
Package ‘tripEstimation’
July 22, 2025

Type Package

Title Metropolis Sampler and Supporting Functions for Estimating
Animal Movement from Archival Tags and Satellite Fixes

Version 0.0-46

Imports lattice, mgcv, reproj, sp, zoo

Description Data handling and estimation functions for animal movement
estimation from archival or satellite tags. Helper functions are included
for making image summaries binned by time interval from Markov Chain Monte Carlo
simulations.

License GPL-3

NeedsCompilation no

ByteCompile yes

URL https://github.com/Trackage/tripEstimation

BugReports https://github.com/Trackage/tripEstimation

Author Michael D. Sumner [aut, cre],
Simon Wotherspoon [ctb]

Maintainer Michael D. Sumner <mdsumner@gmail.com>

Repository CRAN

Date/Publication 2023-04-21 23:40:02 UTC

Contents
as.image.pimg . 2
astro . 3
behav.bin . 5
bits . 6
chain.read . 7
elevation . 8
get.mask . 8
initialize.x . 10
julday . 11

1

https://github.com/Trackage/tripEstimation
https://github.com/Trackage/tripEstimation

2 as.image.pimg

metropolis . 12
mkCalibration . 13
mkLookup . 14
norm.proposal . 15
old.metropolis . 16
pick . 17
pimg.list . 19
satellite.model . 19
solar . 21
solar.model . 22

Index 24

as.image.pimg Convert to image list

Description

Converts Probability image (pimage) component to standard R xyz list image.

Usage

as.image.pimg(pimg)
combine(pimgs, subset = 1:length(pimgs))
coords.pimg(pimg)
unzipper(px)
as.local.pimg(pimg)
S3 method for class 'pimg'
as.matrix(x, ...)

Arguments

pimg Probability image component

pimgs pimgs

subset subset

px px

x x

... ...

Value

as.image.pimg returns a image list with vectors x,y and z matrix

as.matrix.pimg returns just the local matrix populated in the parent

combine returns the collective matrix, in image xyz form

coords.pimg returns the rectilinear coordinates of the pimg parent

astro 3

unzipper returns a pimg.list by combining multiple compatible ones together and resolving their
temporal order

as.local.pimg returns the pimg in local form

Author(s)

Michael D. Sumner

astro Calculations for position of the sun and moon

Description

This set of functions provides simple position calculations for the sun and moon, taken from Pascal
routines published in Montenbruck and Pfleger (1994, Dunlop).

These are completely independent from the (specifically optimized) solar elevation calculations
available via [elevation and solar].

Usage

astro(lon, lat, astro.calc)

EQUHOR(DEC, TAU, PHI)

FRAC(x)

LMST(MJDay, LAMBDA)

lunar(time)

mini.sun(time)

MJD(date)

POLAR(X, Y, Z)

Arguments

lon vector of longitudes

lat vector of latitudes

astro.calc list object containing RA right ascension

DEC declination

TAU TAU

PHI PHI

x number

4 astro

MJDay modified julian day

LAMBDA LAMBDA

time vector of date-times in POSIXct format

date vector of date-times in POSIXct format

X x-coordinate

Y y-coordinate

Z z-coordinate

Value

astro returns a list object with the components of the moon or sun’s position,

r rho component

theta theta component - elevation

phi phi component - azimuth

Warning

Some of this could be faster (particularly the use of LMST in "astro" is not precalculated)

Note

Thanks to Nick.Ellis@csiro.au for pointing out a mistake pre-0.0-27

Author(s)

Michael D. Sumner

References

@BOOK{,
title = {Astronomy on the Personal Computer},
publisher = {Springer-Verlag, Berlin},
year = {1994},
author = {Oliver Montenbruck and Thomas Pfleger},
edition = {2 (translated from German by Storm Dunlop)},

