Title: | An R6 Class to Perform Analysis on Long Tidy Data |
Version: | 1.0.0 |
Author: | David Hammond [aut, cre] |
URL: | https://github.com/david-hammond/tidymodlr |
BugReports: | https://github.com/david-hammond/tidymodlr/issues |
Maintainer: | David Hammond <anotherdavidhammond@gmail.com> |
Description: | Transforms long data into a matrix form to allow for ease of input into modelling packages for regression, principal components, imputation or machine learning. It does this by pivoting on user defined columns, generating a key-value table for variable names to ensure one-to-one mappings are preserved. It is particularly useful when the indicator names in the columns are long descriptive strings, for example "Energy imports, net (% of energy use)". High level analysis wrapper functions for correlation and principal components analysis are provided. |
License: | MIT + file LICENSE |
Suggests: | testthat (≥ 3.0.0) |
Config/testthat/edition: | 3 |
Encoding: | UTF-8 |
RoxygenNote: | 7.3.2 |
Imports: | R6, dplyr, tidyr, tm, corrr, FactoMineR |
Depends: | R (≥ 2.10) |
LazyData: | true |
NeedsCompilation: | no |
Packaged: | 2024-08-20 07:05:39 UTC; DavidHammond |
Repository: | CRAN |
Date/Publication: | 2024-08-26 12:30:02 UTC |
tidymodlr
: Modelling with tidy long data
Description
tidymodlr
transforms long data into a matrix form to allow for ease
of input into modelling packages for regression, principal components,
imputation or machine learning.
Details
In many fields it is common to have data in tidy long data, with
the rows representing many variables, but only one
column representing the values (see ?wb
for an example).
tidymodlr
is particularly useful when the indicator names in the
columns are long descriptive strings, for example
'Energy imports, net (% of energy use)'.
In such cases a straight pivot wider
generates column names that are
not only cumbersome, but also generate errors in many standard
modelling packages that require base
column names.
High level analysis functions for correlation, imputation and principals components analysis are provided.
Author(s)
Maintainer: David Hammond anotherdavidhammond@gmail.com
See Also
Useful links:
Report bugs at https://github.com/david-hammond/tidymodlr/issues
Generate a key value table with unique key for a set of text
Description
Given a vector of characters, this will return a data frame of
a unique key
column (of, where possible, 3 characters) and value
column listing the unique elements of the original text
.
Usage
make_key_value(text)
Arguments
text |
The text to abbreviate and create a key value table for |
Value
df A Key Value
table
Examples
data(wb)
make_key_value(wb$indicator)
Creates a model matrix style R6 class for modelling with long tidy data
Description
Creates a model matrix style R6 class for modelling with long tidy data
Public fields
data
(
data.frame()
)
The original tidy long data frameparent
(
data.frame()
)
The parent identifiers of the original datachild
(
data.frame()
)
The model matrix version of the datakey
(
data.frame()
)
Akey value
table that links the parent and child data.frames.
Methods
Public methods
Method new()
Creates a new instance of this R6 class.
Create a new tidymodl object.
Usage
tidymodl$new(df, pivot_column, pivot_value)
Arguments
df
A tidy long data frame
pivot_column
The column name on which the pivot will occur
pivot_value
The column name of the values to be pivotted
Returns
A new tidymodl
object.
Method assemble()
Adds a results matrix
Usage
tidymodl$assemble(newdata, format = "long")
Arguments
newdata
A new data set to append. Needs to be either:
A vector of length equal to the number of rows in the model matrix. For example, the output of
predict()
of alm
model. In this case the function returns a data.frame of dimensionsc(nrow(parent), ncol(parent) + 1)
A data.frame/matrix of equal dimensions of the model matrix. For example, the output of
xgb_impute()
. In this case the function returns a data.frame of dimensionsc(nrow(data), ncol(data) + 1)
format
The desired format of the returned data frame, can either be "long" or "wide".
Details
This returns a completed data.frame for four use cases based on user preference of the desired format.
-
Format "long":
-
Use Case 1 - "newdata" is a vector of length nrow(child): The function returns a combined data frame of the parent data and the "newdata" in a new column. Useful when the user wants to append an output of, for example,
predict
for alm
regression model. -
Use Case 2 - "newdata" is a matrix of dimensions dim(child): The function returns a data.frame of the original data in long format with the "newdata" in a new column. Useful when the user wants to append an output of, for example,
xgb_impute
for all original data.
-
-
Format "wide":
-
Use Case 3 - "newdata" is a vector of length nrow(child): The function returns a combined data frame of the parent data and the "newdata" in a new column. Useful when the user wants to append an output of, for example,
predict
for alm
regression model. -
Use Case 4 - "newdata" is a matrix of dimensions dim(child): The function returns a data.frame of the original data in wide format with the "newdata" as replacing the child matrix of the original data. Useful when the user is only interested in using the output of, for example,
xgb_impute
for all original data.
-
Returns
df A Data Frame
Method print()
Prints the key and the head matrix
Usage
tidymodl$print()
Method correlate()
Correlates and reutrns pearson values
Usage
tidymodl$correlate()
Returns
df A Correlation Matrix of class cor_df
(see
corrr)
Method pca()
Provides high level principal components analysis
Usage
tidymodl$pca()
Returns
df A principle components of class PCA
(see
FactoMineR
Method clone()
The objects of this class are cloneable with this method.
Usage
tidymodl$clone(deep = FALSE)
Arguments
deep
Whether to make a deep clone.
Note
Use Cases 1 and 3 return identical results.
Examples
data(wb)
mdl <- tidymodl$new(wb,
pivot_column = "indicator",
pivot_value = "value")
### Use mdl$child for modelling
fit <- lm(data = mdl$child, gni ~ gcu + ppt)
### Can be used to add a yhat value for processed data
nc <- ncol(mdl$child)
nr <- nrow(mdl$child)
dm <- nc * nr
dummy <- matrix(runif(dm),
ncol = nc) |>
data.frame()
names(dummy) = names(mdl$child)
tmp <- mdl$assemble(dummy)
# In built correlation function
mdl$correlate()
tmp <- mdl$pca()
plot(tmp, choix = "var")
Dummy Long Tidy Data
Description
A dataset from the World Bank of a dummy data. The variables are as follows:
Usage
data(wb)
Format
A data frame with 975 rows and 4 variables
-
iso3c: isocode of a country.
-
indicator: World Bank indicator.
-
year: Year of observation
-
value: Value of observation