
Package ‘lingdist’
July 22, 2025

Type Package

Title Fast Linguistic Distance and Alignment Computation

Version 1.0

Date 2023-10-12

Description A fast generalized edit distance and string alignment computation mainly for linguis-
tic aims. As a generalization to the classic edit distance algorithms, the package allows users to de-
fine custom cost for every symbol's insertion, deletion, and substitution. The package also al-
lows character combinations in any length to be seen as a single symbol which is very use-
ful for International Phonetic Alphabet (IPA) transcriptions with diacritics. In addition to edit dis-
tance result, users can get detailed alignment information such as all possible alignment scenar-
ios between two strings which is useful for testing, illustration or any further usage. Ei-
ther the distance matrix or its long table form can be obtained and tools to do such conver-
sions are provided. All functions in the package are implemented in 'C++' and the distance ma-
trix computation is parallelized leveraging the 'RcppThread' package.

License GPL (>= 2)

Imports Rcpp (>= 1.0.10)

LinkingTo Rcpp,RcppThread

URL https://github.com/fncokg/lingdist

BugReports https://github.com/fncokg/lingdist/issues

Encoding UTF-8

RoxygenNote 7.2.3

NeedsCompilation yes

Author Chao Kong [aut, cre] (ORCID: <https://orcid.org/0000-0002-6404-6142>)

Maintainer Chao Kong <kongchao1998@gmail.com>

Repository CRAN

Date/Publication 2023-10-12 17:20:03 UTC

1

https://github.com/fncokg/lingdist
https://github.com/fncokg/lingdist/issues
https://orcid.org/0000-0002-6404-6142

2 check_cost_defined

Contents

check_cost_defined . 2
edit_dist_df . 3
edit_dist_string . 4
generate_default_cost_matrix . 5
long2squareform . 5

Index 7

check_cost_defined Check whether there’s missing characters in the cost matrix.

Description

Check whether there’s missing characters in the cost matrix and return the missing characters.

Usage

check_cost_defined(data, cost_mat, delim = "")

Arguments

data DataFrame to be computed.

cost_mat Cost matrix to be checked.

delim The delimiter separating atomic symbols.

Value

A string vector containing the missing characters, empty indicating there’s no missing characters.

Examples

df <- as.data.frame(rbind(a=c("a_bc_d","d_bc_a"),b=c("b_bc_d","d_bc_a")))
cost.mat <- data.frame()
chars.not.found <- check_cost_defined(df, cost.mat, "_")

edit_dist_df 3

edit_dist_df Compute edit distance between all row pairs of a dataframe

Description

Compute average edit distance between all row pairs of a dataframe, empty or NA cells are ignored.
If all values in a row are not valid strings, all average distances involving this row is set to -1.

Usage

edit_dist_df(
data,
cost_mat = NULL,
delim = "",
squareform = FALSE,
symmetric = TRUE,
parallel = FALSE,
n_threads = 2L

)

Arguments

data DataFrame with n rows and m columns indicating there are n languages or di-
alects to involve in the calculation and there are at most m words to base on, in
which the rownames are the language ids.

cost_mat Dataframe in squareform indicating the cost values when one symbol is deleted,
inserted or substituted by another. Rownames and colnames are symbols. ‘cost_mat[char1,"_NULL_"]‘
indicates the cost value of deleting char1 and ‘cost_mat["_NULL_",char1]‘ is
the cost value of inserting it. When an operation is not defined in the cost_mat,
it is set 0 when the two symbols are the same, otherwise 1.

delim The delimiter separating atomic symbols.

squareform Whether to return a dataframe in squareform.

symmetric Whether to the result matrix is symmetric. This depends on whether the ‘cost_mat‘
is symmetric.

parallel Whether to parallelize the computation.

n_threads The number of threads is used to parallelize the computation. Only meaningful
if ‘parallel‘ is TRUE.

