Package ‘rollout’

January 13, 2026
Title Tools for Designing, Simulating, and Analyzing Implementation
Rollout Trials
Version 0.1.0

Description Provides a unified framework for designing, simulating, and analyzing implementa-
tion rollout trials, including stepped wedge, sequential rollout, head-to-head, multi-
condition, and rollout implementation optimization designs. The package enables users to flexi-
bly specify rollout schedules, incorporate site-level and nested data structures, generate out-
comes under rich hierarchical models, and evaluate analytic strategies through simulation-
based power analysis. By separating data generation from model fitting, the tools support assess-
ment of bias, Type I error, and robustness to model misspecification. The workflow inte-
grates with standard mixed-effects modeling approaches and the tidyverse ecosystem, offer-
ing transparent and reproducible tools for implementation scientists and applied statisticians.

License MIT + file LICENSE

URL https://github.com/iancero/rollout,
https://iancero.github.io/rollout/

BugReports https://github.com/iancero/rollout/issues

Imports broom.mixed, dplyr, glue, lifecycle, parallel, pbapply, purrr,
rlang, stats, tidyr

Suggests Ime4, ImerTest, testthat (>= 3.0.0), tibble
Config/testthat/edition 3

Encoding UTF-8

RoxygenNote 7.3.2

Depends R (>=4.5.0)

NeedsCompilation no

Author Ian Cero [aut, cre] (ORCID: <https://orcid.org/0000-0002-2862-0450>),
C. Hendricks Brown [aut] (ORCID:
<https://orcid.org/0000-0002-0294-2419>)

Maintainer Ian Cero <ian_cero@urmc.rochester.edu>
Repository CRAN
Date/Publication 2026-01-13 18:20:02 UTC

https://github.com/iancero/rollout
https://iancero.github.io/rollout/
https://github.com/iancero/rollout/issues
https://orcid.org/0000-0002-2862-0450
https://orcid.org/0000-0002-0294-2419

2 add_binary_outcome
Contents
add_binary_outcome e e e e e e 2
add_error e 3
add_fixed_effect e 3
add_linear_outCome e e e 4
add_parameter. e e e e e e e e e 5
add_poisSOn_OUtCOmMEe e e e e e 5
add_random_effect e 6
evaluate_model_results e 7
eval_between e 8
eval_bias e 10
eval_greater_than 11
eval_less than e 12
eval_quantile 13
extract._ model_results e 15
fit models s, 16
initialize_replicates L L 17
join_info oL e 18
pivot_schedule_longer 19
Index 21
add_binary_outcome Create a binary outcome from linear predictors
Description
Generates a binary outcome by summing effects, computing probabilities via the logistic function,
and drawing binary outcomes.
Usage
add_binary_outcome(
data,
linear_col = "y_linear”,
prob_col = "y_prob”,
binary_col = "y_bin”
)
Arguments
data A data frame containing effect columns prefixed with ".".
linear_col Name of the column to store the summed linear predictor (default "y_linear").
prob_col Name of the column to store probabilities (default "y_prob™).

binary_col Name of the column to store binary outcomes (default "y_bin").

add_error 3

Value

A tibble with added linear predictor, probability, and binary outcome columns.

Examples

df <- tibble::tibble(.beta = 0.5, .u = rnorm(5), .error = rnorm(5))
add_binary_outcome (df)

add_error Add an error term for simulation

Description
Adds a residual error term (column .error) to the data frame, drawn from a normal distribution
with specified variance.

Usage

add_error(.data, variance = 1)

Arguments
.data A data frame to which the error term will be added.
variance Numeric; variance of the residual error (default 1).
Value

A tibble with an added .error column.

Examples

df <- tibble::tibble(x = 1:5)
add_error(df, variance = 2)

add_fixed_effect Add a fixed effect column for simulation

Description

Adds a fixed effect column (prefixed with ".") to the design data frame for simulation purposes.

Usage
add_fixed_effect(design_df, ...)

4 add_linear outcome

Arguments
design_df A data frame containing the rollout design and any parameters.
A single named expression specifying the fixed effect to add (e.g., beta=0.5 *
X).
Value

A tibble with the added fixed effect column.