}

See Also

See Also elevation

behav.bin 5

Examples

the moon
tm <- Sys.time() + seq(by = 3600, length = 100)
moon <- lunar(tm)
rtp <- astro(147, -42, moon)
op <- par(mfrow = c(2,1))
plot(tm, rtp$theta, main = "lunar elevation, Hobart")
plot(tm, rtp$phi, main = "lunar azimuth, Hobart")
par(op)

the sun
tm <- Sys.time() + seq(by = 3600, length = 100)
sun <- mini.sun(tm)
rtp <- astro(147, -42, sun)
op <- par(mfrow = c(2,1))
plot(tm, rtp$theta, main = "solar elevation, Hobart")
plot(tm, rtp$phi, main = "solar azimuth, Hobart")
par(op)

elev.gmt <- mkElevationSeg(1, tm)
plot(tm, rtp$theta, main = "solar elevation mini.sun versus NOAA")
lines(tm, elev.gmt(1, 147, -42))

behav.bin Bin MCMC chains.

Description

Bin MCMC chains in probability image summaries.

Usage

behav.bin(z, pimgs, weights = NULL)
bin.pimg(pimg, xy, w = 1)
chunk.bin(filename, pimgs, weights = NULL, chunk = 2000, proj = NULL)

Arguments

z z

pimgs pimgs

weights weights

pimg pimg

xy xy

w w

filename filename

chunk chunk

proj proj

6 bits

Value

behav.bin returns a pimg.list

bin.pimg and chunk.bin provide work flow for behav.bin, to do the local binning and control the
overal job

bits Set and get bits from binary masks.

Description

Utility functions to access bits from numeric values, for the efficient storage of spatial masks.

Usage

bits(object, bit)

bits(object, bit) <- value

Arguments

object a numeric value

bit the desired bit

value logical value to set bit to

Details

R uses 32-bit integers, so we can (easily) access 31 binary matrices in each numeric matrix. This
is very useful for storing long time-series of spatial masks, required for track-location estimation
from archival tags.

Value

A numeric object with the given bit set, or a logical value designating the status of the given bit.

Note

The 32nd bit is harder to access, so we ignore it.

Author(s)

Michael D. Sumner

See Also

See Also get.mask for a higher level access of a mask object

chain.read 7

Examples

a <- 1L
bits(a, 0) ## 1
bits(a, 2) <- 1
a # 5

chain.read Manage MCMC cache.

Description

These functions read and write to cache files for storing long MCMC outputs from model functions,
such as solar.model or satellite.model.

Usage

chain.read(filename)
chain.dim(filename)
chain.write(filename, A, append = FALSE)

Arguments

filename cache file for model chain

A chain array

append append to existing file or overwrite?

Value

chain.read returns the actual array of MCMC samples from an archived file

chain.dim reports the dimensions of the archived file

chain.write writes an array of MCMC samples to an archive file

Author(s)

Michael D. Sumner and Simon Wotherspoon

See Also

pimg.list

8 get.mask

elevation Calculate elevation of astronomical objects

Description

Function to calculate elevation.

Usage

elevation(lon, lat, sun)

Arguments

lon vector of longitude values

lat vector of latitude values

sun pre-stored values as returned by solar or lunar

Value

elevation returns a numeric vector of solar (or lunar) elevation as degrees above or below the
horizone

Author(s)

Michael D. Sumner

References

https://gml.noaa.gov/grad/solcalc/azel.html

get.mask Create, access and manipulate spatial masks

Description

Spatial masks are stored using the xyz-list structure used by image or as a series of masks stored as
bits in the z-component as matrix or array object. get.mask is used to extract a specific mask from
the binary storage, and mkSmall can be used to quickly down-sample an existing mask or image.

https://gml.noaa.gov/grad/solcalc/azel.html

get.mask 9

Usage

get.mask(masks, k)

mkSmall(lst, thin = 10)

set.mask(object, segment) <- value

mkMaskObject(xs, ys, nsegs)

Arguments

masks A list object with components x, y, and z containing spatial masks

k specifies the k-th mask

lst an xyz-list structure with z containing either a matrix or array

thin integer factor to down-sample grid

object array Mask object

segment segment number to be modified in the mask

value individual mask to be set

xs x coordinates of mask cells

ys y coordinates of mask cells

nsegs number of segments to be represented

Value

matrix of type logical

Author(s)

Michael D. Sumner

See Also

mkLookup for the use of these masks to query individual locations and locations measured over
time. See bits for the underlying mechanism to set and get mask bits.

