelihood max-
imization, the coefLower<- and coefUpper<- replacement methods can be used when some infor-
mation is available on the possible values of the parameters.

Author(s)

Y. Deville, O. Roustant, D. Ginsbourger and N. Durrande.

covMat 35

See Also

The covMan function providing a creator.

Examples

showClass("covMan")

covMat Generic Function: Covariance or Cross-Covariance Matrix Between
two Sets of Locations

Description

Generic function returning a covariance or a cross-covariance matrix between two sets of locations.

Usage

covMat(object, X, Xnew, ...)

Arguments

object Covariance kernel object.

X A matrix with d columns, where d is the number of inputs of the covariance
kernel. The n1 rows define a first set of sites or locations, typically used for
learning.

Xnew A matrix with d columns, where d is the number of inputs of the covariance
kernel. The n2 rows define a second set of sites or locations, typically used for
testing or prediction. If Xnew = NULL the same locations are used: Xnew = X.

... Other arguments for methods.

Value

A rectangular matrix with nrow(X) rows and nrow(Xnew) columns containing the covariances
K(x1,x2) for all the couples of sites x1 and x2.

36 covMat-methods

covMat-methods Covariance Matrix for a Covariance Kernel Object

Description

Covariance matrix for a covariance kernel object.

Usage

S4 method for signature 'covMan'
covMat(object, X, Xnew, compGrad = hasGrad(object),

checkNames = NULL, index = 1L, ...)

S4 method for signature 'covTS'
covMat(object, X, Xnew, compGrad = FALSE,

checkNames = TRUE, index = 1L, ...)

Arguments

object An object with S4 class corresponding to a covariance kernel.

X The matrix (or data.frame) of design points, with n rows and d cols where n is
the number of spatial points and d is the ’spatial’ dimension.

Xnew An optional new matrix of spatial design points. If missing, the same matrix is
used: Xnew = X.

compGrad Logical. If TRUE a derivative with respect to a parameter will be computed and
returned as an attribute of the result. For the covMan class, this is possible only
when the gradient of the kernel is computed and returned as a "gradient" at-
tribute of the result.

checkNames Logical. If TRUE (default), check the compatibility of X with object, see checkX.

index Integer giving the index of the derivation parameter in the official order. Ignored
if compGrad = FALSE.

... not used yet.

Details

The covariance matrix is computed in a C program using the .Call interface. The R kernel function
is evaluated within the C code using eval.

Value

A n1×n2 matrix with general element Cij := K(x1,i, x2,j ; θ) where K(x1, x2; θ) is the covari-
ance kernel function.

Note

The value of the parameter θ can be extracted from the object with the coef method.

covOrd 37

Author(s)

Y. Deville, O. Roustant, D. Ginsbourger, N. Durrande.

See Also

coef method

Examples

myCov <- covTS(inputs = c("Temp", "Humid", "Press"),
kernel = "k1PowExp",
dep = c(range = "cst", shape = "cst"),
value = c(shape = 1.8, range = 1.1))

n <- 100; X <- matrix(runif(n*3), nrow = n, ncol = 3)
try(C1 <- covMat(myCov, X)) ## bad colnames
colnames(X) <- inputNames(myCov)
C2 <- covMat(myCov, X)

Xnew <- matrix(runif(n * 3), nrow = n, ncol = 3)
colnames(Xnew) <- inputNames(myCov)
C2 <- covMat(myCov, X, Xnew)

check with the same matrix in 'X' and 'Xnew'
CMM <- covMat(myCov, X, X)
CM <- covMat(myCov, X)
max(abs(CM - CMM))

covOrd Warping-Based Covariance for an Ordinal Input

Description

Creator function for the class covOrd-class

Usage

covOrd(ordered,
k1Fun1 = k1Fun1Matern5_2,
warpFun = c("norm", "unorm", "power", "spline1", "spline2"),
cov = c("corr", "homo"),
hasGrad = TRUE, inputs = "u",
par = NULL, parLower = NULL, parUpper = NULL,
warpKnots = NULL, nWarpKnots = NULL,
label = "Ordinal kernel",
intAsChar = TRUE,
...)

38 covOrd

Arguments

ordered An object coerced to ordered representing an ordinal input. Only the levels and
their order will be used.

k1Fun1 A function representing a 1-dimensional stationary kernel function, with no or
fixed parameters.

warpFun Character corresponding to an increasing warping function. See warpFun.

cov Character indicating whether a correlation or homoscedastic kernel is used.

hasGrad Object of class "logical". If TRUE, both k1Fun1 and warpFun must return the
gradient as an attribute of the result.

inputs Character: name of the ordinal input.
par, parLower, parUpper

Numeric vectors containing covariance parameter values/bounds in the follow-
ing order: warping, range and variance if required (cov == "homo").

warpKnots Numeric vector containing the knots used when a spline warping is chosen. The
knots must be in [0, 1], and 0 and 1 are automatically added if not provided. The
number of knots cannot be greater than the number of levels.

nWarpKnots Number of knots when a spline warping is used. Ignored if warpKnots is given.
nWarpKnots cannot be greater than the number of levels.

label Character giving a brief description of the kernel.

intAsChar Logical. If TRUE (default), an integer-valued input will be coerced into a charac-
ter. Otherwise, it will be coerced into a factor.

... Not used at this stage.

Details

Covariance kernel for qualitative ordered inputs obtained by warping.

Let u be an ordered factor with levels u1, . . . , uL. Let k1 be a 1-dimensional stationary kernel (with
no or fixed parameters), F a warping function i.e. an increasing function on the interval [0, 1] and θ
a scale parameter. Then k is defined by:

k(ui, uj) = k1([F (zi)− F (zj)]/θ)

where z1, . . . , zL form a regular sequence from 0 to 1 (included). At this stage, the possible choices
are:

• A distribution function (cdf) truncated to [0, 1], among the Power and Normal cdfs.

• For the Normal distribution, an unnormalized version, corresponding to the restriction of the
cdf on [0, 1], is also implemented (warp = "unorm").

• An increasing spline of degree 1 (piecewise linear function) or 2. In this case, F is unnor-
malized. For degree 2, the implementation depends on scaling functions from DiceKriging
package, which must be loaded here.

Notice that for unnormalized F, we set θ to 1, in order to avoid overparameterization.

covOrd-class 39

Value

An object of class covOrd-class, inheriting from covQual-class.

See Also

covOrd-class, warpFun

Examples

u <- ordered(1:6, labels = letters[1:6])

myCov <- covOrd(ordered = u, cov = "homo", intAsChar = FALSE)
myCov
coef(myCov) <- c(mean = 0.5, sd = 1, theta = 3, sigma2 = 2)
myCov

checkX(myCov, X = data.frame(u = c(1L, 3L)))
covMat(myCov, X = data.frame(u = c(1L, 3L)))

myCov2 <- covOrd(ordered = u, k1Fun1 = k1Fun1Cos, warpFun = "power")
coef(myCov2) <- c(pow = 1, theta = 1)
myCov2

plot(myCov2, type = "cor", method = "ellipse")
plot(myCov2, type = "warp", col = "blue", lwd = 2)

myCov3 <- covOrd(ordered = u, k1Fun1 = k1Fun1Cos, warpFun = "spline1")
coef(myCov3) <- c(rep(0.5, 2), 2, rep(0.5, 2))
myCov3

plot(myCov3, type = "cor", method = "ellipse")
plot(myCov3, type = "warp", col = "blue", lwd = 2)

str(warpPower) # details on the list describing the Power cdf
str(warpNorm) # details on the list describing the Normal cdf

covOrd-class Class "covOrd"

Description

Covariance kernel for qualitative ordered inputs obtained by warping.

Let u be an ordered factor with levels u1, . . . , uL. Let k1 be a 1-dimensional stationary kernel (with
no or fixed parameters), F a warping function i.e. an increasing function on the interval [0, 1] and θ
a scale parameter. Then k is defined by:

k(ui, uj) = k1([F (zi)− F (zj)]/θ)

where z1, . . . , zL form a regular sequence from 0 to 1 (included). Notice that an example of warping
is a distribution function (cdf) restricted to [0, 1].

40 covOrd-class

Objects from the Class

Objects can be created by calls of the form new("covOrd", ...).

Slots

covLevels: Same as for covQual-class.

covLevMat: Same as for covQual-class.

hasGrad: Same as for covQual-class.

acceptLowerSQRT: Same as for covQual-class.

label: Same as for covQual-class.

d: Same as for covQual-class. Here equal to 1.

inputNames: Same as for covQual-class.

nlevels: Same as for covQual-class.

levels: Same as for covQual-class.

parLower: Same as for covQual-class.

parUpper: Same as for covQual-class.

par: Same as for covQual-class.

parN: Same as for covQual-class.

kernParNames: Same as for covQual-class.

k1Fun1: A function representing a 1-dimensional stationary kernel function, with no or fixed pa-
rameters.

warpFun: A cumulative density function representing a warping.

cov: Object of class "integer". The value 0L corresponds to a correlation kernel while 1L is for a
covariance kernel.

parNk1: Object of class "integer". Number of parameters of k1Fun1. Equal to 0 at this stage.

parNwarp: Object of class "integer". Number of parameters of warpFun.

k1ParNames: Object of class "character". Parameter names of k1Fun1.

warpParNames: Object of class "character". Parameter names of warpFun.

warpKnots: Object of class "numeric". Parameters of warpFun.

ordered: Object of class "logical". TRUE for an ordinal input.

intAsChar: Object of class "logical". If TRUE (default), an integer-valued input will be coerced
into a character. Otherwise, it will be coerced into a factor.

Methods

checkX signature(object = "covOrd", X = "data.frame"): check that the inputs exist with
suitable column names and suitable factor content. The levels should match the prescribed
levels. Returns a matrix with the input columns in the order prescribed by object.
signature(object = "covOrd", X = "matrix"): check that the inputs exist with suitable
column names and suitable numeric content for coercion into a factor with the prescribed
levels. Returns a data frame with the input columns in the order prescribed by object.

covQual-class 41

coef<- signature(object = "covOrd"): replace the whole vector of coefficients, as required dur-
ing ML estimation.

coefLower<- signature(object = "covOrd"): replacement method for lower bounds on covOrd
coefficients.

coefLower signature(object = "covOrd"): extracts the numeric values of the lower bounds.

coef signature(object = "covOrd"): extracts the numeric values of the covariance parameters.

coefUpper<- signature(object = "covOrd"): replacement method for upper bounds on covOrd
coefficients.

coefUpper signature(object = "covOrd"): ...

covMat signature(object = "covOrd"): build the covariance matrix or the cross covariance ma-
trix between two sets of locations for a covOrd object.

npar signature(object = "covOrd"): returns the number of parameters.

scores signature(object = "covOrd"): return the vector of scores, i.e. the derivative of the log-
likelihood w.r.t. the parameter vector at the current parameter values.

simulate signature(object = "covOrd"): simulate nsim paths from a Gaussian Process having
the covariance structure. The paths are indexed by the finite set of levels of factor inputs, and
they are returned as columns of a matrix.

varVec signature(object = "covOrd"): build the variance vector corresponding to a set loca-
tions for a covOrd object.

Note

This class is to be regarded as experimental. The slot names or list may be changed in the future.
The methods npar, inputNames or `inputNames<-` should provide a more robust access to some
slot values.

See Also

See covMan for a comparable structure dedicated to kernels with continuous inputs.

Examples

showClass("covOrd")

covQual-class Class "covQual"

Description

Covariance kernel for qualitative inputs.

Objects from the Class

Objects can be created by calls of the form new("covQual", ...).

42 covQual-class

Slots

covLevels: Object of class "function". This function has arguments 'par' and optional argu-
ments lowerSQRT and compGrad. It returns the covariance matrix for an input corresponding
to all the levels.

covLevMat: Object of class "matrix". This is the result returned by the function covLevels (for-
mer slot) with lowerSQRT = FALSE and gradient = FALSE.

hasGrad: Object of class "logical". When TRUE, the covariance matrix returned by the function
in slot covLevels must compute the gradients. The returned covariance matrix must have a
"gradient" attribute; this must be an array with dimension c(m, m, np) where m stands for
the number of levels and np is the number of parameters.

acceptLowerSQRT: Object of class "logical". When TRUE, the function in slot covLevels must
have a formal lowerSQRT which can receive a logical value. When the value is TRUE the
Cholesky (lower) root of the covariance is returned instead of the covariance.

label: Object of class "character". A description of the kernel which will remained attached
with it.

d: Object of class "integer". The dimension or number of (qualitative) inputs of the kernel.

inputNames: Object of class "character". The names of the (qualitative) inputs. These will be
matched against the columns of a data frame when the kernel will be evaluated.

nlevels: Object of class "integer". A vector with length d giving the number of levels for each
of the d inputs.

levels: Object of class "list". A list of length d containing the d character vectors of levels for
the d (qualitative) inputs.

parLower: Object of class "numeric". Vector of parN lower values for the parameters of the
structure. The value -Inf can be used when needed.

parUpper: Object of class "numeric". Vector of parN upper values for the parameters of the
structure. The value Inf can be used when needed.

par: Object of class "numeric". Vector of parN current values for the structure.

parN: Object of class "integer". Number of parameters for the structure, as returned by the npar
method.

kernParNames: Object of class "character". Vector of length parN giving the names of the pa-
rameters. E.g. "range", "var", "sigma2" are popular names.

ordered: Vector of class "logical" indicating whether the factors are ordered or not.

intAsChar: Object of class "logical" indicating how to cope with an integer input. When
intAsChar is TRUE the input is coerced into a character; the values taken by this character
vector should then match the levels in the covQual object as given by levels(object)[[1]].
If instead intAsChar is FALSE, the integer values are assumed to correspond to the levels of
the covQual object in the same order.

Methods

checkX signature(object = "covQual", X = "data.frame"): check that the inputs exist with
suitable column names and suitable factor content. The levels should match the prescribed
levels. Returns a matrix with the input columns in the order prescribed by object.

covQual-class 43

signature(object = "covQual", X = "matrix"): check that the inputs exist with suitable
column names and suitable numeric content for coercion into a factor with the prescribed
levels. Returns a data frame with the input columns in the order prescribed by object.

coef<- signature(object = "covQual"): replace the whole vector of coefficients, as required
during ML estimation.

coefLower<- signature(object = "covQual"): replacement method for lower bounds on cov-
Qual coefficients.

coefLower signature(object = "covQual"): extracts the numeric values of the lower bounds.

coef signature(object = "covQual"): extracts the numeric values of the covariance parameters.

coefUpper<- signature(object = "covQual"): replacement method for upper bounds on covQual
coefficients.

coefUpper signature(object = "covQual"): ...

covMat signature(object = "covQual"): build the covariance matrix or the cross covariance
matrix between two sets of locations for a covQual object.

npar signature(object = "covQual"): returns the number of parameters.

plot signature(x = "covQual"): see plot,covQual-method.

scores signature(object = "covQual"): return the vector of scores, i.e. the derivative of the
log-likelihood w.r.t. the parameter vector at the current parameter values.

simulate signature(object = "covQual"): simulate nsim paths from a Gaussian Process having
the covariance structure. The paths are indexed by the finite set of levels of factor inputs, and
they are returned as columns of a matrix.

varVec signature(object = "covQual"): build the variance vector corresponding to a set loca-
tions for a covQual object.

Note

This class is to be regarded as experimental. The slot names or list may be changed in the future.
The methods npar, inputNames or `inputNames<-` should provide a more robust access to some
slot values.

See Also

See covMan for a comparable structure dedicated to kernels with continuous inputs.