Examples

df <- tibble::tibble(x = rnorm(5))
add_fixed_effect(df, beta = 0.5 * x)

add_linear_outcome Create a linear outcome by summing effects
Description
Generates a linear outcome variable by summing all columns that start with ”." (representing fixed,

random, and error effects).

Usage
add_linear_outcome(data, output_col = "y_linear")
Arguments
data A data frame containing effect columns prefixed with ".".
output_col Name of the column to store the linear outcome (default "y_linear").
Value

A tibble with the added linear outcome column.

Examples

df <- tibble::tibble(.beta = 0.5, .u = rnorm(5), .error = rnorm(5))
add_linear_outcome (df)

add_parameter 5

add_parameter Expand a data frame with parameter combinations for simulation

Description

Adds combinations of specified parameter values to a data frame for simulation by expanding over
all combinations.

Usage
add_parameter(df, ...)
Arguments
df A data frame to expand.
Named vectors specifying parameter values to expand, provided as param_name
=values.
Value

A tibble with added parameter columns for each combination of values.

Examples

df <- tibble::tibble(site = "A", condition = "control”)
add_parameter (df, beta = c(0, 0.5), sigma = c(1, 2))

add_poisson_outcome Create a Poisson outcome from linear predictors

Description

Generates a Poisson-distributed count outcome by summing effects, exponentiating to obtain rates,
and drawing counts.

Usage
add_poisson_outcome(
data,
linear_col = "y_linear”,
rate_col = "y_rate”,
count_col = "y_count”

6 add_random_effect

Arguments
data A data frame containing effect columns prefixed with ".".
linear_col Name of the column to store the summed linear predictor (default "y_linear").
rate_col Name of the column to store Poisson rates (default "y_rate”).
count_col Name of the column to store Poisson counts (default "y_count").
Value

A tibble with added linear predictor, rate, and count columns.

Examples

df <- tibble::tibble(.beta = 0.5, .u = rnorm(5), .error = rnorm(5))
add_poisson_outcome (df)

add_random_effect Add a random effect column for simulation

Description

Adds a random effect column (prefixed with ".") to the design data frame, with optional grouping
for nested random effects.

Usage
add_random_effect(design_df, ..., .nesting = NULL)
Arguments
design_df A data frame containing the rollout design and any parameters.
A single named expression specifying the random effect to add (e.g., u = rnorm(1,
9, 1).
.nesting Optional character vector specifying grouping columns for nested random ef-
fects (default NULL).
Value

A tibble with the added random effect column.

Examples

df <- tibble::tibble(site = rep(1:2, each = 3))
add_random_effect(df, u = rnorm(1, @, 1), .nesting = "site")

evaluate_model_results 7

evaluate_model_results
Summarise simulation results from extracted model estimates

Description

Computes summary statistics (e.g., power, custom summaries) across a set of extracted model re-
sults, typically from extract_model_results(), to facilitate simulation evaluation and reporting.

Usage
evaluate_model_results(
results,
alpha = 0.05,

L

.summarise_standard_broom = FALSE,

broom_cols = c("estimate”, "std.error"”, "statistic”, "df", "p.value")
)
Arguments
results A data frame of extracted model results, typically including columns like term,
estimate, std.error, statistic, and p.value.
alpha Significance level used to compute power. Defaults to 0. @5.

Additional summary expressions to compute within dplyr: : summarise(). These
may include calls to helper functions like eval_bias(), eval_quantile(), or
direct summaries such as mean(estimate, na.rm=TRUE).

.summarise_standard_broom
Logical; if TRUE, computes mean and standard deviation for standard broom
columns present in the data (columns in broom_cols). Defaults to FALSE.

broom_cols Character vector of standard broom columns to summarise if . summarise_standard_broom
= TRUE. Defaults to c("estimate”, "std.error"”, "statistic"”, "df", "p.value").

Value

A summarised data frame containing:

* n_models: the number of models summarised.
* power: the proportion of p-values less than alpha (NA if all p-values are NA).
* Additional columns corresponding to custom summaries providedin

e Mean and SD summaries of broom columns if . summarise_standard_broom = TRUE.