For the use of the xyz-list structure see image.

Examples

data(volcano)
d <- list(x = seq(-10, 10, length = nrow(volcano)),

y = seq(-5, 5, length = ncol(volcano)),
z = array(0L, c(nrow(volcano), ncol(volcano), 2)))

mv <- min(volcano)

for (i in 0:61) {
blk <- (i %/% 31) + 1

10 initialize.x

bit <- (i - 1) %% 31
bits(d$z[,,blk], bit) <- volcano > (mv + i*1.6)

}
for (i in 0:61) image(get.mask(d, i))

an object with 62 masks is only twice the size of the source data
object.size(d) / object.size(volcano)

plot a smaller version
image(get.mask(d, 20), 5)

initialize.x Diagnose and initialize light level estimation.

Description

Primarily for the purposes of initializing the estimation, these functions can also be used for diag-
nostic purposes. position.logp produces grids of simplistic position likelihood for each twilight
and uses those to initialize positions for running estimations.

Usage

position.logp(model, x1, x2, xrest = NULL, subset = 1:model$n,
initialize.x = TRUE, start = NULL, end = NULL, prob = 0.8, winoffset = 5)

initialize.x(model, x1, x2, xrest = NULL)

light.quantile(model, chain, day, seg, probl = c(0.025, 0.5, 0.975))

show.segment(model, chain, segment, day, light, k, n = 50, ...)

Arguments

model estimation model object

x1 vector of x-coordinates defining the prior grid

x2 vector of y-coordinates defining the prior grid

xrest value for remaining parameters - default is light attenuation

subset evaluate subset of segments - default uses all

initialize.x logical - create initial points for x?

prob probability - threshold to apply to overlapping quantiles, defaults to 0.8

winoffset an odd-numbered window size to use when intersecting subseqent segments -
defaults to 5

chain chain object from estimation

julday 11

day POSIXct vector of date-times

seg desired segment

probl probability level for quantile

start known position of release

end known position of recapture

segment vector of segment data

light vector of light data

k desired segment to show

n length of vector to evaluate

... additional arguments to be passed to plot

Details

The primary function here is position.logp, for initializing the estimation for solar.model and
metropolis0.

Value

initialize.x returns a matrix with 3 columns, lon,lat,attenuation position.logp returns a list
with model running components show.segment is used for its side effect, a plot of light level for a
twilight segment light.quantile returns a numeric vector

Author(s)

Michael D. Sumner

julday Julian day and Julian century calculations from date-time values

Description

Date values required by solar.

Usage

julday(tm)

julcent(time)

Arguments

tm vector of date-times

time vector of date-times

12 metropolis

Value

return numeric values

Author(s)

Michael D. Sumner

References

https://gml.noaa.gov/grad/solcalc/azel.html

metropolis Metropolis-Hastings sampler for location estimation for archival and
satellite tag

Description

These functions provide a direct implementation of the Metropolis-Hastings algorithm, for calcu-
lating marginal posterior (locations and full-track estimates) properties using Markov Chain Monte
Carlo. The sampler is written completely in R, vectorized to be as fast as possible. The sampler can
include likelihood functions for large data records (including light and water temperature), as well
as mask functions for simpler rejection sources. Behavioural constraints are implemented using a
red/black update, so that location estimates X and Z may be estimated in an efficient manner. The
parameter estimates may be cached and later queried arbitrarily.