Examples

showClass("covQual")

44 covQualNested

covQualNested Nested Qualitative Covariance

Description

Nested Qualitative Covariance

Usage

covQualNested(input = "x",
groupList = NULL,
group = NULL,
nestedLevels = NULL,
between = "Symm",
within = "Diag",
covBet = c("corr", "homo", "hete"),
covWith = c("corr", "homo", "hete"),
compGrad = TRUE,
contrasts = contr.helmod,
intAsChar = TRUE)

Arguments

input Name of the input, i.e. name of the column in the data frame when the covari-
ance kernel is evaluated with the covMat,covQual-method method.

groupList A list giving the groups, see Examples. Groups of size 1 are accepted. Note that
the group values should be given in some order, with no gap between repeated
values, see Examples.

group Inactive if groupList is used. A factor or vector giving the groups, see Exam-
ples. Groups of size 1 are accepted. Note that the group values should be given
in some order, with no gap between repeated values, see Examples.

nestedLevels Inactive if groupList is used. A factor or a vector giving the (nested) levels
within the group for each level of group. If this is missing, each element of
group is assumed to correspond to one nested level within the group and the
levels within the group are taken as integers in the order of group elements.

between Character giving the type of structure to use for the between part. For now
this can be one of the three choices "Diag", the diagonal structure of q1Diag,
"Symm" for the general covariance of q1Symm, or "CompSymm" for the Compound
Symmetry covariance of q1CompSymm. Default is Symm, corresponding to a spe-
cific correlation value for each pair of groups. On the other hand, Diag corre-
sponds to a common correlation value for all pairs of groups.

within Character vector giving the type of structure to use for the within part. The
choices are the same as for between. The character vector is recycled to have
length G so the within covariances can differ across groups. Default is "Diag",
corresponding to a compound symmetry matrix.

covQualNested 45

covBet, covWith Character vector indicating the type of covariance matrix to be used for the
generator between- or within- matrices, as in q1Diag, q1Symm or q1CompSymm:
correlation ("corr"), homoscedastic ("homo") or heteroscedastic ("hete"). Partial
matching is allowed. This is different from the form of the resulting covariance
matrix, see section Caution.

compGrad Logical.

contrasts Object of class "function". This function is similar to the contr.helmert
or contr.treatment functions, but it must return an orthogonal matrix. For
a given integer n, it returns a matrix with n rows and n - 1 columns forming a
basis for the supplementary of a vector of ones in the n-dimensional Euclidean
space. The contr.helmod can be used to obtain an orthogonal matrix hence
defining an orthonormal basis.

intAsChar Logical. If TRUE (default), an integer-valued input will be coerced into a charac-
ter. Otherwise, it will be coerced into a factor.

Value

An object with class "covQualNested".

Caution

When covBet and covWith are zero, the resulting matrix is not a correlation matrix, due to the
mode of construction. The "between" covariance matrix is a correlation but diagonal blocks are
added to the extended matrix obtained by re-sizing the "between" covariance into a n× n matrix.

Note

For now the replacement method such as 'coef<-' are inherited from the class covQuall. Conse-
quently when these methods are used they do not update the covariance structure in the between
slot nor those in the within (list) slot.

This covariance kernel involves two categorical (i.e. factor) inputs, but these are nested. It could be
aliased in the future as q1Nested or q2Nested.

Examples

Ex 1. See the vignette "groupKernel" for an example
inspired from computer experiments.

Ex 2. Below an example in data analysis.

country <- c("B", "B", "B", "F", "F" ,"F", "D", "D", "D")
cities <- c("AntWerp", "Ghent" , "Charleroi", "Paris", "Marseille",

"Lyon", "Berlin", "Hamburg", "Munchen")
myGroupList <- list(B = cities[1:3],

F = cities[4:6],
D = cities[7:9])

create a nested covariance.
first way, with argument 'groupList':

46 covQualNested-class

nest1 <- covQualNested(input = "ccities",
groupList = myGroupList,
between = "Symm", within = "Diag",
compGrad = TRUE,
covBet = "corr", covWith = "corr")

second way, with arguments 'group' and 'nestedLevels'
nest2 <- covQualNested(input = "ccities",

group = country, nestedLevels = cities,
between = "Symm", within = "Diag",
compGrad = TRUE,
covBet = "corr", covWith = "corr")

'show' and 'plot' method as automatically invocated
nest2
plot(nest2, type = "cor")

check that the covariance matrices match for nest1 and nest2
max(abs(covMat(nest1) - covMat(nest2)))

When the groups are not given in order, an error occurs!

countryBad <- c("B", "B", "F", "F", "F", "D", "D", "D", "B")
cities <- c("AntWerp", "Ghent", "Paris", "Marseille", "Lyon",

"Berlin", "Hamburg", "Munchen", "Charleroi")

nestBad <- try(covQualNested(input = "ccities",
group = countryBad, nestedLevels = cities,
between = "Symm", within = "Diag",
compGrad = TRUE,
covBet = "corr", covWith = "corr"))

covQualNested-class Class "covQualNested"

Description

Correlation or covariance structure for qualitative inputs (i.e. factors) obtained by nesting.

Objects from the Class

Objects can be created by calls of the form new("covQualNested", ...).

covQualNested-class 47

Slots

covLevels: Object of class "function" computing the covariance matrix for the set of all levels.

covLevMat: Object of class "matrix". The matrix returned by the function in slot covLevels.
Since this matrix is often needed, it can be stored rather than recomputed.

hasGrad: Object of class "logical". If TRUE, the analytical gradient can be computed.

acceptLowerSQRT: Object of class "logical". If TRUE, the lower square root of the matrix can be
returned

label: Object of class "character". A label to describe the kernel.

d: Object of class "integer". The number of inputs.

inputNames: Object of class "character" Names of the inputs.

nlevels: Object of class "integer" with length d give the number of levels for the factors.

levels: Object of class "list" with length d. Gives the levels for the inputs.

parLower: Object of class "numeric". Lower bounds on the (hyper) parameters.

parUpper: Object of class "numeric". Upper bounds on the (hyper) parameters.

par: Object of class "numeric". Value of the (hyper) parameters.

parN: Object of class "integer". Number of (hyper) parameters.

kernParNames: Object of class "character". Name of the parameters.

group: Object of class "integer". Group numbers: one for each final level.

groupLevels: Object of class "character". Vector of labels for the groups.

between: Object of class "covQual". A covariance or correlation structure that can be used be-
tween groups.

within: Object of class "list". A list of covariance or correlation structures that are used within
the groups. Each item has class "covQual".

parNCum: Object of class "integer". Cumulated number of parameters. Used for technical com-
putations.

contrasts: Object of class "function". A contrast function like contr.helmod. This function
must return a contrast matrix with columns having unit norm.

Extends

Class "covQual", directly. Class "covAll", by class "covQual", distance 2.

Methods

No methods defined with class "covQualNested" in the signature.

Examples

showClass("covQualNested")

48 covRadial

covRadial Creator for the Class "covRadial"

Description

Creator for the class "covRadial", which describes radial kernels.

Usage

covRadial(k1Fun1 = k1Fun1Gauss,
cov = c("corr", "homo"),
iso = 0, hasGrad = TRUE,
inputs = NULL, d = NULL,
parNames, par = NULL,
parLower = NULL, parUpper = NULL,
label = "Radial kernel",
...)

Arguments

k1Fun1 A function of a scalar numeric variable, and possibly of an extra "shape" param-
eter. This function should return the first-order derivative or the two-first order
derivatives as an attribute with name "der" and with a matrix content. When an
extra shape parameter exists, the gradient should also be returned as an attribute
with name "gradient", see Examples later. The name of the function can be
given as a character string.

cov A character string specifying the kind of covariance kernel: correlation kernel
("corr") or kernel of a homoscedastic GP ("homo"). Partial matching is al-
lowed.

iso Integer. The value 1L corresponds to an isotropic covariance, with all the inputs
sharing the same range value.

hasGrad Integer or logical. Tells if the value returned by the function k1Fun1 has an
attribute named "der" giving the derivative(s).

inputs Character. Names of the inputs.

d Integer. Number of inputs.
par, parLower, parUpper

Optional numeric values for the lower bounds on the parameters. Can be NA for
par, can be -Inf for parLower and Inf for parUpper.

parNames Names of the parameters. By default, ranges are prefixed "theta_" in the non-
iso case and the range is named "theta" in the iso case.

label A short description of the kernel object.

... Other arguments passed to the method new.

covRadial 49

Details

A radial kernel on the d-dimensional Euclidean space takes the form

K(x, x′) = σ2k1(r)

where k1(r) is a suitable correlation kernel for a one-dimensional input, and r is given by

r =

{
d∑

ℓ=1

[xℓ − x′
ℓ]
2/θ2ℓ

}1/2

.

In this default form, the radial kernel depends on d + 1 parameters: the ranges θℓ > 0 and the
variance σ2.

An isotropic form uses the same range θ for all inputs, i.e. sets θℓ = θ for all ℓ. This is obtained by
using iso = TRUE.

A correlation version uses σ2 = 1. This is obtained by using cov = "corr".

Finally, the correlation kernel k1(r) can depend on a "shape" parameter, e.g. have the form k1(r; α).
The extra shape parameter α will be considered then as a parameter of the resulting radial kernel,
making it possible to estimate it by ML along with the range(s) and the variance.

Value

An object with class "covRadial".

Note

When k1Fun1 has more than one formal argument, its arguments with position > 1 are assumed
to be "shape" parameters of the model. Examples are functions with formals function(x, shape
= 1.0) or function(x, alpha = 2.0, beta = 3.0), corresponding to vector of parameter names
c("shape") and c("alpha", "beta"). Using more than one shape parameter has not been tested
yet.

Remind that using a one-dimensional correlation kernel k1(r) here does not warrant that a positive
semi-definite kernel will result for any dimension d. This question relates to Schoenberg’s theorem
and the concept of completely monotone functions.

References

Gregory Fassauher and Michael McCourt (2016) Kernel-based Approximation Methods using MAT-
LAB. World Scientific.

See Also

k1Fun1Exp, k1Fun1Matern3_2, k1Fun1Matern5_2 or k1Fun1Gauss for examples of functions that
can be used as values for the k1Fun1 formal.

50 covRadial-class

Examples

set.seed(123)
d <- 2; ng <- 20
xg <- seq(from = 0, to = 1, length.out = ng)
X <- as.matrix(expand.grid(x1 = xg, x2 = xg))

==
A radial kernel using the power-exponential one-dimensional
function
==

d <- 2
myCovRadial <- covRadial(k1Fun1 = k1Fun1PowExp, d = 2, cov = "homo", iso = 1)
coef(myCovRadial)
inputNames(myCovRadial) <- colnames(X)
coef(myCovRadial) <- c(alpha = 1.8, theta = 2.0, sigma2 = 4.0)
y <- simulate(myCovRadial, X = X, nsim = 1)
persp(x = xg, y = xg, z = matrix(y, nrow = ng))

==
Define the inverse multiquadric kernel function. We return the first two
derivatives and the gradient as attributes of the result.
==

myk1Fun <- function(x, beta = 2) {
prov <- 1 + x * x
res <- prov^(-beta)
der <- matrix(NA, nrow = length(x), ncol = 2)
der[, 1] <- - beta * 2 * x * res / prov
der[, 2] <- -2 * beta * (1 - (1 + 2 * beta) * x * x) * res / prov / prov
grad <- -log(prov) * res
attr(res, "gradient") <- grad
attr(res, "der") <- der
res

}

myCovRadial1 <- covRadial(k1Fun1 = myk1Fun, d = 2, cov = "homo", iso = 1)
coef(myCovRadial1)
inputNames(myCovRadial1) <- colnames(X)
coef(myCovRadial1) <- c(beta = 0.2, theta = 0.4, sigma2 = 4.0)
y1 <- simulate(myCovRadial1, X = X, nsim = 1)
persp(x = xg, y = xg, z = matrix(y1, nrow = ng))

covRadial-class Class "covRadial"

Description

Class of radial covariance kernels.

covRadial-class 51

Objects from the Class

Objects can be created by calls of the form covRadial(...) of new("covRadial", ...).

Slots

k1Fun1: Object of class "function" A function of a scalar numeric variable. Note that using a
one-dimensional kernel here does not warrant that a positive semi-definite kernel results for
any dimension d.

k1Fun1Char: Object of class "character" describing the function in the slot k1Fun1.

hasGrad: Object of class "logical". Tells if the value returned by the function kern1Fun has an
attribute named "der" giving the derivative(s).

cov: Object of class "integer". The value 0L corresponds to a correlation kernel while 1L is for a
covariance kernel.

iso: Object of class "integer". The value 1L corresponds to an isotropic covariance, with all the
inputs sharing the same range value.

label: Object of class "character". Short description of the object.

d: Object of class "integer". Dimension, i.e. number of inputs.

inputNames: Object of class "optCharacter". Names of the inputs.

parLower: Object of class "numeric". Numeric values for the lower bounds on the parameters.
Can be -Inf.

parUpper: Object of class "numeric". Numeric values for the upper bounds on the parameters.
Can be Inf.

par: Object of class "numeric". Numeric values for the parameters. Can be NA.

parN1: Object of class "integer". Number of parameters of the function kern1Fun (such as a
shape).

parN: Object of class "integer". Number of parameters for the object. The include: direct pa-
rameters in the function kern1Fun, ranges, and variance.

kern1ParNames: Object of class "character". Names of the direct parameters.

kernParNames: Object of class "character". Names of the parameters.

Extends

Class "covAll", directly.

Methods

coef<- signature(object = "covRadial", value = "numeric"): Set the vector of values for the
parameters.

coefLower<- signature(object = "covRadial"): Set the vector of lower bounds on the param-
eters.

coefLower signature(object = "covRadial"): Get the vector of lower bounds on the parame-
ters.

coef signature(object = "covRadial"): Get the vector of values for the parameters.

52 covTP

coefUpper<- signature(object = "covRadial"): Set the vector of upper bounds on the param-
eters.

coefUpper signature(object = "covRadial"): Get the vector of upper bounds on the parame-
ters.

covMat signature(object = "covRadial"): Compute the covariance matrix for given sites.

npar signature(object = "covRadial"): Get the number of parameters.

scores signature(object = "covRadial"): Compute the scores i.e. the derivatives w.r.t. the
parameters of the contribution of the covariance in the log-likelihood of a gp.

show signature(object = "covRadial"): Print or show the object.

varVec signature(object = "covRadial"): Compute the variance vector for given sites.

See Also

The creator function covRadial, where some details are given on the form of kernel. covMan and
covMan for a comparable but more general class.

Examples

showClass("covRadial")

covTP Creator for the Class "covTP"

Description

Creator for the class "covTP".

Usage

covTP(k1Fun1 = k1Fun1Gauss,
cov = c("corr", "homo"),
iso = 0, iso1 = 1L,
hasGrad = TRUE,
inputs = NULL,
d = NULL,
parNames,
par = NULL, parLower = NULL, parUpper = NULL,
label = "Tensor product kernel",
...)

covTP 53

Arguments

k1Fun1 A kernel function of a scalar numeric variable, and possibly of an extra "shape"
parameter. This function can also return the first-order derivative or the two-first
order derivatives as an attribute with name "der" and with a matrix content.
When an extra shape parameter exists, the gradient can also be returned as an
attribute with name "gradient", see Examples later. The name of the function
can be given as a character string.

cov A character string specifying the kind of covariance kernel: correlation kernel
("corr") or kernel of a homoscedastic GP ("homo"). Partial matching is al-
lowed.

iso Integer. The value 1L corresponds to an isotropic covariance, with all the inputs
sharing the same range value.

iso1 Integer. This applies only when k1Fun1 contains one or more parameters that
can be called ’shape’ parameters. At now, only one such parameter can be found
in k1Fun1 and consequently iso1 must be of length one. With iso1 = 0 the
shape parameter in k1Fun1 will generate d parameters in the covTP object with
their name suffixed by the dimension. When iso1 is 1 only one shape parameter
will be created in the covTP object.

hasGrad Integer or logical. Tells if the value returned by the function k1Fun1 has an
attribute named "der" giving the derivative(s).

inputs Character. Names of the inputs.

d Integer. Number of inputs.

parNames Names of the parameters. By default, ranges are prefixed "theta_" in the non-
iso case and the range is named "theta" in the iso case.

par Numeric values for the parameters. Can be NA.

parLower Numeric values for the lower bounds on the parameters. Can be -Inf.

parUpper Numeric values for the upper bounds on the parameters. Can be Inf.

label A short description of the kernel object.