8 eval between

Examples

library(dplyr)
library(purrr)
library(broom.mixed)

Simulate and fit models
sim_models <- tibble(

id = 1:50,
model = map(1:50, ~ Im(mpg ~ wt, data = mtcars))
) 1>

extract_model_results()

Evaluate power and mean estimate for the slope
sim_models |>
filter(term == "wt") |>
group_by(term) |>
evaluate_model_results(
alpha = 0.05,
mean_estimate = mean(estimate, na.rm = TRUE),
sd_estimate = sd(estimate, na.rm = TRUE)

)

Evaluate with .summarise_standard_broom = TRUE
sim_models [|>
filter(term == "wt") |>
group_by(term) |>
evaluate_model_results(
.summarise_standard_broom = TRUE

)

Evaluate with eval_bias to compute bias relative to the true value
Suppose the true slope of wt is -5 (hypothetical)
sim_models |>
filter(term == "wt") |>
group_by(term) |>
evaluate_model_results(
bias = eval_bias(

estimate,
term = c("wt” = -5)
)
)
eval_between Compute the proportion of values within term-specific intervals within
grouped simulation results
Description

Computes the proportion of x values falling within term-specific intervals within each group, typi-
cally inside evaluate_model_results() for simulation evaluation pipelines.

eval_between 9

Usage

eval_between(x, term = NULL, na.rm = FALSE)

Arguments
X A numeric vector of estimates or statistics.
term A named list of numeric vectors of length 2, giving the lower and upper bounds
for each term. For example, 1list("(Intercept)” =c(-1, 1), x=c(1, 3)).
If NULL (default), the interval is assumed to be [0, 1].
na.rm Logical; whether to remove missing values when computing the proportion. De-
faults to FALSE.
Details

This function is designed to be used inside dplyr: : summarise () within a grouped tidyverse pipeline,
typically after grouping by term.

If termis provided, the current grouping must include a term variable matching the names in term.
If a term in the group is not found in the provided term mapping, the function will return NA with a
warning.

Value

A numeric scalar representing the proportion of x within the term-specific interval within the current
group.

Examples

library(dplyr)
library(purrr)
library(broom.mixed)

sim_models <- tibble(

id = 1:50,
model = map(1:50, ~ Im(mpg ~ wt, data = mtcars))
) 1>

extract_model_results()

sim_models |>
filter(term == "wt") |>
group_by(term) |>
evaluate_model_results(
prop_between = eval_between(
estimate,
term = list("wt” = c(-1, 0))
)
)

10 eval_bias

eval_bias Compute bias relative to term-specific true values within grouped sim-
ulation results

Description
Computes the mean bias (difference between estimated values and true values) within each group,
typically inside evaluate_model_results() for simulation evaluation pipelines.

Usage

eval_bias(x, term = NULL, na.rm = FALSE, warnings = TRUE)

Arguments
X A numeric vector of estimates (e.g., from a model term).
term A named numeric vector providing the true value for each term. For example,
c("(Intercept)” =0, x = 2) to specify the true values for each term. If NULL
(default), bias is computed relative to zero.
na.rm Logical; whether to remove missing values when computing the mean bias. De-
faults to FALSE.
warnings Should warnings be returned?
Details

This function is designed to be used inside dplyr: : summarise () within a grouped tidyverse pipeline,
typically after grouping by term. It computes the mean of x minus the true value for the correspond-
ing term.

If termis provided, the current grouping must include a term variable matching the names in term.
If a term in the group is not found in the provided term mapping, the function will return NA with a
warning.

Value

A numeric scalar representing the mean bias within the current group.