Usage

metropolis(model, iters = 1000, thin = 10, start.x = NULL, start.z = NULL)

metropolis0(model, iters = 1000, thin = 10, start.x = NULL, start.z =
NULL)

Arguments

model model for estimation, such as one created by solar.model

iters number of iterations to run

thin number of iterations to thin by

start.x starting points for the primary locations

start.z starting points for the intermediate locations (midpoints between the start.x
points is a good first guess

https://gml.noaa.gov/grad/solcalc/azel.html

mkCalibration 13

Details

metropolis0 is a slightly different version of metropolis that enables an initialization step, re-
quired to find parameter estimates that are consistent with any masks used. It is difficult to make
this step more elegant, and so we live with the two versions.

In terms of the estimates, X’s have m records with n parameters, where m is the number of data
records in time (twilights for archival tags, Argos estimates for satellite tags) and n is at least x-
coordinate, y-coordinate and maybe k-attenuation for light. Z’s have m-1 records with 2 parameters
for ‘x‘ and ‘y‘ (which are usually Longitude and Latitude). These parameters may be increased or
changed, they are tied only to the likelihood functions used, not the sampler itself. Also, coordinate
transformations may be used inside the model and likelihood functions, in order to use an appro-
priate map projection. Solar calculations rely on lon/lat and so this step does slow down light level
geo-location.

Value

A MCM Chain stored as a list containing

model The model object used by the sampler

x The last iters X-samples accepted, stored as an c(m, n, iters) array

z The last iters Z-samples accepted, stored as an c(m - 1, 2, iters)

last.x The last accepted X-sample, stored as a c(m, n) matrix

last.z The last accepted Z-sample, stored as a c(m, 2) matrix

Author(s)

Michael D. Sumner and Simon Wotherspoon

References

Sumner, Wotherspoon and Hindell (2009). Bayesian Estimation of Animal Movement from Archival
and Satellite Tags, PLoS ONE. https://journals.plos.org/plosone/article?id=10.1371/
journal.pone.0007324

See Also

solar.model, satellite.model

mkCalibration Create calibration of solar elevation to measured light level.

Description

Using a set of light level data from a known location create a calibration function to return the
expected light level given solar elevation.

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0007324
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0007324

14 mkLookup

Usage

mkCalibration(x, known = NULL, elim = c(-36, 12), choose = TRUE)

Arguments

x a data frame containing at least gmt and light

known a known position - as a 2-element c(x, y) coordinate

elim a 2-element vector of the range of solar elevation to define

choose logical - choose segments from a plot or use all the data?

Details

It is assumed that the data frame x has columns "gmt" with POSIXct date-times and "light" with
numeric light level data.

Value

A function, defined by approxfun.

Author(s)

Michael D. Sumner

See Also

approxfun

mkLookup Create a lookup function to query locations against spatial masks

Description

Simple pixel spacing is used to overlay point locations on a spatial grid, or a series of grids.

Usage

mkLookup(x, by.segment = TRUE)

Arguments

x an xyz-list with matrix or array of masks

by.segment logical - is the mask to be queried separately for each time step?

Value

A function, with one argument - a matrix of points - that returns a logical vector indicating the
overlay of each point against the masks.

norm.proposal 15

Note

Very little error checking is done.

Author(s)

Michael D. Sumner

See Also

get.mask and related examples for creating and using masks.

See over for more general capabilities for overlays.

norm.proposal Manage proposal functions tune variance for metropolis sampler

Description

Generate new proposals for the x from the current. Generates all x at once.

Usage

norm.proposal(m, n, sigma)

mvnorm.proposal(m, n, Sigma)

bmvnorm.proposal(m, n, Sigma)

Arguments

m number of records

n number of parameters

sigma variance

Sigma variance

Details

norm.proposal - Independent Normal proposal - every component is independent, with variances of
individual components determined by sigma. The recycling rule applies to sigma, so sigma may be
a scalar, an m vector or a m by n matrix.

mvnorm.proposal - Multivariate Normal proposal - all components of all points are correlated. In
this case Sigma is the joint covariance of the m*n components of the proposal points.

bmvnorm.proposal - Block Multivariate Normal proposal - components of points are correlated,
but points are independent. Here Sigma is an array of m covariance matrices that determine the
covariance of the m proposal points.