Value

A dataframe in long table form if ‘squareform‘ is FALSE, otherwise in squareform. If ‘symmetric‘
is TRUE, the long table form has C2

n rows otherwise n2 rows.

4 edit_dist_string

Examples

df <- as.data.frame(rbind(a=c("a_bc_d","d_bc_a"),b=c("b_bc_d","d_bc_a")))
cost.mat <- data.frame()
result <- edit_dist_df(df, cost_mat=cost.mat, delim="_")
result <- edit_dist_df(df, cost_mat=cost.mat, delim="_", squareform=TRUE)
result <- edit_dist_df(df, cost_mat=cost.mat, delim="_", parallel=TRUE, n_threads=4)

edit_dist_string Compute edit distance between two strings

Description

Compute edit distance between two strings and get all possible alignment scenarios. Custom cost
matrix is supported. Symbols separated by custom delimiters are supported.

Usage

edit_dist_string(
str1,
str2,
cost_mat = NULL,
delim = "",
return_alignments = FALSE

)

Arguments

str1 String to be compared.

str2 String to be compared.

cost_mat Dataframe in squareform indicating the cost values when one symbol is deleted,
inserted or substituted by another. Rownames and colnames are symbols. ‘cost_mat[char1,"_NULL_"]‘
indicates the cost value of deleting char1 and ‘cost_mat["_NULL_",char1]‘ is
the cost value of inserting it. When an operation is not defined in the cost_mat,
it is set 0 when the two symbols are the same, otherwise 1.

delim The delimiter in ‘str1‘ and ‘str2‘ separating atomic symbols.
return_alignments

Whether to return alignment details

Value

A list contains ‘distance‘ attribution storing the distance result. If ‘return_alignments‘ is TRUE,
then a ‘alignments‘ attribution is present which is a list of dataframes with each storing a possible
best alignment scenario.

generate_default_cost_matrix 5

Examples

cost.mat <- data.frame()
dist <- edit_dist_string("leaf","leaves")$distance
dist <- edit_dist_string("ph_l_i_z","p_l_i_s",cost_mat=cost.mat,delim="_")$distance
alignments <- edit_dist_string("ph_l_i_z","p_l_i_s",delim="_",return_alignments=TRUE)$alignments

generate_default_cost_matrix

Generate a default cost matrix

Description

generate a default cost matrix contains all possible characters in the raw data with all diagonal
values set to 0 and others set to 1. This avoids you constructing the matrix from scratch.

Usage

generate_default_cost_matrix(data, delim = "")

Arguments

data DataFrame to be computed.

delim The delimiter separating atomic symbols.

Value

Cost matrix contains all possible characters in the raw data with all diagonal values set to 0 and
others set to 1.

Examples

df <- as.data.frame(rbind(a=c("a_bc_d","d_bc_a"),b=c("b_bc_d","d_bc_a")))
default.cost <- generate_default_cost_matrix(df, "_")

long2squareform Convert long table to square form

Description

Convert a distance dataframe in long table form to a square matrix form.

Usage

long2squareform(data, symmetric = TRUE)

6 long2squareform

Arguments

data Dataframe in long table form. The first and second columns are labels and the
third column stores the distance values.

symmetric Whether the distance matrix are symmetric (if cost matrix is not, then the dis-
tance matrix is also not).

Value

Dataframe in square matrix form, rownames and colnames are labels. If the long table only contains
C2

n rows and ‘symmetric‘ is set to FALSE, then only lower triangle positions in the result is filled.

Examples

data <- as.data.frame(list(chars1=c("a","a","b"),chars2=c("b","c","c"),dist=c(1,2,3)))
mat <- long2squareform(data)

Index

check_cost_defined, 2

edit_dist_df, 3
edit_dist_string, 4

generate_default_cost_matrix, 5

long2squareform, 5

7

	check_cost_defined
	edit_dist_df
	edit_dist_string
	generate_default_cost_matrix
	long2squareform
	Index