Examples

library(dplyr)
library(purrr)
library(broom.mixed)

Simulate and fit models
sim_models <- tibble(

id = 1:50,

model = map(1:50, ~ Im(mpg ~ wt, data = mtcars))
) 1>

eval_greater_than 11

extract_model_results()

Compute bias relative to true value (hypothetical slope = -5)
sim_models |>
filter(term == "wt") |>

group_by(term) |>
evaluate_model_results(
bias = eval_bias(
estimate,
term = c("wt"” = -5)
)
)

Compute bias relative to zero for all terms
sim_models |>
group_by(term) |>
evaluate_model_results(
bias = eval_bias(estimate)

)
eval_greater_than Compute the proportion of values above term-specific thresholds
within grouped simulation results
Description

Computes the proportion of x values exceeding term-specific thresholds within each group, typically
inside evaluate_model_results() for simulation evaluation pipelines.

Usage

eval_greater_than(x, term = NULL, na.rm = FALSE)

Arguments
X A numeric vector of estimates or statistics.
term A named numeric vector providing the threshold for each term. For example,
c("(Intercept)” =0, x=2). If NULL (default), threshold is assumed to be
Zero.
na.rm Logical; whether to remove missing values when computing the proportion. De-
faults to FALSE.
Details

This function is designed to be used inside dplyr: : summarise () within a grouped tidyverse pipeline,
typically after grouping by term.

If termis provided, the current grouping must include a term variable matching the names in term.
If a term in the group is not found in the provided term mapping, the function will return NA with a
warning.

12 eval less than

Value

A numeric scalar representing the proportion of x exceeding the term-specific threshold within the
current group.

Examples

library(dplyr)
library(purrr)
library(broom.mixed)

sim_models <- tibble(

id = 1:50,
model = map(1:50, ~ lm(mpg ~ wt, data = mtcars))
) 1>

extract_model_results()

sim_models |>
filter(term == "wt") |>
group_by(term) |>
evaluate_model_results(
prop_above_0 = eval_greater_than(

estimate,
term = c("wt"” = Q)
)
)
eval_less_than Compute the proportion of values below term-specific thresholds
within grouped simulation results
Description

Computes the proportion of x values falling below term-specific thresholds within each group, typ-
ically inside evaluate_model_results() for simulation evaluation pipelines.

Usage
eval_less_than(x, term = NULL, na.rm = FALSE)

Arguments
X A numeric vector of estimates or statistics.
term A named numeric vector providing the threshold for each term. For example,
c("(Intercept)" =0, x=2). If NULL (default), threshold is assumed to be
ZEero.
na.rm Logical; whether to remove missing values when computing the proportion. De-

faults to FALSE.

eval_quantile 13

Details

This function is designed to be used inside dplyr: : summarise () within a grouped tidyverse pipeline,
typically after grouping by term.

If termis provided, the current grouping must include a term variable matching the names in term.
If a term in the group is not found in the provided term mapping, the function will return NA with a
warning.

Value

A numeric scalar representing the proportion of x below the term-specific threshold within the
current group.

Examples
library(dplyr)

library(purrr)
library(broom.mixed)

sim_models <- tibble(

id = 1:50,
model = map(1:50, ~ Im(mpg ~ wt, data = mtcars))
) 1>

extract_model_results()

sim_models |>
filter(term == "wt") |>
group_by(term) |>
evaluate_model_results(
prop_below_0 = eval_less_than(

estimate,
term = c("wt” = Q)
)
)
eval_quantile Compute the observed quantile value for each term within grouped
simulation results
Description

Computes the specified quantile of x within each group, typically inside evaluate_model_results()
for simulation evaluation pipelines.

Usage

eval_quantile(x, term = NULL, na.rm = FALSE)

14 eval_quantile

Arguments
X A numeric vector of estimates or statistics.
term A named numeric vector with quantile probabilities for each term. For example,
c("(Intercept)” =0.05, x =0.95). If NULL (default), computes the median
(0.5).
na.rm Logical; whether to remove missing values when computing the quantile. De-
faults to FALSE.
Details

This function is designed to be used inside dplyr: : summarise () within a grouped tidyverse pipeline,
typically after grouping by term.

If termis provided, the current grouping must include a term variable matching the names in term.
If a term in the group is not found in the provided term mapping, the function will return NA with a
warning.

Value

A numeric scalar representing the observed quantile of x within the current group.