... Other arguments passed to the method new.

Details

A tensor-product kernel on the d-dimensional Euclidean space takes the form

K(x, x′) = σ2
d∏

ℓ=1

κ(rℓ)

where κ(r) is a suitable correlation kernel for a one-dimensional input, and rℓ is given by rℓ :=
[xℓ − x′

ℓ]/θℓ for ℓ = 1 to d.

In this default form, the tensor-product kernel depends on d+ 1 parameters: the ranges θℓ > 0 and
the variance σ2.

An isotropic form uses the same range θ for all inputs, i.e. sets θℓ = θ for all ℓ. This is obtained by
using iso = TRUE.

54 covTP-class

A correlation version uses σ2 = 1. This is obtained by using cov = "corr".

Finally, the correlation kernel κ(r) can depend on a "shape" parameter, e.g. have the form κ(r; α).
The extra shape parameter α will be considered then as a parameter of the resulting tensor-product
kernel, making it possible to estimate it by ML along with the range(s) and the variance.

Value

An object with class "covTP".

Examples

Not run:
if (require(DiceKriging)) {

a 16-points factorial design and the corresponding response
d <- 2; n <- 16; x <- seq(from = 0.0, to = 1.0, length.out = 4)
X <- expand.grid(x1 = x, x2 = x)
y <- apply(X, 1, DiceKriging::branin)

kriging model with matern5_2 covariance structure, constant
trend. A crucial point is to set the upper bounds!
mycov <- covTP(k1Fun1 = k1Fun1Matern5_2, d = 2, cov = "homo")
coefUpper(mycov) <- c(2.0, 2.0, 1e10)
mygp <- gp(y ~ 1, data = data.frame(X, y),

cov = mycov, multistart = 100, noise = FALSE)

nGrid <- 50; xGrid <- seq(from = 0, to = 1, length.out = nGrid)
XGrid <- expand.grid(x1 = xGrid, x2 = xGrid)
yGrid <- apply(XGrid, 1, DiceKriging::branin)
pgp <- predict(mygp, XGrid)$mean

mykm <- km(design = X, response = y)
pkm <- predict(mykm, XGrid, "UK")$mean
c("km" = sqrt(mean((yGrid - pkm)^2)),

"gp" = sqrt(mean((yGrid - pgp)^2)))

}

End(Not run)

covTP-class Class "covTP"

Description

S4 class representing a Tensor Product (TP) covariance kernel.

Objects from the Class

Objects can be created by calls of the form new("covTP", ...) or by using the covTP function.

covTP-class 55

Slots

k1Fun1: Object of class "function" A function of a scalar numeric variable.

k1Fun1Char: Object of class "character" describing the function in the slot k1Fun1.

hasGrad: Object of class "logical". Tells if the value returned by the function kern1Fun has an
attribute named "der" giving the derivative(s).

cov: Object of class "integer". The value 0L corresponds to a correlation kernel while 1L is for a
covariance kernel.

iso: Object of class "integer". The value 1L corresponds to an isotropic covariance, with all the
inputs sharing the same range value.

iso1: Object of class "integer" used only when the function in the slot k1Fun1 depends on pa-
rameters i.e. has more than one formal argument. NOT IMPLEMENTED YET.

label: Object of class "character". Short description of the object.

d: Object of class "integer". Dimension, i.e. number of inputs.

inputNames: Object of class "optCharacter". Names of the inputs.

parLower: Object of class "numeric". Numeric values for the lower bounds on the parameters.
Can be -Inf.

parUpper: Object of class "numeric". Numeric values for the upper bounds on the parameters.
Can be Inf.

par: Object of class "numeric". Numeric values for the parameters. Can be NA.

kern1ParN1: Object of class "integer". The number of parameters in k1Fun1 (such as a shape).

parN1: Object of class "integer". Number of parameters of the function kern1Fun (such as a
shape).

parN: Object of class "integer". Number of parameters for the object. The include: direct pa-
rameters in the function kern1Fun, ranges, and variance.

kern1ParNames: Object of class "character". Names of the direct parameters.

kernParNames: Object of class "character". Names of the parameters.

Extends

Class "covAll", directly.

Methods

coef signature(object = "covTP"): Get the vector of values for the parameters.

coef<- signature(object = "covTP", value = "numeric"): Set the vector of values for the pa-
rameters.

coefLower signature(object = "covTP"): Get the vector of lower bounds on the parameters.

coefLower<- signature(object = "covTP"): Set the vector of lower bounds on the parameters.

coefUpper signature(object = "covTP"): Get the vector of upper bounds on the parameters.

coefUpper<- signature(object = "covTP"): Set the vector of upper bounds on the parameters.

covMat signature(object = "covTP"): Compute the covariance matrix for given sites.

56 covTS

npar signature(object = "covTP"): Get the number of parameters.

scores signature(object = "covTP"): Compute the scores i.e. the derivatives w.r.t. the parame-
ters of the contribution of the covariance in the log-likelihood of a gp.

show signature(object = "covTP"): Print or show the object.

varVec signature(object = "covTP"): Compute the variance vector for given sites.

See Also

covRadial which is a similar covariance class and covTP which is intended to be the standard
creator function for this class.

Examples

showClass("covTP")

covTS Creator Function for covTS Objects

Description

Creator function for covTS objects representing a Tensor Sum covariance kernel.

Usage

covTS(inputs = paste("x", 1:d, sep = ""),
d = length(inputs), kernel = "k1Matern5_2",
dep = NULL, value = NULL, var = 1, ...)

Arguments

inputs Character vector giving the names of the inputs used as arguments of kernel.
Optional if d is given.

d Integer specifying the spatial dimension (equal to the number of inputs). Op-
tional if inputs is given.

kernel Character, name of the one-dimensional kernel.

dep Character vector with elements "cst" or "input" usually built using the con-
catenation c. The names must correspond to parameters of the kernel specified
with kernel. When an element is "cst", the corresponding parameter of the 1d
kernel will be the same for all inputs. When the element is "input", the cor-
responding parameter of the 1d kernel gives birth to d parameters in the covTS
object, one by input.

value Named numeric vector. The names must correspond to the 1d kernel parameters.

var Numeric vector giving the variances σ2
i that weight the d components.

... Not used at this stage.

covTS 57

Details

A covTS object represents a d-dimensional kernel object K of the form

K(x,x′;θ) =

d∑
i=1

k(xi, x
′
i;θsi)

where k is the covariance kernel for a Gaussian Process Yx indexed by a scalar x. The d numbers
xi stand for the components of the d-dimensional location vector x. The length p of all the vectors
si is the number of parameters of the one-dimensional kernel k, i.e. 2 or 3 for classical covariance
kernels.

The package comes with the following covariance kernels which can be given as kernel argument.

name description p par. names
k1Exp exponential 2 range, var
k1Matern3_2 Matérn ν = 3/2 2 range, var
k1Matern5_2 Matérn ν = 5/2 2 range, var
k1PowExp power exponential 3 range, shape, var
k1Gauss gaussian or "square exponential" 2 range, var

Note that the exponential kernel of k1Exp is identical to the Matérn kernel for ν = 1/2, and that
the three Matérns kernels provided here for ν = 1/2, ν = 3/2 and ν = 5/2 are special cases of
Continuous AutoRegressive (CAR) process covariances, with respective order 1, 2 and 3.

Value

An object with S4 class "covTS".

Caution

The 1d kernel k as given in kernel is always assumed to have a variance parameter with name var.
This assumption may be relaxed in future versions.

Note

Most arguments receive default values or are recycled if necessary.

Author(s)

Y. Deville, O. Roustant D. Ginsbourger

References

N. Durrande, D. Ginsbourger, and O. Roustant (2012) Additive "Covariance kernels for high-
dimensional Gaussian Process modeling", Annales de la Faculté des Sciences de Toulouse 21(3),
pp. 481–499.

58 covTS-class

Examples

myCov1 <- covTS(kernel = "k1Exp", inputs = c("v1", "v2", "v3"),
dep = c(range = "input"))

coef(myCov1) <- c(range = c(0.3, 0.7, 0.9), sigma2 = c(2, 2, 8))

myCov1
coef(myCov1)
coef(myCov1, as = "matrix")
coef(myCov1, as = "list")
coef(myCov1, as = "matrix", type = "range")

with a common range parameter
myCov2 <- covTS(kernel = "k1Exp", inputs = c("v1", "v2", "v3"),

dep = c(range = "cst"), value = c(range = 0.7),
var = c(2, 2, 8))

myCov2

myCov3 <- covTS(d = 3, kernel = "k1PowExp",
dep = c(range = "cst", shape = "cst"),
value = c(shape = 1.8, range = 1.1),
var = c(2, 2, 8))

myCov3

covTS-class Class "covTS"

Description

S4 class representing a Tensor Sum (TS) covariance kernel.

Objects from the Class

Objects can be created by call of the form new("covTS", ...) or by using the covTS function.

Slots

d: Object of class "integer", the spatial dimension or number of inputs of the covariance.

inputNames: Object of class "character", vector of input names. Length d.

kernel: Object of class "covMan" representing a 1d kernel.

kernParNames: Object of class "character", name of the kernel (among the allowed ones).

kernParCodes: Object of class "integer", an integer code stating the dependence of the parame-
ter to the input.

par: Object of class "numeric", numeric vector of parameter values.

parN: Object of class "integer", total number of parameters.

parInput: Object of class "integer", the number of the inputs for each parameter. Same length
as par, values between 1 and d.

covTS-class 59

parLower: ,

parUpper: Object of class "numeric" numeric, vector of (possibly infinite) lower/upper bounds
on parameters.

parBlock: Object of class "integer"

Methods

coef signature(object = "covTS"): extracts the numeric values of the covariance parameters.

coef<- signature(object = "covTS"): replaces the whole vector of coefficients, as required dur-
ing ML estimation.

coefLower signature(object = "covTS"): extracts the numeric values of the lower bounds.

coefLower<- signature(object = "covTS"): replacement method for lower bounds on covTS
coefficients.

coefUpper signature(object = "covTS"): ...

coefUpper<- signature(object = "covTS"): replacement method for upper bounds on covTS
coefficients.

covMat signature(object = "covTS"): builds the covariance matrix, or the cross covariance
matrix between two sets of locations for a covTS object.

kernelName signature(object = "covTS"): return the character value of the kernel name.

parMap signature(object = "covTS"): an integer matrix used to map the covTS parameters on
the inputs and kernel parameters during the computations.

scores signature(object = "covTS"): computes the scores.

show signature(object = "covTS"): prints in a custom format.

simulPar signature(object = "covTS"): simulates random values for the covariance parame-
ters.

Note

The names of the methods strive to respect a camelCase naming convention.

While the coef<- replacement method is typically intended for internal use during likelihood max-
imization, the coefLower<- and coefUpper<- replacement methods can be used when some rough
information exists on the possible values of the parameters.

Author(s)

Y. Deville, O. Roustant, D. Ginsbourger.

See Also

The covTS function providing a creator.

Examples

showClass("covTS")

https://en.wikipedia.org/wiki/CamelCase

60 gls-methods

gls Generic Function: Generalized Least Squares Estimation with a
Given Covariance Kernel

Description

Generic function computing a Generalized Least Squares estimation with a given covariance kernel.

Usage

gls(object, ...)

Arguments

object An object representing a covariance kernel.

... Other arguments for methods.

Value

A list with several elements corresponding to the estimation results.

gls-methods Generalized Least Squares Estimation with a Given Covariance Ker-
nel

Description

Generalized Least Squares (GLS) estimation for a linear model with a covariance given by the
covariance kernel object. The method gives auxiliary variables as needed in many algebraic com-
putations.

Usage

S4 method for signature 'covAll'
gls(object,

y, X, F = NULL, varNoise = NULL,
beta = NULL, checkNames = TRUE,
...)

gls-methods 61

Arguments

object An object with "covAll" class.

y The response vector with length n.

X The input (or spatial design) matrix with n rows and d columns. This matrix
must be compatible with the given covariance object, see checkX,covAll,matrix-method.

F A trend design matrix with n rows and p columns. When F is NULL no trend is
used and the response y is simply a realization of a centered Gaussian Process
with covariance kernel given by object.

varNoise A known noise variance. When provided, must be a positive numeric value.

beta A known vector of trend parameters. Default is NULL indicating that the trend
parameters must be estimated.

checkNames Logical. If TRUE (default), check the compatibility of X with object, see checkX.

... not used yet.

Details

There are two options: for unknown trend, this is the usual GLS estimation with given covariance
kernel; for a known trend, it returns the corresponding auxiliary variables (see value below).

Value

A list with several elements.

betaHat Vector β̂ of length p containing the estimated coefficients if beta = NULL, or the
known coefficients β either.

L The (lower) Cholesky root matrix L of the covariance matrix C. This matrix
has n rows and n columns and C = LL⊤.

eStar Vector of length n: e⋆ = L−1(y −Xβ̂).

Fstar Matrix n× p: F⋆ := L−1F.

sseStar Sum of squared errors: e⋆⊤e⋆.

RStar The ’R’ upper triangular p× p matrix in the QR decomposition of FStar: F⋆ =
QR⋆.

All objects having length p or having one of their dimension equal to p will be NULL when F is NULL,
meaning that p = 0.

Author(s)

Y. Deville, O. Roustant

References

Kenneth Lange (2010), Numerical Analysis for Statisticians 2nd ed. pp. 102-103. Springer-Verlag,

62 gp

Examples

a possible 'covTS'
myCov <- covTS(inputs = c("Temp", "Humid"),

kernel = "k1Matern5_2",
dep = c(range = "input"),
value = c(range = 0.4))

d <- myCov@d; n <- 100;
X <- matrix(runif(n*d), nrow = n, ncol = d)
colnames(X) <- inputNames(myCov)
generate the 'GP part'
C <- covMat(myCov, X = X)
L <- t(chol(C))
zeta <- L %*% rnorm(n)
trend matrix 'F' for Ordinary Kriging
F <- matrix(1, nrow = n, ncol = 1)
varNoise <- 0.5
epsilon <- rnorm(n, sd = sqrt(varNoise))
beta <- 10
y <- F %*% beta + zeta + epsilon
fit <- gls(myCov, X = X, y = y, F = F, varNoise = varNoise)

gp Gaussian Process Model

Description

Gaussian Process model.

Usage

gp(formula, data, inputs = inputNames(cov), cov, estim = TRUE, ...)

Arguments

formula A formula with a left-hand side specifying the response name, and the right-
hand side the trend covariates (see examples below). Factors are not allowed
neither as response nor as covariates.

data A data frame containing the response, the inputs specified in inputs, and all the
trend variables required in formula.

inputs A character vector giving the names of the inputs.

cov A covariance kernel object or call.

estim Logical. If TRUE, the model parameters are estimated by Maximum Likelihood.
The initial values can then be specified using the parCovIni and varNoiseIni
arguments of mle,covAll-method passed though dots. If FALSE, a simple Gen-
eralized Least Squares estimation will be used, see gls,covAll-method. Then

gp 63

the value of varNoise must be given and passed through dots in case noise is
TRUE.

... Other arguments passed to the estimation method. This will be the mle,covAll-method
if estim is TRUE or gls,covAll-method if estim is FALSE. In the first case, the
arguments will typically include varNoiseIni. In the second case, they will
typically include varNoise. Note that a logical noise can be used in the "mle"
case. In both cases, the arguments y, X, F can not be used since they are auto-
matically passed.

Value

A list object which is given the S3 class "gp". The list content is very likely to change, and should
be used through methods.

Note

When estim is TRUE, the covariance object in cov is expected to provide a gradient when used to
compute a covariance matrix, since the default value of compGrad it TRUE, see mle,covAll-method.