16 old.metropolis

Value

An list object with get, set and tune functions to manage the state of the proposals.

proposal propose new set of parameters from last

get get variance values

set set variance values

tune tune the variance for proposal functions

Author(s)

Simon Wotherspoon

old.metropolis Older versions of solar location estimation

Description

Some deprecated functions, originally used purely for light level estimation before the sampling
algorithm was generalized for satellite models as well.

Usage

mkElevationSeg(segments, day)

mkNLPosterior(segments, day, light, calib)

old.dist.gc(x1, x2 = NULL)

old.find.init(mask, nseg, nlpost, pars = c("Lon", "Lat", "k"))

old.metropolis(nlpost, lookup, p0, cov0, start, end, iter = 1000, step = 100)

old.mkLookup(x, binArray = TRUE)

k.prior(seg, ps)

Arguments

segments vector identifying the segment of each time and light value

day date-time values in POSIXct

light vector of light data

calib calibration function for light levels

x1 matrix of track locations

x2 matrix of track locations (optional second part)

pick 17

mask image object of masked areas

nseg number of (twilight) segments

nlpost negative log posterior function

pars names of parameters

lookup lookup function for masked areas

p0 initial locations for sampler

cov0 covariance matrix for sampler

start known start parameters

end known end parameters

iter number of iterations

step number of thinning iterations per iter

x image-like object of matrix or array of binary masks

binArray logical: are the masks compressed into bits?

seg segment

ps light attenuation value

Details

These functions are included for legacy purposes, this was the original implementation.

Value

If it is a LIST, use

Author(s)

Michael D. Sumner

See Also

Please use the more up to date function metropolis, with the models such as solar.model or
satellite.model.

pick Choose twilight segments interactively from light data.

Description

pick plots up series of light data agains record ID, allowing the user to click on the beginnings and
ends of twilight in sequence. picksegs generates a vector of segment IDs for each record.

18 pick

Usage

pick(id, val, nsee = 10000)

picksegs(twind, n)

Arguments

id index vector to identify records

val sequence of data (light levels) to choose segments from

nsee number of points to plot per screen

twind vector of index pairs generated by pick

n Number of segments values required - length of record

Value

pick returns a vector where each value (obtained using locator is the x coordinate for the begin or
end of a twilight.

picksegs uses these paired indexes to return a vector of segment IDs, with NAs for non-twilight
periods.

Warning

Segments are expected to be chosen as non-overlapping.

Note

It seems best to choose more of the light data than less, using the ekstrom keyword to solar.model
we can limit the solar elevation used.

Author(s)

Michael D. Sumner

Examples

d <- sin(seq(0, 10, by = 0.01))
id <- 1:length(d)
choose a series of start-begin pairs
if (interactive()) {
pk <- pick(id, d, 1000)
your start/ends should be marked as blue versus red
plot(id, d, col = c("red", "blue")[is.na(picksegs(pk, 1000))+1])
}

pimg.list 19

pimg.list Create a collection of probability images, for MCMC binning.

Description

Pimage lists.

Usage

pimg(xmin, xmax, xn, ymin, ymax, yn)
pimg.list(times, xlim, ylim, img.dim, Z = TRUE)

Arguments

xmin xmin

xmax xmax

xn xn

ymin ymin

ymax ymax

yn yn

times times

xlim xlim

ylim ylim

img.dim img.dim

Z Z

Value

returns a Pimage list

satellite.model Function to create a satellite model object for metropolis location
sampler

Description

A model to manage likelihood functions, environmental masks and behavioural likelihood func-
tions for pre-derived satellite locations. There are some options for configuration, but this may be
considered a template for any given model. The model function exists simply to make the object
construction simple.