Examples
library(dplyr)

library(purrr)
library(broom.mixed)

sim_models <- tibble(

id = 1:50,
model = map(1:50, ~ lm(mpg ~ wt, data = mtcars))
) 1>

extract_model_results()

sim_models |>
filter(term == "wt") |>
group_by(term) |>
evaluate_model_results(
lower_quantile = eval_quantile(

estimate,
term = c("wt"” = 0.05)
),
upper_quantile = eval_quantile(
estimate,
term = c("wt” = 0.95)
)

extract_model _results 15

extract_model_results Extract and tidy model results from a column of models

Description

Applies a tidying function (default broom.mixed: : tidy) to a column of models, returning a tidy
data frame with one row per term per model, suitable for downstream summarisation and evaluation
in simulation studies.

Usage
extract_model_results(
models,
model_col = "model”,
tidy_fun = broom.mixed::tidy,
.term = NULL
)
Arguments
models A data frame containing a column of fitted model objects.
model_col Unquoted column name containing the models. Default is model.
tidy_fun A tidying function to apply to each model. Default is broom.mixed: : tidy. The
function must return a data frame with a term column.
.term Optional string specifying a term to filter after tidying (e.g., " (Intercept)”).
If NULL (default), all terms are retained.
Value

A tidy data frame with the original columns of models joined to the tidied model results, typically
including columns such as term, estimate, std.error, statistic, and p.value.

Examples

library(dplyr)
library(purrr)
library(broom.mixed)

Simulate and fit models
sim_models <- tibble(

id = 1:5,

model = map(1:5, ~ lm(mpg ~ wt, data = mtcars))
)

Extract all terms
extract_model_results(sim_models)

16 fit_models

Extract only the slope term

extract_model_results(sim_models, .term = "wt")
fit_models Fit models in parallel across a list-column of datasets
Description

Applies a user-specified model-fitting function to each element of a list-column of datasets in . data,
fitting models in parallel with a progress bar, and returns the original data frame with a new model
column containing the fitted models.

Usage

fit_models(
.data,
X,
.f,
packages = NULL,
n_cores = parallel::detectCores() - 1

)
Arguments
.data A data frame containing a list-column of datasets to which the model function
will be applied.
X Unquoted column name of the list-column containing the datasets.
f A function or formula to apply to each dataset to fit the desired model (e.g., ~
Im(y ~ x, data=.) or ~ 1me4: :1lmer(y ~ x + (x | group), data=".)).
packages A character vector of package names to load on each parallel worker, if your
model-fitting function requires additional packages. Defaults to NULL.
n_cores Number of cores to use for parallel processing. Defaults to parallel: :detectCores()
- 1.
Details

This function is intended for use in simulation pipelines where multiple datasets are generated (e.g.,
via simulate_datasets()), and models need to be fitted to each dataset efficiently in parallel.

It uses pbapply: : pblapply () to provide a progress bar during model fitting, and parallel: :makeCluster()
for multi-core processing.

Packages specified in packages will be loaded on each worker to ensure model-fitting functions
that depend on those packages work correctly in parallel.

initialize_replicates 17

Value

The original . data data frame with an additional model column containing the fitted model objects
returned by . f.

Examples

library(dplyr)
library(purrr)
library(1lme4)

Create example grouped datasets for mixed models
datasets <- tibble(
id = 1:5,
data = map(1:5, ~ {
df <- sleepstudy[sample(nrow(sleepstudy), 50, replace = TRUE), 1]
df$Subject <- factor(df$Subject)
df
i)
)

Fit linear mixed models in parallel
fitted_models <- fit_models(

datasets,
.x = data,
.f = ~ lme4::1lmer(Reaction ~ Days + (Days | Subject), data = .),

packages = c("1me4"),
n_cores = 1

)

Inspect the first fitted mixed model
summary (fitted_models$model[[1]])

Tidy the fitted models using extract_model_results() for further evaluation
extracted <- extract_model_results(fitted_models)
head(extracted)

Summarise estimates for 'Days' across simulated fits
extracted |>
filter(term == "Days") |>
evaluate_model_results(
mean_estimate = mean(estimate, na.rm = TRUE),
sd_estimate = sd(estimate, na.rm = TRUE)

)

initialize_replicates Add replicate identifiers for simulation replicates

18 join_info

Description

Expands a long-format schedule to include a replicate identifier for running multiple simulation
replicates efficiently.