Author(s)

Y. Deville, D. Ginsbourger, O. Roustant

See Also

mle,covAll-method for a detailed example of maximum-likelihood estimation.

Examples

==
Example 1. Data sampled from a GP model with a known covTS object
==
set.seed(1234)
myCov <- covTS(inputs = c("Temp", "Humid"),

kernel = "k1Matern5_2",
dep = c(range = "input"),
value = c(range = 0.4))

change coefficients (variances)
coef(myCov) <- c(0.5, 0.8, 2, 16)
d <- myCov@d; n <- 20
design matrix
X <- matrix(runif(n*d), nrow = n, ncol = d)
colnames(X) <- inputNames(myCov)
generate the GP realization
myGp <- gp(formula = y ~ 1, data = data.frame(y = rep(0, n), X),

cov = myCov, estim = FALSE,
beta = 10, varNoise = 0.05)

y <- simulate(myGp, cond = FALSE)$sim

parIni: add noise to true parameters
parCovIni <- coef(myCov)

64 gp

parCovIni[] <- 0.9 * parCovIni[] + 0.1 * runif(length(parCovIni))
coefLower(myCov) <- rep(1e-2, 4)
coefUpper(myCov) <- c(5, 5, 20, 20)
est <- gp(y ~ 1, data = data.frame(y = y, X),

cov = myCov,
noise = TRUE,
varNoiseLower = 1e-2,
varNoiseIni = 1.0,
parCovIni = parCovIni)

summary(est)
coef(est)

===
Example 2. Predicting an additive function with an additive GP model
===

Not run:

addfun6d <- function(x){
res <- x[1]^3 + cos(pi * x[2]) + abs(x[3]) * sin(x[3]^2) +

3 * x[4]^3 + 3 * cos(pi * x[5]) + 3 * abs(x[6]) * sin(x[6]^2)
}

'Fit' is for the learning set, 'Val' for the validation set
set.seed(123)
nFit <- 50
nVal <- 200
d <- 6
inputs <- paste("x", 1L:d, sep = "")

create design matrices with DiceDesign package
require(DiceDesign)
require(DiceKriging)
set.seed(0)
dataFitIni <- DiceDesign::lhsDesign(nFit, d)$design
dataValIni <- DiceDesign::lhsDesign(nVal, d)$design
dataFit <- DiceDesign::maximinSA_LHS(dataFitIni)$design
dataVal <- DiceDesign::maximinSA_LHS(dataValIni)$design

colnames(dataFit) <- colnames(dataVal) <- inputs
testfun <- addfun6d
dataFit <- data.frame(dataFit, y = apply(dataFit, 1, testfun))
dataVal <- data.frame(dataVal, y = apply(dataVal, 1, testfun))

Creation of "CovTS" object with one range by input
myCov <- covTS(inputs = inputs, d = d, kernel = "k1Matern3_2",

dep = c(range = "input"))

Creation of a gp object
fitgp <- gp(formula = y ~ 1, data = dataFit,

cov = myCov, noise = TRUE,
parCovIni = rep(1, 2*d),
parCovLower = c(rep(1e-4, 2*d)),

gp 65

parCovUpper = c(rep(5, d), rep(10,d)))

predTS <- predict(fitgp, newdata = as.matrix(dataVal[, inputs]), type = "UK")$mean

Classical tensor product kernel as a reference for comparison
fitRef <- DiceKriging::km(formula = ~1,

design = dataFit[, inputs],
response = dataFit$y, covtype="matern3_2")

predRef <- predict(fitRef,
newdata = as.matrix(dataVal[, inputs]),
type = "UK")$mean

Compare TS and Ref
RMSE <- data.frame(TS = sqrt(mean((dataVal$y - predTS)^2)),

Ref = sqrt(mean((dataVal$y - predRef)^2)),
row.names = "RMSE")

print(RMSE)

Comp <- data.frame(y = dataVal$y, predTS, predRef)
plot(predRef ~ y, data = Comp, col = "black", pch = 4,

xlab = "True", ylab = "Predicted",
main = paste("Prediction on a validation set (nFit = ",

nFit, ", nVal = ", nVal, ").", sep = ""))
points(predTS ~ y, data = Comp, col = "red", pch = 20)
abline(a = 0, b = 1, col = "blue", lty = "dotted")
legend("bottomright", pch = c(4, 20), col = c("black", "red"),

legend = c("Ref", "Tensor Sum"))

End(Not run)

##===
Example 3: a 'covMan' kernel with 3 implementations
##===

d <- 4

-- Define a 4-dimensional covariance structure with a kernel in R

myGaussFunR <- function(x1, x2, par) {
h <- (x1 - x2) / par[1]
SS2 <- sum(h^2)
d2 <- exp(-SS2)
kern <- par[2] * d2
d1 <- 2 * kern * SS2 / par[1]
attr(kern, "gradient") <- c(theta = d1, sigma2 = d2)
return(kern)

}

myGaussR <- covMan(kernel = myGaussFunR,
hasGrad = TRUE,
d = d,
parLower = c(theta = 0.0, sigma2 = 0.0),
parUpper = c(theta = Inf, sigma2 = Inf),
parNames = c("theta", "sigma2"),

66 gp

label = "Gaussian kernel: R implementation")

-- The same, still in R, but with a kernel admitting matrices as arguments

myGaussFunRVec <- function(x1, x2, par) {
x1, x2 : matrices with same number of columns 'd' (dimension)
n <- nrow(x1)
d <- ncol(x1)
SS2 <- 0
for (j in 1:d){

Aj <- outer(x1[, j], x2[, j], "-")
Hj2 <- (Aj / par[1])^2
SS2 <- SS2 + Hj2

}
D2 <- exp(-SS2)
kern <- par[2] * D2
D1 <- 2 * kern * SS2 / par[1]
attr(kern, "gradient") <- list(theta = D1, sigma2 = D2)

return(kern)
}

myGaussRVec <- covMan(
kernel = myGaussFunRVec,
hasGrad = TRUE,
acceptMatrix = TRUE,
d = d,
parLower = c(theta = 0.0, sigma2 = 0.0),
parUpper = c(theta = Inf, sigma2 = Inf),
parNames = c("theta", "sigma2"),
label = "Gaussian kernel: vectorised R implementation"

)

-- The same, with inlined C code
(see also another example with Rcpp by typing: ?kergp).

Not run:
if (require(inline)) {

kernCode <- "
SEXP kern, dkern;
int nprotect = 0, d;
double SS2 = 0.0, d2, z, *rkern, *rdkern;

d = LENGTH(x1);
PROTECT(kern = Rf_allocVector(REALSXP, 1)); nprotect++;
PROTECT(dkern = Rf_allocVector(REALSXP, 2)); nprotect++;
rkern = REAL(kern);
rdkern = REAL(dkern);

for (int i = 0; i < d; i++) {
z = (REAL(x1)[i] - REAL(x2)[i]) / REAL(par)[0];
SS2 += z * z;

gp 67

}

d2 = exp(-SS2);
rkern[0] = REAL(par)[1] * d2;
rdkern[1] = d2;
rdkern[0] = 2 * rkern[0] * SS2 / REAL(par)[0];

SET_ATTR(kern, Rf_install(\"gradient\"), dkern);
UNPROTECT(nprotect);
return kern;

"
myGaussFunC <- cfunction(sig = signature(x1 = "numeric", x2 = "numeric",

par = "numeric"),
body = kernCode)

myGaussC <- covMan(kernel = myGaussFunC,
hasGrad = TRUE,
d = d,
parLower = c(theta = 0.0, sigma2 = 0.0),
parUpper = c(theta = Inf, sigma2 = Inf),
parNames = c("theta", "sigma2"),
label = "Gaussian kernel: C/inline implementation")

}

End(Not run)

== Simulate data for covMan and trend ==

n <- 100; p <- d + 1
X <- matrix(runif(n * d), nrow = n)
colnames(X) <- inputNames(myGaussRVec)
design <- data.frame(X)
coef(myGaussRVec) <- myPar <- c(theta = 0.5, sigma2 = 2)
myGp <- gp(formula = y ~ 1, data = data.frame(y = rep(0, n), design),

cov = myGaussRVec, estim = FALSE,
beta = 0, varNoise = 1e-8)

y <- simulate(myGp, cond = FALSE)$sim
F <- matrix(runif(n * p), nrow = n, ncol = p)
beta <- (1:p) / p
y <- tcrossprod(F, t(beta)) + y

== ML estimation. ==
tRVec <- system.time(

resRVec <- gp(formula = y ~ ., data = data.frame(y = y, design),
cov = myGaussRVec,
compGrad = TRUE,
parCovIni = c(0.5, 0.5), varNoiseLower = 1e-4,
parCovLower = c(1e-5, 1e-5), parCovUpper = c(Inf, Inf))

)

summary(resRVec)
coef(resRVec)

68 hasGrad

pRVec <- predict(resRVec, newdata = design, type = "UK")
tAll <- tRVec
coefAll <- coef(resRVec)
compare time required by the 3 implementations
Not run:

tR <- system.time(
resR <- gp(formula = y ~ ., data = data.frame(y = y, design),

cov = myGaussR,
compGrad = TRUE,
parCovIni = c(0.5, 0.5), varNoiseLower = 1e-4,
parCovLower = c(1e-5, 1e-5), parCovUpper = c(Inf, Inf))

)
tAll <- rbind(tRVec = tAll, tR)
coefAll <- rbind(coefAll, coef(resR))
if (require(inline)) {

tC <- system.time(
resC <- gp(formula = y ~ ., data = data.frame(y = y, design),

cov = myGaussC,
compGrad = TRUE,
parCovIni = c(0.5, 0.5), varNoiseLower = 1e-4,
parCovLower = c(1e-5, 1e-5), parCovUpper = c(Inf, Inf))

)
tAll <- rbind(tAll, tC)
coefAll <- rbind(coefAll, coef(resC))

}

End(Not run)
tAll

rows must be identical
coefAll

hasGrad Generic Function: Extract slot hasGrad of a Covariance Kernel

Description

Generic function returning the slot hasGrad of a Covariance Kernel.

Usage

hasGrad(object, ...)

S4 method for signature 'covAll'
hasGrad(object, ...)

influence.gp 69

Arguments

object A covariance kernel object.

... Other arguments for methods.

Value

A logical indicating whether the gradient is supplied in object (as indicated in the slot ’hasGrad’).

influence.gp Diagnostics for a Gaussian Process Model, Based on Leave-One-Out

Description

Cross Validation by leave-one-out for a gp object.

Usage

S3 method for class 'gp'
influence(model, type = "UK", trend.reestim = TRUE, ...)

Arguments

model An object of class "gp".

type Character string corresponding to the GP "kriging" family, to be chosen between
simple kriging ("SK"), or universal kriging ("UK").

trend.reestim Should the trend be re-estimated when removing an observation? Default to
TRUE.

... Not used.

Details

Leave-one-out (LOO) consists in computing the prediction at a design point when the corresponding
observation is removed from the learning set (and this, for all design points). A quick version of
LOO based on Dubrule’s formula is also implemented; It is limited to 2 cases:

• (type == "SK") & !trend.reestim and

• (type == "UK") & trend.reestim.

Value

A list composed of the following elements, where n is the total number of observations.

mean Vector of length n. The i-th element is the kriging mean (including the trend) at
the ith observation number when removing it from the learning set.

sd Vector of length n. The i-th element is the kriging standard deviation at the i-th
observation number when removing it from the learning set.

70 inputNames

Warning

Only trend parameters are re-estimated when removing one observation. When the number n of
observations is small, the re-estimated values can be far away from those obtained with the entire
learning set.

Author(s)

O. Roustant, D. Ginsbourger.

References

F. Bachoc (2013), "Cross Validation and Maximum Likelihood estimations of hyper-parameters of
Gaussian processes with model misspecification". Computational Statistics and Data Analysis, 66,
55-69 doi:10.1016/j.csda.2013.03.016

N.A.C. Cressie (1993), Statistics for spatial data. Wiley series in probability and mathematical
statistics.

O. Dubrule (1983), "Cross validation of Kriging in a unique neighborhood". Mathematical Geology,
15, 687-699.

J.D. Martin and T.W. Simpson (2005), "Use of kriging models to approximate deterministic com-
puter models". AIAA Journal, 43 no. 4, 853-863.

M. Schonlau (1997), Computer experiments and global optimization. Ph.D. thesis, University of
Waterloo.

See Also

predict.gp, plot.gp

inputNames Generic Function: Names of the Inputs of a Covariance Kernel

Description

Generic function returning or setting the names of the inputs attached with a covariance kernel.

Usage

inputNames(object, ...)

S4 replacement method for signature 'covAll'
inputNames(object, ...) <- value

Arguments

object A covariance kernel object.
value A suitable character vector.
... Other arguments for methods.

https://doi.org/10.1016/j.csda.2013.03.016

k1Exp 71

Value

A character vector with distinct input names that are used e.g. in prediction.

Note

The input names are usually checked to control that they match the colnames of a spatial design
matrix. They play an important role since in general the inputs are found among other columns of
a data frame, and their order is not fixed. For instance in a data frame used as newdata formal in
the predict method, the inputs are generally found at positions which differ from those in the data
frame used at the creation of the object.

See Also

checkX

k1Exp Predefined covMan Objects for 1D Kernels

Description

Predefined kernel Objects as covMan objects.

Usage

k1Exp
k1Matern3_2
k1Matern5_2
k1Gauss

Format

Objects with class "covMan".

Details

These objects are provided mainly as examples. They are used covTS.

Examples

set.seed(1234)
x <- sort(runif(40))
X <- cbind(x = x)
yExp <- simulate(k1Exp, nsim = 20, X = X)
matplot(X, yExp, type = "l", col = "SpringGreen", ylab = "")
yGauss <- simulate(k1Gauss, nsim = 20, X = X)
matlines(X, yGauss, col = "orangered")
title("Simulated paths from 'k1Exp' (green) and 'k1Gauss' (orange)")

72 k1Matern3_2

==
You can build a similar object using a creator of
'covMan'. Although the objects 'k1Gauss' and 'myk1Gauss' differ,
they describe the same mathematical object.
==

myk1Gauss <- kGauss(d = 1)

k1Matern3_2 One-Dimensional Classical Covariance Kernel Functions

Description

One-dimensional classical covariance kernel Functions.

Usage

k1FunExp(x1, x2, par)
k1FunGauss(x1, x2, par)
k1FunPowExp(x1, x2, par)
k1FunMatern3_2(x1, x2, par)
k1FunMatern5_2(x1, x2, par)

k1Fun1Cos(x)
k1Fun1Exp(x)
k1Fun1Gauss(x)
k1Fun1PowExp(x, alpha = 1.5)
k1Fun1Matern3_2(x)
k1Fun1Matern5_2(x)

Arguments

x1 First location vector.

x2 Second location vector. Must have the same length as x1.

x For stationary covariance functions, the vector containing difference of posi-
tions: x = x1 - x2.

alpha Regularity parameter in (0, 2] for Power Exponential covariance function.

par Vector of parameters. The length and the meaning of the elements in this vector
depend on the chosen kernel. The first parameter is the range parameter (if there
is one), the last is the variance. So the shape parameter of k1FunPowExp is the
second one out of the three parameters.

Details

These kernel functions are described in the Roustant et al (2012), table 1 p. 8. More details are
given in chap. 4 of Rasmussen et al (2006).

k1Matern3_2 73

Value

A matrix with a "gradient" attribute. This matrix has n1 rows and n2 columns where n1 and n2

are the length of x1 and x2. If x1 and x2 have length 1, the attribute is a vector of the same length p
as par and gives the derivative of the kernel with respect to the parameters in the same order. If x1
or x2 have length > 1, the attribute is an array with dimension (n1, n2, p).

Note

The kernel functions are coded in C through the .Call interface and are mainly intended for internal
use. They are used by the covTS class.

Be aware that very few checks are done (length of objects, order of the parameters, ...).