20 satellite.model

Arguments

day vector of date-times for each light level

X matrix of pre-derived satellite locations

proposal.x function from object managing X proposals

proposal.z function from object managing Z proposals

mask.x lookup function for X’s against masks

mask.z lookup function for Z’s against masks

fix.release logical - is the release point known?

fix.recapture logical - is the recapture point known?

start.x starting positions for the primary locations, see position.logp

start.z starting positions for the intermediat locations.

posn.sigma variance for locations

behav.dist distribution to use for behavioural constraint

behav.mean mean to use for behavioural distribution

behav.sd variance for behavioural distribution

proj.string PROJ.4 string for coordinate system used

Details

posn.sigma may be a single value for all estimates, or a vector of values for each position estimate.

Transformation of coordinates is supported via a simple function that only performs coordinate
transforms if proj.string is not longlat.

Value

See solar.model for some related detail.

Note

These are simple wrapper functions to create the desired model for use in metropolis. These
models are structurally very simple and may be easily edited as required.

Author(s)

Michael D. Sumner

References

Sumner, Wotherspoon and Hindell (2009). Bayesian Estimation of Animal Movement from Archival
and Satellite Tags, PLoS ONE. https://journals.plos.org/plosone/article?id=10.1371/
journal.pone.0007324

See Also

See also solar.model for the counterpart model for estimating positions for light tags.

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0007324
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0007324

solar 21

solar Calculate solar postion parameters

Description

Pre-calculates astronomical solar position components for Earth-location sampling functions.

Usage

solar(day)

Arguments

day vector of date-time values

Value

A list of the following values for each input time:

solarTime solar time

sinSolarDec sine solar declination

cosSolarDec cosine solar declination

Note

No account is made for horizon refraction, but this was available in the original (Javascript) code.

Author(s)

Michael D. Sumner

References

https://gml.noaa.gov/grad/solcalc/azel.html

https://gml.noaa.gov/grad/solcalc/azel.html

22 solar.model

solar.model Function to create a solar model object for metropolis location sam-
pler

Description

A solar model to manage likelihood functions, environmental masks and behavioural likelihood
functions. There are several options for configuring the model, and this may be considered a tem-
plate for any given model. The model function exists simply to make the object construction simple.

Usage

solar.model(segments, day, light,
proposal.x, proposal.z, mask.x, mask.z,
fix.release = TRUE, fix.recapture = TRUE,
calibration,
light.sigma = 7, k.sigma = 10,
behav = "speed", behav.dist = "gamma",
behav.mean, behav.sd,
proj.string = "+proj=longlat",

ekstrom = c(-5, 3, light.sigma),
ekstrom.limit = "light")

Arguments

segments vector identifying twilight segment
day vector of date-times for each light level
light vector of light levels
proposal.x function from object managing X proposals
proposal.z function from object managing Z proposals
mask.x lookup function for X’s against masks
mask.z lookup function for Z’s against masks
fix.release logical - is the release point known?
fix.recapture logical - is the recapture point known?
calibration calibration function for predicted light level for solar elevation
light.sigma variance for light data
k.sigma variance for light attenuation
behav model distributions to be used for behaviour - defaults to "speed"
behav.dist distribution to be used for behaviour
behav.mean mean for behavioural distribution
behav.sd variance for behavioural distribution
proj.string PROJ.4 string for coordinate system used
ekstrom parameters to use for ekstrom limit - min elevation, max elevation, sigma for

outside that range
ekstrom.limit mode of ekstrom limit to impose - defaults to "light"

solar.model 23

Details

The vectors of segments, day and light are expected to be of the same length.

Fixed recapture and release points are treated specially for ease of sampling, but the sampling is
written to be general for any fixed locations.

Behavioural models may be specified either as lognormal or log-gamma. By editing the function
created as logp.behavioural this may be specified differently.

Transformation of coordinates is supported via a simple function that only performs coordinate
transforms if proj.string is not longlat.

