sparsesurv: Forecasting and Early Outbreak Detection for Sparse Count Data

Functions for fitting, forecasting, and early detection of outbreaks in sparse surveillance count time series. Supports negative binomial (NB), self-exciting NB, generalise autoregressive moving average (GARMA) NB , zero-inflated NB (ZINB), self-exciting ZINB, generalise autoregressive moving average ZINB, and hurdle formulations. Climatic and environmental covariates can be included in the regression component and/or the zero-modified components. Includes outbreak-detection algorithms for NB, ZINB, and hurdle models, with utilities for prediction and diagnostics.

Version: 0.1.1
Depends: R (≥ 4.1)
Imports: R2jags, coda, stats
Suggests: testthat (≥ 3.0.0), knitr, rjags, rmarkdown, ggplot2, reshape2
Published: 2025-09-09
Author: Alexandros Angelakis [aut, cre], Bryan Nyawanda [aut], Penelope Vounatsou [aut]
Maintainer: Alexandros Angelakis <alexandros.angelakis at swisstph.ch>
BugReports: https://github.com/alexangelakis-ang/sparsesurv/issues
License: GPL (≥ 3)
URL: https://github.com/alexangelakis-ang/sparsesurv
NeedsCompilation: no
SystemRequirements: JAGS (>= 4.x)
Materials: README, NEWS
CRAN checks: sparsesurv results

Documentation:

Reference manual: sparsesurv.html , sparsesurv.pdf

Downloads:

Package source: sparsesurv_0.1.1.tar.gz
Windows binaries: r-devel: not available, r-release: not available, r-oldrel: not available
macOS binaries: r-release (arm64): not available, r-oldrel (arm64): not available, r-release (x86_64): not available, r-oldrel (x86_64): not available

Linking:

Please use the canonical form https://CRAN.R-project.org/package=sparsesurv to link to this page.