Author(s)

Oivier Roustant, David Ginsbourger, Yves Deville

References

C.E. Rasmussen and C.K.I. Williams (2006), Gaussian Processes for Machine Learning, the MIT
Press, doi:10.7551/mitpress/3206.001.0001

O. Roustant, D. Ginsbourger, Y. Deville (2012). "DiceKriging, DiceOptim: Two R Packages for the
Analysis of Computer Experiments by Kriging-Based Metamodeling and Optimization." Journal of
Statistical Software, 51(1), 1-55. doi:10.18637/jss.v051.i01

Examples

show the functions
n <- 300
x0 <- 0
x <- seq(from = 0, to = 3, length.out = n)
kExpVal <- k1FunExp(x0, x, par = c(range = 1, var = 2))
kGaussVal <- k1FunGauss(x0, x, par = c(range = 1, var = 2))
kPowExpVal <- k1FunPowExp(x0, x, par = c(range = 1, shape = 1.5, var = 2))
kMatern3_2Val <- k1FunMatern3_2(x0, x, par = c(range = 1, var = 2))
kMatern5_2Val <- k1FunMatern5_2(x0, x, par = c(range = 1, var = 2))
kerns <- cbind(as.vector(kExpVal), as.vector(kGaussVal), as.vector(kPowExpVal),

as.vector(kMatern3_2Val), as.vector(kMatern5_2Val))
matplot(x, kerns, type = "l", main = "five 'kergp' 1d-kernels", lwd = 2)

extract gradient
head(attr(kPowExpVal, "gradient"))

https://doi.org/10.7551/mitpress/3206.001.0001
https://doi.org/10.18637/jss.v051.i01

74 kGauss

kernelName Name of the One-Dimensional Kernel in a Composite Kernel Object

Description

Name of the 1d kernel in a composite kernel object.

Usage

kernelName(object, ...)

Arguments

object A covariance kernel.

... Arguments for methods.

Value

A character string giving the kernel name.

kGauss Gauss (Squared-Exponential) Kernel

Description

Gauss (or squared exponential) covariance function.

Usage

kGauss(d)

Arguments

d Dimension.

Value

An object of class "covMan" with default parameters: 1 for ranges and variance values.

References

C.E. Rasmussen and C.K.I. Williams (2006), Gaussian Processes for Machine Learning, the MIT
Press, doi:10.7551/mitpress/3206.001.0001

https://doi.org/10.7551/mitpress/3206.001.0001

kMatern 75

Examples

kGauss() # default: d = 1, nu = 5/2
myGauss <- kGauss(d = 2)
coef(myGauss) <- c(range = c(2, 5), sigma2 = 0.1)
myGauss

kMatern Matérn Kernels

Description

Matérn kernels, obtained by plugging the Euclidian norm into a 1-dimensional Matérn function.

Usage

kMatern(d, nu = "5/2")

Arguments

d Dimension.

nu Character corresponding to the smoothness parameter ν of Matérn kernels. At
this stage, the possible values are "1/2" (exponential kernel), "3/2" or "5/2".

Value

An object of class "covMan" with default parameters: 1 for ranges and variance values.

Note

Notice that these kernels are NOT obtained by tensor product.

References

C.E. Rasmussen and C.K.I. Williams (2006), Gaussian Processes for Machine Learning, the MIT
Press, doi:10.7551/mitpress/3206.001.0001

Examples

kMatern() # default: d = 1, nu = 5/2
kMatern(d = 2)
myMatern <- kMatern(d = 5, nu = "3/2")
coef(myMatern) <- c(range = 1:5, sigma2 = 0.1)
myMatern
try(kMatern(nu = 2)) # error

https://doi.org/10.7551/mitpress/3206.001.0001

76 mle-methods

mle Generic Function: Maximum Likelihood Estimation of a Gaussian
Process Model

Description

Generic function for the Maximum Likelihood estimation of a Gaussian Process model.

Usage

mle(object, ...)

Arguments

object An object representing a covariance kernel.

... Other arguments for methods, typically including a response, a design, ...

Value

An estimated model, typically a list.

See Also

mle-methods for examples.

mle-methods Maximum Likelihood Estimation of Gaussian Process Model Parame-
ters

Description

Maximum Likelihood estimation of Gaussian Process models which covariance structure is de-
scribed in a covariance kernel object.

Usage

S4 method for signature 'covAll'
mle(object,

y, X, F = NULL, beta = NULL,
parCovIni = coef(object),
parCovLower = coefLower(object),
parCovUpper = coefUpper(object),
noise = TRUE, varNoiseIni = var(y) / 10,
varNoiseLower = 0, varNoiseUpper = Inf,
compGrad = hasGrad(object),
doOptim = TRUE,

mle-methods 77

optimFun = c("nloptr::nloptr", "stats::optim"),
optimMethod = ifelse(compGrad, "NLOPT_LD_LBFGS", "NLOPT_LN_COBYLA"),
optimCode = NULL,
multistart = 1,
parTrack = FALSE, trace = 0, checkNames = TRUE,
...)

Arguments

object An object representing a covariance kernel.

y Response vector.

X Spatial (or input) design matrix.

F Trend matrix.

beta Vector of trend coefficients if known/fixed.

parCovIni Vector with named elements or matrix giving the initial values for the parame-
ters. See Examples. When this argument is omitted, the vector of covariance
parameters given in object is used if multistart == 1; If multistart > 1, a
matrix of parameters is simulated by using simulPar. Remind that you can use
the coef and coef<- methods to get and set this slot of the covariance object.

parCovLower Lower bounds for the parameters. When this argument is omitted, the vector of
parameters lower bounds in the covariance given in object is used. You can use
coefLower and coefLower<- methods to get and set this slot of the covariance
object.

parCovUpper Upper bounds for the parameters. When this argument is omitted, the vector of
parameters lower bounds in the covariance given in object is used. You can use
coefUpper and coefUpper<- methods to get and set this slot of the covariance
object.

noise Logical. Should a noise be added to the error term?

varNoiseIni Initial value for the noise variance.

varNoiseLower Lower bound for the noise variance. Should be <= varNoiseIni.

varNoiseUpper Upper bound for the noise variance. Should be >= varNoiseIni.

compGrad Logical: compute and use the analytical gradient in optimization? This is only
possible when object provides the analytical gradient.

doOptim Logical. If FALSE no optimization is done.

optimFun Function used for optimization. The two pre-defined choices are nloptr::nloptr
(default) and stats::optim, both in combination with a few specific optimiza-
tion methods. Ignored if optimCode is provided.

optimMethod Name of the optimization method or algorithm. This is passed as the "algorithm"
element of the opts argument when nloptr::nloptr is used (default), or to
the method argument when stats::optim is used. When another value of
optimFun is given, the value of optimMethod is ignored. Ignored if optimCode
is provided. Use optimMethods to obtain the list of usable values.

78 mle-methods

optimCode An object with class "expression" or "character" representing a user-written
R code to be parsed and performing the log-likelihood maximization. Notice
that this argument will bypass optimFun and optimMethod. The expression
must define an object named "opt", which is either a list containing optimiza-
tion results, either an object inheriting from "try-error" to cope with the case
where a problem occurred during the optimization.

multistart Number of optimizations to perform from different starting points (see parCovIni).
Parallel backend is encouraged.

parTrack If TRUE, the parameter vectors used during the optimization are tracked and re-
turned as a matrix.

trace Integer level of verbosity.
checkNames if TRUE (default), check the compatibility of X with object, see checkX.
... Further arguments to be passed to the optimization function, nloptr or optim.

Details

The choice of optimization method is as follows.

• When optimFun is nloptr:nloptr, it is assumed that we are minimizing the negative log-
likelihood − logL. Note that both predefined methods "NLOPT_LD_LBFGS" and "NLOPT_LN_COBYLA"
can cope with a non-finite value of the objective, except for the initial value of the parame-
ter. Non-finite values of − logL are often met in practice during optimization steps. The
method "NLOPT_LD_LBFGS" used when compGrad is TRUE requires that the gradient is pro-
vided by/with the covariance object. You can try other values of optimMethod corresponding
to the possible choice of the "algorithm" element in the opts argument of nloptr:nloptr.
It may be useful to give other options in order to control the optimization and its stopping rule.

• When optimFun is "stats:optim", it is assumed that we are maximizing the log-likelihood
logL. We suggest to use one of the methods "L-BFGS-B" or "BFGS". Notice that control can
be provided in ..., but control$fnscale is forced to be - 1, corresponding to maximization.
Note that "L-BFGS-B" uses box constraints, but the optimization stops as soon as the log-
likelihood is non-finite or NA. The method "BFGS" does not use constraints but allows the log-
likelihood to be non-finite or NA. Both methods can be used without gradient or with gradient
if object allows this.

The vectors parCovIni, parCovLower, parCovUpper must have elements corresponding to those
of the vector of kernel parameters given by coef(object). These vectors should have suitably
named elements.

Value

A list with elements hopefully having understandable names.

opt List of optimization results if it was successful, or an error object otherwise.
coef.kernel The vector of ’kernel’ coefficients. This will include one or several variance

parameters.
coef.trend Estimate of the vector β of the trend coefficients.
parTracked A matrix with rows giving the successive iterates during optimization if the

parTrack argument was set to TRUE.

mle-methods 79

Note

The checks concerning the parameter names, dimensions of provided objects, . . . are not fully im-
plemented yet.

Using the optimCode possibility requires a bit of programming effort, although a typical code only
contains a few lines.

Author(s)

Y. Deville, O. Roustant

See Also

gp for various examples, optimMethods to see the possible values of the argument optimMethod.

Examples

set.seed(29770)

##===
Example. A 4-dimensional "covMan" kernel
##===
d <- 4
myCovMan <-

covMan(
kernel = function(x1, x2, par) {
htilde <- (x1 - x2) / par[1]
SS2 <- sum(htilde^2)
d2 <- exp(-SS2)
kern <- par[2] * d2
d1 <- 2 * kern * SS2 / par[1]
attr(kern, "gradient") <- c(theta = d1, sigma2 = d2)
return(kern)

},
label = "myGauss",
hasGrad = TRUE,
d = 4,
parLower = c(theta = 0.0, sigma2 = 0.0),
parUpper = c(theta = +Inf, sigma2 = +Inf),
parNames = c("theta", "sigma2"),
par = c(NA, NA)
)

kernCode <- "
SEXP kern, dkern;
int nprotect = 0, d;
double SS2 = 0.0, d2, z, *rkern, *rdkern;

d = LENGTH(x1);
PROTECT(kern = allocVector(REALSXP, 1)); nprotect++;
PROTECT(dkern = allocVector(REALSXP, 2)); nprotect++;
rkern = REAL(kern);
rdkern = REAL(dkern);

80 mle-methods

for (int i = 0; i < d; i++) {
z = (REAL(x1)[i] - REAL(x2)[i]) / REAL(par)[0];
SS2 += z * z;

}

d2 = exp(-SS2);
rkern[0] = REAL(par)[1] * d2;
rdkern[1] = d2;
rdkern[0] = 2 * rkern[0] * SS2 / REAL(par)[0];

SET_ATTR(kern, install(\"gradient\"), dkern);
UNPROTECT(nprotect);
return kern;

"

inline the C function into an R function: MUCH MORE EFFICIENT!!!
Not run:
require(inline)
kernC <- cfunction(sig = signature(x1 = "numeric", x2 = "numeric",

par = "numeric"),
body = kernCode)

myCovMan <- covMan(kernel = kernC, hasGrad = TRUE, label = "myGauss", d = 4,
parNames = c("theta", "sigma2"),
parLower = c("theta" = 0.0, "sigma2" = 0.0),
parUpper = c("theta" = Inf, "sigma2" = Inf))

End(Not run)

##===
Example (continued). Simulate data for covMan and trend
##===
n <- 100;
X <- matrix(runif(n * d), nrow = n)
colnames(X) <- inputNames(myCovMan)

coef(myCovMan) <- myPar <- c(theta = 0.5, sigma2 = 2)
C <- covMat(object = myCovMan, X = X,

compGrad = FALSE, index = 1L)

library(MASS)
set.seed(456)
y <- mvrnorm(mu = rep(0, n), Sigma = C)
p <- rpois(1, lambda = 4)
if (p > 0) {

F <- matrix(runif(n * p), nrow = n, ncol = p)
beta <- rnorm(p)
y <- F %*% beta + y

} else F <- NULL
par <- parCovIni <- c("theta" = 0.6, "sigma2" = 4)

##===
Example (continued). ML estimation. Note the 'partrack' argument

mle-methods 81

##===
est <- mle(object = myCovMan,

parCovIni = parCovIni,
y = y, X = X, F = F,
parCovLower = c(0.05, 0.05), parCovUpper = c(10, 100),
parTrack = TRUE, noise = FALSE, checkNames = FALSE)

estoptvalue

change the (constrained) optimization method
Not run:
est1 <- mle(object = myCovMan,

parCovIni = parCovIni,
optimFun = "stats::optim",
optimMethod = "L-BFGS-B",
y = y, X = X, F = F,
parCovLower = c(0.05, 0.05), parCovUpper = c(10, 100),
parTrack = TRUE, noise = FALSE, checkNames = FALSE)

est1optvalue

End(Not run)

##===
Example (continued). Grid for graphical analysis
##===
Not run:

theta.grid <- seq(from = 0.1, to = 0.7, by = 0.2)
sigma2.grid <- seq(from = 0.3, to = 6, by = 0.4)
par.grid <- expand.grid(theta = theta.grid, sigma2 = sigma2.grid)
ll <- apply(as.matrix(par.grid), 1, est$logLikFun)
llmat <- matrix(ll, nrow = length(theta.grid),

ncol = length(sigma2.grid))

End(Not run)

##===
Example (continued). Explore the surface ?
##===
Not run:

require(rgl)
persp3d(x = theta.grid, y = sigma2.grid, z = ll,

xlab = "theta", ylab = "sigma2", zlab = "logLik",
col = "SpringGreen3", alpha = 0.6)

End(Not run)

##===
Example (continued). Draw a contour plot for the log-lik
and show iterates
##===
Not run:

contour(x = theta.grid, y = sigma2.grid, z = llmat,
col = "SpringGreen3", xlab = "theta", ylab = "sigma2",
main = "log-likelihood contours and iterates",

82 npar

xlim = range(theta.grid, est$parTracked[, 1], na.rm = TRUE),
ylim = range(sigma2.grid, est$parTracked[, 2], na.rm = TRUE))

abline(v = est$coef.kernel[1], h = est$coef.kernel[2], lty = "dotted")
niter <- nrow(est$parTracked)
points(est$parTracked[1:niter-1,],

col = "orangered", bg = "yellow", pch = 21, lwd = 2, type = "o")
points(est$parTracked[niter, , drop = FALSE],

col = "blue", bg = "blue", pch = 21, lwd = 2, type = "o", cex = 1.5)
ann <- seq(from = 1, to = niter, by = 5)
text(x = est$parTracked[ann, 1], y = est$parTracked[ann, 2],

labels = ann - 1L, pos = 4, cex = 0.8, col = "orangered")
points(x = myPar["theta"], y = myPar["sigma2"],

bg = "Chartreuse3", col = "ForestGreen",
pch = 22, lwd = 2, cex = 1.4)

legend("topright", legend = c("optim", "optim (last)", "true"),
pch = c(21, 21, 22), lwd = c(2, 2, 2), lty = c(1, 1, NA),
col = c("orangered", "blue", "ForestGreen"),
pt.bg = c("yellow", "blue", "Chartreuse3"))

End(Not run)

npar Generic function: Number of Free Parameters in a Covariance Kernel

Description

Generic function returning the number of free parameters in a covariance kernel.

Usage

npar(object, ...)

Arguments

object A covariance kernel object.

... Other arguments for methods.

Value

The number of parameters.

npar-methods 83

npar-methods Number of Parameters for a Covariance Kernel Object

Description

Number of parameters for a covariance kernel object.

Usage

S4 method for signature 'covMan'
npar(object, ...)

S4 method for signature 'covTS'
npar(object, ...)