Usage

initialize_replicates(long_schedule, n)

Arguments

long_schedule A long-format rollout schedule.

n Integer specifying the number of replicates to generate.

Value

A tibble with an added sample_id column for replicate indexing.

Examples

schedule <- tibble::tibble(site = "A", cohort = 1, chron_time = @, condition = "control”)
initialize_replicates(schedule, n = 3)

join_info Join unit-level information to a long-format rollout schedule

Description

Merges unit-level characteristics or parameters into a long-format rollout schedule and optionally
expands rows based on count variables to create multiple units per site.

Usage

join_info(
long_schedule,
unit_info,
by = NULL,
uncount_vars = NULL,
.ids = NULL

Arguments

long_schedule A long-format schedule (output from pivot_schedule_longer).
unit_info A data frame with unit-level information to join.

by Columns used to join long_schedule and unit_info (default NULL uses shared
columns).

pivot_schedule_longer 19

uncount_vars Optional character vector or list of quosures indicating count variables to expand
TOWS.

.ids Optional character vector specifying names of id columns when uncounting, one
per uncount_var.

Value

A tibble with joined and optionally expanded rows to reflect unit counts.

Examples

schedule <- tibble::tibble(site = "A", cohort = 1, chron_time = @, condition = "control")
unit_info <- tibble::tibble(site = "A", n_units = 3)
join_info(schedule, unit_info, by = "site"”, uncount_vars = "n_units")

pivot_schedule_longer Pivot a rollout schedule from wide to long format with local time cal-
culation

Description

Transforms a wide-format rollout schedule into a long-format schedule, extracting chronological
time from column names, converting condition columns to factors, and adding local time within
each cohort if desired.

Usage
pivot_schedule_longer(
schedule,
time_cols,
names_to = "chron_time",
names_pattern = ".x(\\d+)",
names_transform = as.numeric,
values_to = "condition"”,
values_transform = as.factor,
cohort_name = "cohort”,
local_time = TRUE
)
Arguments
schedule A data frame containing the rollout schedule in wide format.
time_cols Columns containing time-specific condition assignments (tidyselect syntax).
names_to Name of the new column to store extracted chronological time (default "chron_time").

names_pattern Regular expression to extract the numeric time from column names (default
"ox(\\d+)).

20

names_transform

pivot_schedule_longer

Function to transform extracted time values (default as.numeric).

values_to Name of the new column to store condition values (default "condition”).

values_transform

Function to transform condition values (default as. factor).

cohort_name The column indicating cohort membership for local time calculation (default
cohort).
local_time Logical; if TRUE, adds a local_time column indicating time since rollout start

for each cohort and condition (default TRUE).

Value

A long-format tibble with columns for cohort, condition, chronological time, and optionally local

time.

Examples

library(dplyr)
library(tidyr)
schedule <- tibble::tibble(
site = c("A", "B"),
cohort = c(1, 2),
t1 = c("control”, "intervention”),
t2 = c("intervention”, "intervention")
)

pivot_schedule_longer(schedule, time_cols

= starts_with("t"))

Index

add_binary_outcome, 2
add_error, 3
add_fixed_effect, 3
add_linear_outcome, 4
add_parameter, 5
add_poisson_outcome, 5
add_random_effect, 6

eval_between, 8
eval_bias, 10
eval_greater_than, 11
eval_less_than, 12
eval_quantile, 13
evaluate_model_results, 7
extract_model_results, 15

fit_models, 16
initialize_replicates, 17
join_info, 18

pivot_schedule_longer, 19

21

	add_binary_outcome
	add_error
	add_fixed_effect
	add_linear_outcome
	add_parameter
	add_poisson_outcome
	add_random_effect
	evaluate_model_results
	eval_between
	eval_bias
	eval_greater_than
	eval_less_than
	eval_quantile
	extract_model_results
	fit_models
	initialize_replicates
	join_info
	pivot_schedule_longer
	Index