Value

proposal.x(x) - generates new proposals for the x from the current x. Generates all x at once.

proposal.z(z) - generates new proposals for the x from the current z. Generates all z at once.

mask.x(x) - mask function for the x. Simultaneously tests all x and returns a vector of booleans
indicating which are acceptable.

mask.z(z) - mask function for the z. Simultaneously tests all z and returns a vector of booleans
indicating which are acceptable.

logp.position(x) - Given the set of x, returns a vector that gives the contribution each x make to the
log posterior based on position alone.

logp.behavourial(k,xa,z,xb) - Computes the contribution to the log posterior from the behavioural
model on a subset of segments that make up the path. Here k is a vector of the segment numbers,
where the segments pass from xa to z to xb, and the function returns the contribution to the log
posterior from each segment. This is the only function expected to work with only a subset of the x
and z.

start.x - suggested starting points for the x

start.z - suggested starting points for the z

The only function that must operate on a subset of the x/z is logp.behavourial. All the other functions
operate on all x or z simultaneously, simplifying the implementation for the user.

Note that x can consist of several parameters, not just the locations, but we assume the first two
components of each x specify the location. For example, in the light level models each x is (lon,lat,k)
where k is the attenuation of the light level.

Some details of this implementation are not as nice as they could be. First, it would be better if did
not calculate the contributions to the posterior for points the mask rejects. Also, it may be better to
separate the specification of the functions that generate proposals from the other functions, so that
we can tune the proposal distributions without re-generating the whole model specification.

Author(s)

Simon Wotherspoon and Michael Sumner

Index

∗ dplot
initialize.x, 10
mkCalibration, 13
pick, 17

∗ manip
as.image.pimg, 2
astro, 3
behav.bin, 5
bits, 6
chain.read, 7
elevation, 8
get.mask, 8
initialize.x, 10
julday, 11
metropolis, 12
mkCalibration, 13
mkLookup, 14
norm.proposal, 15
pick, 17
pimg.list, 19
satellite.model, 19
solar, 21

∗ misc
old.metropolis, 16

∗ models
solar.model, 22

approxfun, 14
as.image.pimg, 2
as.local.pimg (as.image.pimg), 2
as.matrix.pimg (as.image.pimg), 2
astro, 3

behav.bin, 5
bin.pimg (behav.bin), 5
bits, 6, 9
bits<- (bits), 6
bmvnorm.proposal (norm.proposal), 15

chain.dim (chain.read), 7

chain.read, 7
chain.write (chain.read), 7
chunk.bin (behav.bin), 5
combine (as.image.pimg), 2
coords.pimg (as.image.pimg), 2

elevation, 4, 8
EQUHOR (astro), 3

FRAC (astro), 3

get.mask, 6, 8, 15

image, 8, 9
initialize.x, 10

julcent (julday), 11
julday, 11

k.prior (old.metropolis), 16

light.quantile (initialize.x), 10
LMST (astro), 3
locator, 18
lunar, 8
lunar (astro), 3

metropolis, 12, 13, 17, 20
metropolis0, 11, 13
metropolis0 (metropolis), 12
mini.sun (astro), 3
MJD (astro), 3
mkCalibration, 13
mkElevationSeg (old.metropolis), 16
mkLookup, 9, 14
mkMaskObject (get.mask), 8
mkNLPosterior (old.metropolis), 16
mkSmall (get.mask), 8
mvnorm.proposal (norm.proposal), 15

norm.proposal, 15

24

INDEX 25

old.dist.gc (old.metropolis), 16
old.find.init (old.metropolis), 16
old.metropolis, 16
old.mkLookup (old.metropolis), 16
over, 15

pick, 17
picksegs (pick), 17
pimg (pimg.list), 19
pimg.list, 19
POLAR (astro), 3
position.logp, 20
position.logp (initialize.x), 10

satellite.model, 7, 13, 17, 19
set.mask<- (get.mask), 8
show.segment (initialize.x), 10
solar, 8, 11, 21
solar.model, 7, 11–13, 17, 18, 20, 22

unzipper (as.image.pimg), 2

	as.image.pimg
	astro
	behav.bin
	bits
	chain.read
	elevation
	get.mask
	initialize.x
	julday
	metropolis
	mkCalibration
	mkLookup
	norm.proposal
	old.metropolis
	pick
	pimg.list
	satellite.model
	solar
	solar.model
	Index