Arguments

object An object with S4 class corresponding to a covariance kernel.
... Not used yet.

Value

The number of parameters.

See Also

coef method

optimMethods Optimization Methods (or Algorithms) for the mle Method

Description

Optimization methods (or algorithms) for the mle method.

Usage

optimMethods(optimMethod = NULL,
optimFun = c("both", "nloptr::nloptr", "stats::optim"))

Arguments

optimMethod A character string used to find a method in a possible approximated fashion, see
Examples.

optimFun Value of the corresponding formal argument of the mle method, or "both". In
the later case the full list of algorithms will be obtained.

84 parMap

Value

A data frame with four character columns: optimFun, optimMethod, globLoc and derNo. The
column globLoc indicate whether the method is global ("G") or local ("L"). The column derNo
indicates whether the method uses derivatives (D) or not ("N") or possibly uses it ("P"). Only
methods corresponding the optimFun = "stats::optim" can have the value "P" for derNo. The
data frame can be zero-row if optimMethod is given and no method match.

Caution

The optimization method given in the argument optimMethod of the mle method should be compli-
ant with the compGrad argument. Only a small number of possibilities have been tested, including
the default values.

References

See The NLopt website.

See Also

mle-methods, optim, nloptr.

Examples

optimMethods()
optimMethods(optimMethod = "cobyla")
optimMethods(optimMethod = "nelder")
optimMethods(optimMethod = "BFGS")
optimMethods("CMAES")

parMap Generic Function: Map the Parameters of a Composite Covariance
Kernel

Description

Map the parameter of a composite covariance kernel on the inputs and the parameters of the 1d
kernel.

Usage

parMap(object, ...)

Arguments

object A composite covariance kernel.

... Arguments for methods.

https://nlopt.readthedocs.io/en/latest/

parMap-methods 85

Value

A matrix with one row by input and one column for each of the parameters of the 1d kernel.

parMap-methods Map the Parameters of a Structure on the Inputs and Kernel Parame-
ters

Description

Map the parameters of a structure on the inputs and kernel parameters.

Usage

S4 method for signature 'covTS'
parMap(object, ...)

Arguments

object An object with class "covTS".

... Not used yet.

Value

A matrix with integer values. The rows correspond to the inputs of the object and the columns to the
1d kernel parameters. The matrix element is the number of the corresponding official coefficient.
The same parameter of the structure can be used for several inputs but not (yet) for several kernel
parameters. So each row must have different integer elements, while the same element can be
repeated within a column.

Note

This function is for internal use only.

Examples

myCov <- covTS(d = 3, kernel = "k1Gauss",
dep = c(range = "input"), value = c(range = 1.1))

parMap(myCov)

86 parseCovFormula

parNamesSymm Vector of Names for the General ’Symm’ Parameterisation

Description

Vector of names for the general ’Symm’ parameterisation.

Usage

parNamesSymm(nlev)

Arguments

nlev Number of levels.

Value

Character vector of names.

Examples

parNamesSymm(nlev = 4)

parseCovFormula Parse a Formula or Expression Describing a Composite Covariance
Kernel

Description

Parse a formula (or expression) describing a composite covariance kernel.

Usage

parseCovFormula(formula, where = .GlobalEnv, trace = 0)

Arguments

formula A formula or expression describing a covariance kernel. See Examples.

where An environment where kernel objects and top parameters are searched for.

trace Integer level of verbosity.

parseCovFormula 87

Details

The formula involves existing covariance kernel objects and must define a valid kernel composi-
tion rule. For instance the sum and the product of kernels, the convex combination of kernels are
classically used. The kernels objects are used in the formula with parentheses as is they where
functions calls with no formal arguments e.g. obj(). Non-kernel objects used in the formula must
be numeric scalar parameters and are called top parameters. The covariance objects must exist in
the environment defined by where because their slots will be used to identify the inputs and the
parameters of the composite kernel defined by the formula.

Value

A list with the results of parsing. Although the results content is easy to understand, the function is
not intended to be used by the final user, and the results may change in future versions.

Caution

Only relatively simple formulas are correctly parsed. So use only formulas having a structure similar
to one of those given in the examples. In case of problems, error messages are likely to be difficult
to understand.

Note

The parsing separates covariance objects from top parameters. It retrieves information about the
kernel inputs and parameters from the slots. Obviously, any change in the covariances objects after
the parsing (e.g. change in the parameters names or values) will not be reported in the results of the
parsing, so kernel any needed customization must be done prior to the parsing.

Author(s)

Yves Deville

Examples

===
build some kernels (with their inputNames) in the global environment
===

myCovExp3 <- kMatern(d = 3, nu = "1/2")
inputNames(myCovExp3) <- c("x", "y", "z")

myCovGauss2 <- kGauss(d = 2)
inputNames(myCovGauss2) <- c("temp1", "temp2")

k <- kMatern(d = 1)
inputNames(k) <- "x"

ell <- kMatern(d = 1)
inputNames(ell) <- "y"

===

88 plot

Parse a formula. This formula is stupid because 'myCovGauss2'
and 'myCovExp3' should be CORRELATION kernels and not
covariance kernels to produce an identifiable model.
===

cov <- ~ tau2 * myCovGauss2() * myCovExp3() + sigma2 * k()
pf <- parseCovFormula(cov, trace = 1)

===
Parse a formula with ANOVA composition
===

cov1 <- ~ tau2 * myCovGauss2() * myCovExp3() + sigma2 * (1 + k()) * (1 + ell())
pf1 <- parseCovFormula(cov1, trace = 1)

plot Plot for a qualitative input

Description

Plots of the covariance matrix or the correlation matrix of a qualitative input. For an ordinal factor,
the warping function can also be plotted.

Usage

S4 method for signature 'covQual'
plot(x, y, type = c("cov", "cor", "warping"), ...)

Arguments

x An object of class covQual-class.

y Not used.

type A character indicating the desired type of plot. Type warping only works for an
ordinal input.

... Other arguments passed to corrplot::corrplot or plot.

Details

Covariance / correlation plots are done with package corrplot if loaded, or lattice else.

See Also

covOrd.

plot.gp 89

Examples

u <- ordered(1:6, levels = letters[1:6])

myCov2 <- covOrd(ordered = u, k1Fun1 = k1Fun1Cos, warpFun = "norm")
coef(myCov2) <- c(mean = 0.5, sd = 0.05, theta = 0.1)

plot(myCov2, type = "cor", method = "ellipse")
plot(myCov2, type = "warp", col = "blue", lwd = 2)

plot.gp Diagnostic Plot for the Validation of a gp Object

Description

Three plots are currently available, based on the influence results: one plot of fitted values against
response values, one plot of standardized residuals, and one qqplot of standardized residuals.

Usage

S3 method for class 'gp'
plot(x, y, kriging.type = "UK",

trend.reestim = TRUE, which = 1:3, ...)

Arguments

x An object with S3 class "gp".
y Not used.
kriging.type Optional character string corresponding to the GP "kriging" family, to be chosen

between simple kriging ("SK") or universal kriging ("UK").
trend.reestim Should the trend be re-estimated when removing an observation? Default to

TRUE.
which A subset of {1, 2, 3} indicating which figures to plot (see Description above).

Default is 1:3 (all figures).
... No other argument for this method.

Details

The standardized residuals are defined by [y(xi)−ŷ−i(xi)]/σ̂−i(xi), where y(xi) is the response at
the location xi, ŷ−i(xi) is the fitted value when the i-th observation is omitted (see influence.gp),
and σ̂−i(xi) is the corresponding kriging standard deviation.

Value

A list composed of the following elements where n is the total number of observations.

mean A vector of length n. The i-th element is the kriging mean (including the trend)
at the i-th observation number when removing it from the learning set.

sd A vector of length n. The i-th element is the kriging standard deviation at the
i-th observation number when removing it from the learning set.

90 plot.simulate.gp

Warning

Only trend parameters are re-estimated when removing one observation. When the number n of
observations is small, re-estimated values can substantially differ from those obtained with the
whole learning set.

References

F. Bachoc (2013), "Cross Validation and Maximum Likelihood estimations of hyper-parameters of
Gaussian processes with model misspecification". Computational Statistics and Data Analysis, 66,
55-69.

N.A.C. Cressie (1993), Statistics for spatial data. Wiley series in probability and mathematical
statistics.

O. Dubrule (1983), "Cross validation of Kriging in a unique neighborhood". Mathematical Geology,
15, 687-699.

J.D. Martin and T.W. Simpson (2005), "Use of kriging models to approximate deterministic com-
puter models". AIAA Journal, 43 no. 4, 853-863.

M. Schonlau (1997), Computer experiments and global optimization. Ph.D. thesis, University of
Waterloo.

See Also

predict.gp and influence.gp, the predict and influence methods for "gp".

plot.simulate.gp Plot Simulations from a gp Object

Description

Function to plot simulations from a gp object.

Usage

S3 method for class 'simulate.gp'
plot(x, y,

col = list(sim = "SpringGreen3", trend = "orangered"),
show = c(sim = TRUE, trend = TRUE, y = TRUE),
...)

Arguments

x An object containing simulations, produced by ’simulate’ with output = "list".

y Not used yet.

col Named list of colors to be used, with elements "sim" and "trend".

show A logical vector telling which elements must be shown.

... Further argument passed to plot.

predict.gp 91

Value

Nothing.

Note

For now, this function can be used only when the number of inputs is one.

See Also

simulate.gp.

predict.gp Prediction Method for the "gp" S3 Class

Description

Prediction method for the "gp" S3 class.

Usage

S3 method for class 'gp'
predict(object, newdata,

type = ifelse(object$trendKnown, "SK", "UK"),
seCompute = TRUE, covCompute = FALSE,
lightReturn = FALSE, biasCorrect = FALSE,
forceInterp,
...)

Arguments

object An object with S3 class "gp".

newdata A data frame containing all the variables required for prediction: inputs and
trend variables, if applicable.

type A character string corresponding to the GP "kriging" family, to be chosen be-
tween simple kriging ("SK"), or universal kriging ("UK").

seCompute Optional logical. If FALSE, only the kriging mean is computed. If TRUE, the
kriging variance (actually, the corresponding standard deviation) and prediction
intervals are computed too.

covCompute Logical. If TRUE the covariance matrix is computed.

lightReturn Optional logical. If TRUE, c and cStar are not returned. This should be reserved
to expert users who want to save memory and know that they will not miss these
values.

biasCorrect Optional logical to correct bias in the UK variance and covariances. Default is
FALSE. See Details below.

92 predict.gp

forceInterp Logical used to force a nugget-type prediction. If TRUE, the noise will be inter-
preted as a nugget effect. This argument is likely to be removed in the future.

... Not used yet.

Details

The estimated (UK) variance and covariances are NOT multiplied by n/(n − p) by default (n and
p denoting the number of rows and columns of the trend matrix F). Recall that this correction
would contribute to limit bias: it would totally remove it if the correlation parameters were known
(which is not the case here). However, this correction is often ignored in the context of computer
experiments, especially in adaptive strategies. It can be activated by turning biasCorrect to TRUE,
when type = "UK"

Value

A list with the following elements.

mean GP mean ("kriging") predictor (including the trend) computed at newdata.

sd GP prediction ("kriging") standard deviation computed at newdata. Not com-
puted if seCompute is FALSE.

sdSK Part of the above standard deviation corresponding to simple kriging (coincides
with sd when type = "SK"). Not computed if seCompute is FALSE.

trend The computed trend function, evaluated at newdata.

cov GP prediction ("kriging") conditional covariance matrix. Not computed if covCompute
is FALSE (default).

lower95

upper95 Bounds of the 95 % GP prediction interval computed at newdata (to be inter-
preted with special care when parameters are estimated, see description above).
Not computed if seCompute is FALSE.

c An auxiliary matrix c, containing all the covariances between the points in
newdata and those in the initial design. Not returned if lightReturn is TRUE.

cStar An auxiliary vector, equal to L−1c where L is the Cholesky root of the covari-
ance matrix C used in the estimation. Not returned if lightReturn is TRUE.

Author(s)

O. Roustant, D. Ginsbourger, Y. Deville

See Also

gp for the creation/estimation of a model. See gls-methods for the signification of the auxiliary
variables.

prinKrige 93

prinKrige Principal Kriging Functions

Description

Principal Kriging Functions.

Usage

prinKrige(object)

Arguments

object An object with class "gp".

Details

The Principal Kriging Functions (PKF) are the eigenvectors of a symmetric positive matrix B
named the Bending Energy Matrix which is met when combining a linear trend and a covariance
kernel as done in gp. This matrix has dimension n × n and rank n − p. The PKF are given in the
ascending order of the eigenvalues ei

e1 = e2 = · · · = ep = 0 < ep+1 ≤ ep+2 ≤ · · · ≤ en.

The p first PKF generate the same space as do the p columns of the trend matrix F, say colspan(F).
The following n − p PKFs generate a supplementary of the subspace colspan(F), and they have a
decreasing influence on the response. So the p+1-th PKF can give a hint on a possible deterministic
trend functions that could be added to the p existing ones.

The matrix B is such that BF = 0, so the columns of F can be thought of as the eigenvectors that
are associated with the zero eigenvalues e1, . . . , ep.

Value

A list

values The eigenvalues of the energy bending matrix in ascending order. The first p
values must be very close to zero, but will not be zero since they are provided
by numerical linear algebra.

vectors A matrix U with its columns ui equal to the eigenvectors of the energy bending
matrix, in correspondence with the eigenvalues ei.

B The Energy Bending Matrix B. Remind that the eigenvectors are used here in
the ascending order of the eigenvalues, which is the reverse of the usual order.

94 q1CompSymm

Note

When an eigenvalue ei is such that ei−1 < ei < ei+1 (which can happen only for i > p), the
corresponding PKF is unique up to a change of sign. However a run of r > 1 identical eigenvalues
is associated with a r-dimensional eigenspace and the corresponding PKFs have no meaning when
they are considered individually.

References

Sahu S.K. and Mardia K.V. (2003). A Bayesian kriged Kalman model for short-term forecasting of
air pollution levels. Appl. Statist. 54 (1), pp. 223-244.

Examples

library(kergp)
set.seed(314159)
n <- 100
x <- sort(runif(n))
y <- 2 + 4 * x + 2 * x^2 + 3 * sin(6 * pi * x) + 1.0 * rnorm(n)
nNew <- 60; xNew <- sort(runif(nNew))
df <- data.frame(x = x, y = y)

##---
use a Matern 3/2 covariance and a mispecified trend. We should guess
that it lacks a mainily linear and slightly quadratic part.
##---

myKern <- k1Matern3_2
inputNames(myKern) <- "x"
mygp <- gp(formula = y ~ sin(6 * pi * x),

data = df,
parCovLower = c(0.01, 0.01), parCovUpper = c(10, 100),
cov = myKern, estim = TRUE, noise = TRUE)

PK <- prinKrige(mygp)

the third PKF suggests a possible linear trend term, and the
fourth may suggest a possible quadratic linear trend

matplot(x, PK$vectors[, 1:4], type = "l", lwd = 2)

q1CompSymm Qualitative Correlation or Covariance Kernel with one Input and
Compound Symmetric Correlation

Description

Qualitative correlation or covariance kernel with one input and compound symmetric correlation.

q1CompSymm 95

Usage

q1CompSymm(factor, input = "x", cov = c("corr", "homo"), intAsChar = TRUE)

Arguments

factor A factor with the wanted levels for the covariance kernel object.

input Name of (qualitative) input for the kernel.

cov Character telling if the kernel is a correlation kernel or a homoscedastic covari-
ance kernel.

intAsChar Logical. If TRUE (default), an integer-valued input will be coerced into a charac-
ter. Otherwise, it will be coerced into a factor.

Value

An object with class "covQual" with d = 1 qualitative input.

Note

Correlation kernels are needed in tensor products because the tensor product of two covariance
kernels each with unknown variance would not be identifiable.

See Also

The corLevCompSymm function used to compute the correlation matrix and its gradients w.r.t. the
correlation parameters.

Examples

School <- factor(1L:3L, labels = c("Bad", "Mean" , "Good"))
myCor <- q1CompSymm(School, input = "School")
coef(myCor) <- 0.26
plot(myCor, type = "cor")

Use a data.frame with a factor
set.seed(246)
newSchool <- factor(sample(1L:3L, size = 20, replace = TRUE),

labels = c("Bad", "Mean" , "Good"))
C1 <- covMat(myCor, X = data.frame(School = newSchool),

compGrad = FALSE, lowerSQRT = FALSE)

96 q1Diag

q1Diag Qualitative Correlation or Covariance Kernel with one Input and Di-
agonal Structure

Description

Qualitative correlation or covariance kernel with one input and diagonal structure.

Usage

q1Diag(factor, input = "x", cov = c("corr", "homo", "hete"), intAsChar = TRUE)

Arguments

factor A factor with the wanted levels for the covariance kernel object.

input Name of (qualitative) input for the kernel.

cov Character telling if the result is a correlation kernel, an homoscedastic covari-
ance kernel or an heteroscedastic covariance kernel with an arbitrary variance
vector.

intAsChar Logical. If TRUE (default), an integer-valued input will be coerced into a charac-
ter. Otherwise, it will be coerced into a factor.

Value

An object with class "covQual" with d = 1 qualitative input.

Note

The correlation version obtained with cov = "corr" has no parameters.

See Also

q1Symm, q1CompSymm are other covariance structures for one qualitative input.

Examples

School <- factor(1L:3L, labels = c("Bad", "Mean" , "Good"))

correlation: no parameter!
myCor <- q1Diag(School, input = "School")

covariance
myCov <- q1Diag(School, input = "School", cov = "hete")
coef(myCov) <- c(1.1, 2.2, 3.3)

q1LowRank 97

q1LowRank Qualitative Correlation or Covariance Kernel with one Input and
Low-Rank Correlation

Description

Qualitative correlation or covariance kernel with one input and low-rank correlation.

Usage

q1LowRank(factor, rank = 2L, input = "x",
cov = c("corr", "homo", "hete"), intAsChar = TRUE)

Arguments

factor A factor with the wanted levels for the covariance kernel object.

rank The wanted rank, which must be ≥ 2 and < m where m is the number of levels.

input Name of (qualitative) input for the kernel.

cov Character telling what variance structure will be chosen: correlation with no
variance parameter, homoscedastic with one variance parameter or heteroscedas-
tic with m variance parameters.

intAsChar Logical. If TRUE (default), an integer-valued input will be coerced into a charac-
ter. Otherwise, it will be coerced into a factor.

Details

The correlation structure involves (r−1)(m−r/2) parameters. The parameterization of Rapisarda
et al is used: the correlation parameters are angles θi,j corresponding to 1 < i ≤ r and 1 ≤ j < i
or to r < i ≤ m and 1 ≤ j < r. The correlation matrix C for the levels, with size m, factors
as C = LL⊤ where L is a lower-triangular matrix with dimension m × r with all its rows having
unit Euclidean norm. Note that the diagonal elements of L can be negative and correspondingly
the angles θi,1 are taken in the interval [0, 2π) for 1 < i ≤ r. The matrix L is not unique. As
explained in Grubišić and Pietersz, the parameterization is surjective: any correlation with rank ≤ r
is obtained by choosing a suitable vector of parameters, but this vector is not unique.

Correlation kernels are needed in tensor products because the tensor product of two covariance
kernels each with unknown variance would not be identifiable.

Value

An object with class "covQual" with d = 1 qualitative input.

98 q1Symm

References

Francesco Rapisarda, Damanio Brigo, Fabio Mercurio (2007). "Parameterizing Correlations a Ge-
ometric Interpretation". IMA Journal of Management Mathematics, 18(1): 55-73.

Igor Grubišić, Raoul Pietersz (2007). "Efficient Rank Reduction of Correlation Matrices". Linear
Algebra and its Applications, 422: 629-653.

See Also

The q1Symm function to create a kernel object for the full-rank case and corLevLowRank for the
correlation function.

Examples

myFact <- factor(letters[1:8])
myCov <- q1LowRank(factor = myFact, rank = 3)
corrplot
plot(myCov)
find the rank using a pivoted Cholesky
chol(covMat(myCov), pivot = TRUE)

q1Symm Qualitative Correlation or Covariance Kernel with one Input and Gen-
eral Symmetric Correlation

Description

Qualitative correlation or covariance kernel with one input and general symmetric correlation.

Usage

q1Symm(factor, input = "x", cov = c("corr", "homo", "hete"), intAsChar = TRUE)

Arguments

factor A factor with the wanted levels for the covariance kernel object.

input Name of (qualitative) input for the kernel.

cov Character telling if the result is a correlation kernel, an homoscedastic covari-
ance kernel or an heteroscedastic covariance kernel with an arbitrary variance
vector.

intAsChar Logical. If TRUE (default), an integer-valued input will be coerced into a charac-
ter. Otherwise, it will be coerced into a factor.

Value

An object with class "covQual" with d = 1 qualitative input.

scores 99

Note

Correlation kernels are needed in tensor products because the tensor product of two covariance
kernels each with unknown variance would not be identifiable.

See Also

The corLevSymm function used to compute the correlation matrix and its gradients w.r.t. the corre-
lation parameters.

Examples

School <- factor(1L:3L, labels = c("Bad", "Mean" , "Good"))
myCor <- q1Symm(School, input = "School")
coef(myCor) <- c(theta_2_1 = pi / 3, theta_3_1 = pi / 4, theta_3_2 = pi / 8)
plot(myCor, type = "cor")

Use a data.frame with a factor
set.seed(246)
newSchool <- factor(sample(1L:3L, size = 20, replace = TRUE),

labels = c("Bad", "Mean" , "Good"))
C1 <- covMat(myCor, X = data.frame(School = newSchool),

compGrad = FALSE, lowerSQRT = FALSE)

scores Generic Function: Scores for a Covariance Kernel Object

Description

Generic function returning the scores for a covariance kernel object.

Usage

scores(object, ...)

Arguments

object A covariance object.

... Other arguments passed to methods.

Details

Compute the derivatives ∂θkℓ for the (possibly concentrated) log-likelihood ℓ := logL of a covari-
ance object with parameter vector θ. The score for θk is obtained as a matrix scalar product

∂θkℓ = trace(WD)

where D := ∂θkC and where W is the matrix W := ee⊤ − C−1. The vector e is the vector of
residuals and the matrix C is the covariance computed for the design X.

100 shapeSlot

Value

A numeric vector of length npar(object) containing the scores.

Note

The scores can be efficiently computed when the matrix W has already been pre-computed.

shapeSlot Extracts the Slots of a Structure

Description

Extract the slot of a structure.

Usage

shapeSlot(object, slotName = "par", type = "all", as = "vector")

Arguments

object An object to extract from, typically a covariance kernel.

slotName Name of the slot to be extracted.

type Type of slot to be extracted. Can be either a type of parameter, "var" or "all".

as Type of result wanted. Can be "vector", "list" or "matrix".

Value

A vector, list or matrix containing the extraction.

Note

This function is for internal use only.

simulate, covAll-method 101

simulate, covAll-method

Simulation of a covAll Object

Description

Simulation of a covAll object.

Usage

S4 method for signature 'covAll'
simulate(object, nsim = 1, seed = NULL,

X, mu = NULL, method = "mvrnorm", checkNames = TRUE,
...)

Arguments

object A covariance kernel object.

nsim Number of simulated paths.

seed Not used yet.

X A matrix with the needed inputs as its columns.

mu Optional vector with length nrow(X) giving the expectation µ(x) of the Gaus-
sian Process at the simulation locations x.

method Character used to choose the simulation method. For now the only possible
value is "mvrnorm" corresponding to the function with this name in the MASS
package.

checkNames Logical. It TRUE the colnames of X and the input names of object as given by
inputNames(object) must be identical sets.

... Other arguments for methods.

Value

A numeric matrix with nrow(X) rows and nsim columns. Each column is the vector of the simulated
path at the simulation locations.

Note

The simulation is unconditional.

See Also

The mvrnorm function.

102 simulate.gp

Examples

-- as in example(kergp) define an argumentwise invariant kernel --

kernFun <- function(x1, x2, par) {
h <- (abs(x1) - abs(x2)) / par[1]
S <- sum(h^2)
d2 <- exp(-S)
K <- par[2] * d2
d1 <- 2 * K * S / par[1]
attr(K, "gradient") <- c(theta = d1, sigma2 = d2)
return(K)

}

covSymGauss <- covMan(kernel = kernFun,
hasGrad = TRUE,
label = "argumentwise invariant",
d = 2,
parNames = c("theta", "sigma2"),
par = c(theta = 0.5, sigma2 = 2))

-- simulate a path from the corresponding GP --

nGrid <- 24; n <- nGrid^2; d <- 2
xGrid <- seq(from = -1, to = 1, length.out = nGrid)
Xgrid <- expand.grid(x1 = xGrid, x2 = xGrid)

ySim <- simulate(covSymGauss, X = Xgrid)
contour(x = xGrid, y = xGrid,

z = matrix(ySim, nrow = nGrid, ncol = nGrid),
nlevels = 15)

simulate.gp Simulation of Paths from a gp Object

Description

Simulation of paths from a gp object.

Usage

S3 method for class 'gp'
simulate(object, nsim = 1L, seed = NULL,

newdata = NULL,
cond = TRUE,
trendKnown = FALSE,
newVarNoise = NULL,
nuggetSim = 1e-8,
checkNames = TRUE,
output = c("list", "matrix"),

simulate.gp 103

label = "y", unit = "",
...)

Arguments

object An object with class "gp".
nsim Number of paths wanted.
seed Not used yet.
newdata A data frame containing the inputs values used for simulation as well as the

required trend covariates, if any. This is similar to the newdata formal in
predict.gp.

cond Logical. Should the simulations be conditional on the observations used in the
object or not?

trendKnown Logical. If TRUE the vector of trend coefficients will be regarded as known so
all simulated paths share the same trend. When FALSE, the trend must have been
estimated so that its estimation covariance is known. Then each path will have
a different trend.

newVarNoise Variance of the noise for the "new" simulated observations. For the default NULL,
the noise variance found in object is used. Note that if a very small positive
value is used, each simulated path is the sum of the trend the smooth GP part
and an interval containing say 95% of the simulated responses can be regarded
as a confidence interval rather than a prediction interval.

nuggetSim Small positive number ("nugget") added to the diagonal of conditional covari-
ance matrices before computing a Cholesky decomposition, for numerical lack
of positive-definiteness. This may happen when the covariance kernel is not
(either theoretically or numerically) positive definite.

checkNames Logical. It TRUE the colnames of X and the input names of the covariance in
object as given by inputNames(object) must be identical sets.

output The type of output wanted. A simple matrix as in standard simulation methods
may be quite poor, since interesting intermediate results are then lost.

label, unit A label and unit that will be copied into the output object when output is
"list".

... Further arguments to be passed to the simulate method of the "covAll" class.

Value

A matrix with the simulated paths as its columns or a more complete list with more results. This
list which is given the S3 class "simulate.gp" has the following elements.

X, F, y Inputs, trend covariates and response.
XNew, FNew New inputs, new trend covariates.
sim Matrix of simulated paths.
trend Matrix of simulated trends.
trendKnown, noise, newVarNoise

Values of the formals.
Call The call.

104 simulate.gp

Note

When betaKnown is FALSE, the trend and the smooth GP parts of a simulation are usually correlated,
and their sum will show less dispersion than each of the two components. The covariance of the
vector β̂ can be regarded as the posterior distribution corresponding to a non-informative prior, the
distribution from which a new path is drawn being the predictive distribution.

Author(s)

Yves Deville

Examples

set.seed(314159)
n <- 40
x <- sort(runif(n))
y <- 2 + 4 * x + 2 * x^2 + 3 * sin(6 * pi * x) + 1.0 * rnorm(n)
df <- data.frame(x = x, y = y)

##---
use a Matern 3/2 covariance. With model #2, the trend is mispecified,
so the smooth GP part of the model captures a part of the trend.
##---

myKern <- k1Matern3_2
inputNames(myKern) <- "x"
mygp <- list()
mygp[[1]] <- gp(formula = y ~ x + I(x^2) + sin(6 * pi * x), data = df,

parCovLower = c(0.01, 0.01), parCovUpper = c(10, 100),
cov = myKern, estim = TRUE, noise = TRUE)

mygp[[2]] <- gp(formula = y ~ sin(6 * pi * x), data = df,
parCovLower = c(0.01, 0.01), parCovUpper = c(10, 100),
cov = myKern, estim = TRUE, noise = TRUE)

##---
New data
##---

nNew <- 150
xNew <- seq(from = -0.2, to= 1.2, length.out = nNew)
dfNew <- data.frame(x = xNew)

opar <- par(mfrow = c(2L, 2L))

nsim <- 40
for (i in 1:2) {

##--
beta known or not, conditional
##--

simTU <- simulate(object = mygp[[i]], newdata = dfNew, nsim = nsim,
trendKnown = FALSE)

simulPar 105

plot(simTU, main = "trend unknown, conditional")

simTK <- simulate(object = mygp[[i]], newdata = dfNew, nsim = nsim,
trendKnown = TRUE)

plot(simTK, main = "trend known, conditional")

##--
The same but UNconditional
##--

simTU <- simulate(object = mygp[[i]], newdata = dfNew, nsim = nsim,
trendKnown = FALSE, cond = FALSE)

plot(simTU, main = "trend unknown, unconditional")
simTK <- simulate(object = mygp[[i]], newdata = dfNew, nsim = nsim,

trendKnown = TRUE, cond = FALSE)
plot(simTK, main = "trend known, unconditional")

}

par(opar)

simulPar Generic function: Draw Random Values for the Parameters of a Co-
variance Kernel

Description

Generic function to draw random values for the parameters of a covariance kernel object.

Usage

simulPar(object, nsim = 1L, seed = NULL, ...)

Arguments

object A covariance kernel.

nsim Number of drawings.

seed Seed for the random generator.

... Other arguments for methods.

Details

Draw random values for the parameters of a covariance kernel object using the informations coefLower
and coefUpper.

Value

A matrix with nsim rows and npar(object) columns.

106 symIndices

simulPar,covAll-method

Draw Random Values for the Parameters of a Covariance Kernel

Description

Draw random values for the parameters of a covariance kernel

object.

Usage

S4 method for signature 'covAll'
simulPar(object, nsim = 1L, seed = NULL)

Arguments

object A covariance kernel.

nsim Number of drawings.

seed Seed for the random generator.

Details

Draw random values for the parameters of a covariance kernel object using the informations coefLower
and coefUpper.

Value

A matrix with nsim rows and npar(object) columns.

symIndices Vector of Indices Useful for Symmetric or Anti-Symmetric Matrices.

Description

Vector of indices useful for symmetric or anti-symmetric matrices

Usage

symIndices(n, diag = FALSE)

Arguments

n Size of a square matrix.

diag Logical. When FALSE the diagonal is omitted in the lower and upper triangles.

translude 107

Details

This function is intended to provide computations which are faster than lower.tri and upper.tri.

Value

A list containing the following integer vectors, each with length (n− 1)n/2.

i, j Row and column indices for the lower triangle to be used in a two-index style.

kL Indices for the lower triangle, to be used in single-index style. The elements are
picked in column order. So if X is a square matrix with size n, then X[kL] is the
vector containing the elements of the lower triangle of X taken in column order.

kU Indices for the upper triangle, to be used in a single-index style. The elements
are picked in row order. So if X is a square matrix with size n, then X[kU] is the
vector containing the elements of the upper triangle of X taken in row order.

Examples

n <- rpois(1, lambda = 10)
L <- symIndices(n)
X <- matrix(1L:(n * n), nrow = n)
max(abs(X[lower.tri(X, diag = FALSE)] - L$kL))
max(abs(t(X)[lower.tri(X, diag = FALSE)] - L$kU))
cbind(row = L$i, col = L$j)

translude Make Translucent colors

Description

Make translucent colors.

Usage

translude(colors, alpha = 0.6)

Arguments

colors A vector of colors in a format that can be understood by col2rgb.

alpha Level of opacity ("0" means fully transparent and "max" means opaque). After
recycling to reach the required length, this value or vector is used as alpha in
rgb.

Value

A vector of translucent (or semi-transparent) colors.

108 varVec-methods

varVec Generic Function: Variance of Gaussian Process at Specific Locations

Description

Generic function returning a variance vector

Usage

varVec(object, X, ...)

Arguments

object Covariance kernel object.

X A matrix with d columns, where d is the number of inputs of the covariance
kernel. The n rows define a set of sites or locations.

... Other arguments for methods.

Value

A numeric vector with length nrow(X) containing the variances K(x,x) for all the sites x.

varVec-methods Covariance Matrix for a Covariance Kernel Object

Description

Covariance matrix for a covariance kernel object.

Usage

S4 method for signature 'covMan'
varVec(object, X, compGrad = FALSE,

checkNames = NULL, index = -1L, ...)

S4 method for signature 'covTS'
varVec(object, X, compGrad = FALSE,

checkNames = TRUE, index = -1L, ...)

varVec-methods 109

Arguments

object An object with S4 class corresponding to a covariance kernel.

X The usual matrix of spatial design points, with n rows and d cols where n is the
number of spatial points and d is the ’spatial’ dimension.

compGrad Logical. If TRUE a derivative with respect to the vector of parameters will be
computed and returned as an attribute of the result. For the covMan class, this
is possible only when the gradient of the kernel is computed and returned as a
"gradient" attribute of the result.

checkNames Logical. If TRUE (default), check the compatibility of X with object, see checkX.

index Integer giving the index of the derivation parameter in the official order.

... Not used yet.

Details

The variance vector is computed in a C program using the .Call interface. The R kernel function
is evaluated within the C code using eval.

Value

A vector of length nrow(X) with general element Vi := K(xi, xi; θ) where K(x1, x2; θ) is the
covariance kernel function.

Note

The value of the parameter θ can be extracted from the object with the coef method.

See Also

coef method

Examples

myCov <- covTS(inputs = c("Temp", "Humid", "Press"),
kernel = "k1PowExp",
dep = c(range = "cst", shape = "cst"),
value = c(shape = 1.8, range = 1.1))

n <- 100; X <- matrix(runif(n*3), nrow = n, ncol = 3)
try(V1 <- varVec(myCov, X = X)) ## bad colnames
colnames(X) <- inputNames(myCov)
V2 <- varVec(myCov, X = X)

Xnew <- matrix(runif(n * 3), nrow = n, ncol = 3)
colnames(Xnew) <- inputNames(myCov)
V2 <- varVec(myCov, X = X)

110 warpNorm

warpNorm Warpings for Ordinal Inputs

Description

Given warpings for ordinal inputs.

Usage

warpNorm
warpUnorm
warpPower
warpSpline1
warpSpline2

Format

The format is a list of 6:

$ fun : the warping function. The second argument is the vector of parameters. The function returns
a numeric vector with an attribute "gradient" giving the derivative w.r.t. the parameters.

$ parNames : names of warping parameters (character vector).

$ parDefault: default values of warping parameters (numeric vector).

$ parLower : lower bounds of warping parameters (numeric vector).

$ parUpper : upper bounds of warping parameters (numeric vector).

$ hasGrad : a boolean equal to TRUE if gradient is supplied as an attribute of fun.

Details

See covOrd for the definition of a warping in this context. At this stage, two warpings corresponding
to cumulative density functions (cdf) are implemented:

• Normal distribution, truncated to [0, 1]:

F (x) = [N(x)−N(0)]/[N(1)−N(0)]

where N(x) = Φ([x − µ]/σ) is the cdf of the normal distribution with mean µ and standard
deviation σ.

• Power distribution on [0, 1]: F (x) = xpow.

Furthermore, a warping corresponding to unnormalized Normal cdf is implemented, as well as
spline warpings of degree 1 and 2. Splines are defined by a sequence of k knots between 0 and 1.
The first knot is 0, and the last is 1. A spline warping of degree 1 is a continuous piecewise linear
function. It is parameterized by a positive vector of length k-1, representing the increments at knots.
A spline warping of degree 2 is a non-decreasing quadratic spline. It is obtained by integrating a
spline of degree 1. Its parameters form a positive vector of length k, representing the derivatives at
knots. The implementation relies on the function scalingFun1d of DiceKriging package.

Index

∗ classes
covAll-class, 22
covANOVA-class, 25
covComp-class, 29
covMan-class, 33
covOrd-class, 39
covQual-class, 41
covQualNested-class, 46
covRadial-class, 50
covTP-class, 54
covTS-class, 58

∗ datasets
k1Exp, 71

∗ methods
plot.gp, 89

∗ models
influence.gp, 69
plot.gp, 89

as.list, covTP-method, 7
as.list,covComp-method (covComp-class),

29
as.list,covTP-method (as.list,

covTP-method), 7

c, 56
checkGrad, 9
checkPar, 10
checkX, 11, 36, 61, 71, 78, 109
checkX,covAll,data.frame-method

(covAll-class), 22
checkX,covAll,matrix-method

(covAll-class), 22
checkX,covAll-method (checkX-methods),

12
checkX,covComp,data.frame-method

(covComp-class), 29
checkX,covOrd,data.frame-method

(covOrd-class), 39

checkX,covOrd,matrix-method
(covOrd-class), 39

checkX,covQual,data.frame-method
(covQual-class), 41

checkX,covQual,matrix-method
(covQual-class), 41

checkX-methods, 12
coef, 37, 83, 109
coef,covANOVA-method (covANOVA-class),

25
coef,covComp-method (covComp-class), 29
coef,covMan-method (coef-methods), 13
coef,covOrd-method (covOrd-class), 39
coef,covQual-method (covQual-class), 41
coef,covRadial-method

(covRadial-class), 50
coef,covTP-method (covTP-class), 54
coef,covTS-method (coef-methods), 13
coef,methods (coef-methods), 13
coef-methods, 13
coef<-, 14
coef<-,covANOVA,numeric-method

(covANOVA-class), 25
coef<-,covComp,numeric-method

(covComp-class), 29
coef<-,covMan,numeric-method

(covMan-class), 33
coef<-,covOrd,numeric-method

(covOrd-class), 39
coef<-,covQual,numeric-method

(covQual-class), 41
coef<-,covRadial,numeric-method

(covRadial-class), 50
coef<-,covTP,numeric-method

(covTP-class), 54
coef<-,covTS,numeric-method

(covTS-class), 58
coefLower, 14
coefLower,covANOVA-method

111

112 INDEX

(covANOVA-class), 25
coefLower,covComp-method

(covComp-class), 29
coefLower,covMan-method (covMan-class),

33
coefLower,covOrd-method (covOrd-class),

39
coefLower,covQual-method

(covQual-class), 41
coefLower,covRadial-method

(covRadial-class), 50
coefLower,covTP-method (covTP-class), 54
coefLower,covTS-method (covTS-class), 58
coefLower<- (coefLower), 14
coefLower<-,covANOVA-method

(covANOVA-class), 25
coefLower<-,covMan-method

(covMan-class), 33
coefLower<-,covOrd-method

(covOrd-class), 39
coefLower<-,covQual-method

(covQual-class), 41
coefLower<-,covRadial-method

(covRadial-class), 50
coefLower<-,covTP-method (covTP-class),

54
coefLower<-,covTS-method (covTS-class),

58
coefUpper (coefLower), 14
coefUpper,covANOVA-method

(covANOVA-class), 25
coefUpper,covComp-method

(covComp-class), 29
coefUpper,covMan-method (covMan-class),

33
coefUpper,covOrd-method (covOrd-class),

39
coefUpper,covQual-method

(covQual-class), 41
coefUpper,covRadial-method

(covRadial-class), 50
coefUpper,covTP-method (covTP-class), 54
coefUpper,covTS-method (covTS-class), 58
coefUpper<- (coefLower), 14
coefUpper<-,covANOVA-method

(covANOVA-class), 25
coefUpper<-,covMan-method

(covMan-class), 33

coefUpper<-,covOrd-method
(covOrd-class), 39

coefUpper<-,covQual-method
(covQual-class), 41

coefUpper<-,covRadial-method
(covRadial-class), 50

coefUpper<-,covTP-method (covTP-class),
54

coefUpper<-,covTS-method (covTS-class),
58

coerce,covMan,function-method
(covMan-class), 33

coerce,covOrd,function-method
(covOrd-class), 39

coerce,covQual,function-method
(covQual-class), 41

col2rgb, 107
contr.helmert, 45
contr.helmod, 15, 45
contr.treatment, 45
corLevCompSymm, 15, 95
corLevDiag, 17
corLevLowRank, 18, 98
corLevSymm, 19, 20, 99
covAll, 26, 29, 47, 51, 55
covAll-class, 22
covANOVA, 23, 25, 26
covANOVA-class, 25
covComp, 27, 29, 30
covComp-class, 29
covMan, 30, 33, 35, 41, 43, 52
covMan-class, 33
covMat, 35
covMat,covANOVA-method

(covANOVA-class), 25
covMat,covComp-method (covComp-class),

29
covMat,covMan-method (covMat-methods),

36
covMat,covOrd-method (covOrd-class), 39
covMat,covQual-method (covQual-class),

41
covMat,covRadial-method

(covRadial-class), 50
covMat,covTP-method (covTP-class), 54
covMat,covTS-method (covMat-methods), 36
covMat-methods, 36
covOrd, 37, 88, 110

INDEX 113

covOrd-class, 39
covQual, 47
covQual-class, 41
covQualNested, 44
covQualNested-class, 46
covRadial, 48, 52, 56
covRadial-class, 50
covTP, 8, 27, 52, 54, 56
covTP-class, 54
covTS, 56, 58, 59, 71
covTS-class, 58

gls, 60
gls,covAll-method (gls-methods), 60
gls-methods, 60
gp, 62, 79, 92, 93

hasGrad, 68
hasGrad,covAll-method (hasGrad), 68

influence.gp, 69, 89, 90
inputNames, 11, 12, 70
inputNames,covAll-method (inputNames),

70
inputNames<- (inputNames), 70
inputNames<-,covAll,character-method

(inputNames), 70
inputNames<-,covAll-method

(inputNames), 70
inputNames<-,covComp,character-method

(covComp-class), 29

k1Exp, 71
k1Fun1Cos (k1Matern3_2), 72
k1Fun1Exp, 49
k1Fun1Exp (k1Matern3_2), 72
k1Fun1Gauss, 49
k1Fun1Gauss (k1Matern3_2), 72
k1Fun1Matern3_2, 49
k1Fun1Matern3_2 (k1Matern3_2), 72
k1Fun1Matern5_2, 49
k1Fun1Matern5_2 (k1Matern3_2), 72
k1Fun1PowExp (k1Matern3_2), 72
k1FunExp (k1Matern3_2), 72
k1FunGauss (k1Matern3_2), 72
k1FunMatern3_2 (k1Matern3_2), 72
k1FunMatern5_2 (k1Matern3_2), 72
k1FunPowExp (k1Matern3_2), 72
k1Gauss (k1Exp), 71

k1Matern3_2, 72
k1Matern3_2 (k1Exp), 71
k1Matern5_2 (k1Exp), 71
k1PowExp (k1Exp), 71
kergp (kergp-package), 3
kergp-package, 3
kernelName, 74
kernelName,covTS-method (covTS-class),

58
kExp (kMatern), 75
kGauss, 74
kMatern, 75
kSE (kGauss), 74

mle, 76
mle,covAll-method (mle-methods), 76
mle-methods, 76
mvrnorm, 101

nloptr, 78, 84
npar, 82
npar,covANOVA-method (covANOVA-class),

25
npar,covMan-method (npar-methods), 83
npar,covOrd-method (covOrd-class), 39
npar,covQual-method (covQual-class), 41
npar,covRadial-method

(covRadial-class), 50
npar,covTP-method (covTP-class), 54
npar,covTS-method (npar-methods), 83
npar-methods, 83

optim, 78, 84
optimMethods, 77, 79, 83
ordered, 38

parMap, 84
parMap,covTS-method (parMap-methods), 85
parMap-methods, 85
parNamesSymm, 86
parseCovFormula, 86
plot, 88
plot,covQual,ANY-method (plot), 88
plot,covQual-method (plot), 88
plot.covQual (plot), 88
plot.gp, 70, 89
plot.simulate.gp, 90
predict.gp, 70, 90, 91, 103
prinKrige, 93

114 INDEX

q1CompSymm, 44, 45, 94, 96
q1Diag, 44, 45, 96
q1LowRank, 19, 97
q1Symm, 21, 44, 45, 96, 98, 98

rgb, 107

scores, 99
scores,covANOVA-method

(covANOVA-class), 25
scores,covComp-method (covComp-class),

29
scores,covMan-method (covMan-class), 33
scores,covOrd-method (covOrd-class), 39
scores,covQual-method (covQual-class),

41
scores,covRadial-method

(covRadial-class), 50
scores,covTP-method (covTP-class), 54
scores,covTS-method (covTS-class), 58
shapeSlot, 100
show,covANOVA-method (covANOVA-class),

25
show,covComp-method (covComp-class), 29
show,covMan-method (covMan-class), 33
show,covOrd-method (covOrd-class), 39
show,covQual-method (covQual-class), 41
show,covRadial-method

(covRadial-class), 50
show,covTP-method (covTP-class), 54
show,covTS-method (covTS-class), 58
simulate, covAll-method, 101
simulate,covAll-method (simulate,

covAll-method), 101
simulate,covOrd-method (covOrd-class),

39
simulate,covQual-method

(covQual-class), 41
simulate.gp, 91, 102
simulPar, 77, 105
simulPar,covAll-method, 106
symIndices, 106

translude, 107

varVec, 108
varVec,covANOVA-method

(covANOVA-class), 25
varVec,covComp-method (covComp-class),

29

varVec,covMan-method (varVec-methods),
108

varVec,covOrd-method (covOrd-class), 39
varVec,covQual-method (covQual-class),

41
varVec,covRadial-method

(covRadial-class), 50
varVec,covTP-method (covTP-class), 54
varVec,covTS-method (varVec-methods),

108
varVec-methods, 108

warpFun, 38, 39
warpFun (warpNorm), 110
warpNorm, 110
warpPower (warpNorm), 110
warpSpline1 (warpNorm), 110
warpSpline2 (warpNorm), 110
warpUnorm (warpNorm), 110

	kergp-package
	as.list, covTP-method
	checkGrad
	checkPar
	checkX
	checkX-methods
	coef-methods
	coef<-
	coefLower
	contr.helmod
	corLevCompSymm
	corLevDiag
	corLevLowRank
	corLevSymm
	covAll-class
	covANOVA
	covANOVA-class
	covComp
	covComp-class
	covMan
	covMan-class
	covMat
	covMat-methods
	covOrd
	covOrd-class
	covQual-class
	covQualNested
	covQualNested-class
	covRadial
	covRadial-class
	covTP
	covTP-class
	covTS
	covTS-class
	gls
	gls-methods
	gp
	hasGrad
	influence.gp
	inputNames
	k1Exp
	k1Matern3_2
	kernelName
	kGauss
	kMatern
	mle
	mle-methods
	npar
	npar-methods
	optimMethods
	parMap
	parMap-methods
	parNamesSymm
	parseCovFormula
	plot
	plot.gp
	plot.simulate.gp
	predict.gp
	prinKrige
	q1CompSymm
	q1Diag
	q1LowRank
	q1Symm
	scores
	shapeSlot
	simulate, covAll-method
	simulate.gp
	simulPar
	simulPar,covAll-method
	symIndices
	translude
	varVec
	varVec-methods
	warpNorm
	Index

