Type: | Package |
Title: | Tools for Analyzing Sequencing Data with Unique Molecular Identifiers |
Version: | 1.0.0 |
Date: | 2021-11-23 |
Maintainer: | Stefan Filges <stefan.filges@gu.se> |
Description: | Tools for analyzing sequencing data containing unique molecular identifiers generated by 'UMIErrorCorrect' (https://github.com/stahlberggroup/umierrorcorrect). |
License: | GPL-3 |
URL: | https://github.com/sfilges/umiAnalyzer |
BugReports: | https://github.com/sfilges/umiAnalyzer/issues |
Depends: | R (≥ 4.1.0) |
Imports: | BiocManager, dplyr (≥ 0.7.5), DT (≥ 0.19), forcats (≥ 0.5.0), ggplot2 (≥ 2.2.1), graphics, grDevices, gridExtra (≥ 2.3), magrittr (≥ 1.5), methods, pheatmap (≥ 1.0.12), plotly (≥ 4.9.2.1), readr (≥ 1.1.1), Rsamtools (≥ 1.32.3), scales (≥ 1.1.0), shiny (≥ 1.7.1), shinydashboard (≥ 0.7.2), shinyFiles (≥ 0.9.0), shinyWidgets (≥ 0.6.2), stats, stringr (≥ 1.4.0), tibble (≥ 1.4.2), tidyr (≥ 0.8.1), utils, viridis (≥ 0.5.1) |
Suggests: | knitr (≥ 1.27), rmarkdown (≥ 2.1) |
VignetteBuilder: | knitr |
Config/testthat/edition: | 3 |
Encoding: | UTF-8 |
Language: | en-US |
RoxygenNote: | 7.1.2 |
NeedsCompilation: | no |
Packaged: | 2021-11-24 21:59:58 UTC; stefa |
Author: | Stefan Filges |
Repository: | CRAN |
Date/Publication: | 2021-11-25 08:40:02 UTC |
Amplicon heatmap
Description
Generates a heatmap of mutations with sample clustering using pheatmap.
Usage
AmpliconHeatmap(
object,
filter.name = "default",
cut.off = 5,
left.side = "columns",
amplicons = NULL,
samples = NULL,
abs.count = FALSE,
font.size = 10
)
Arguments
object |
Requires a UMI sample or UMI experiment object |
filter.name |
Name of the filter to be plotted. |
cut.off |
How many variant reads are necessary to consider a variant above background? Default is 5 reads. |
left.side |
Show assays or sample on the left side of the heatmap. Default is assays |
amplicons |
(Optional) character vector of amplicons to be plotted. |
samples |
(Optional) character vector of samples to be plotted. |
abs.count |
Logical. Should absolute counts be used instead of frequencies? |
font.size |
Font size to use for sample labels |
Value
A graphics object
Examples
## Not run:
library(umiAnalyzer)
main = system.file('extdata', package = 'umiAnalyzer')
samples <- list.dirs(path = main, full.names = FALSE, recursive = FALSE)
simsen <- createUmiExperiment(experimentName = 'example',mainDir = main,sampleNames = samples)
simsen <- filterUmiObject(simsen)
hmap <- AmpliconHeatmap(simsen)
## End(Not run)
Generate Amplicon plots
Description
Plots variant allele frequencies or alternate allele counts for chosen samples and assays.
Usage
AmpliconPlot(
object,
filter.name = "default",
cut.off = 5,
min.count = 0,
min.vaf = 0,
amplicons = NULL,
samples = NULL,
abs.count = FALSE,
y_min = 0,
y_max = NULL,
theme = "classic",
option = "default",
direction = "default",
plot.text = FALSE,
plot.ref = TRUE,
stack.plot = FALSE,
classic.plot = FALSE,
fdr = 0.05,
font.size = 6,
angle = 45,
use.caller = FALSE,
use.plotly = TRUE
)
Arguments
object |
Requires a UMI sample or UMI experiment object |
filter.name |
Name of the filter to be plotted. |
cut.off |
How many variant reads are necessary to consider a variant above background? Default is 5 reads. |
min.count |
Minimum variants counts to plot, default is 0. |
min.vaf |
Minimum variants allele frequency to plot, default is 0. |
amplicons |
(Optional) character vector of amplicons to be plotted. |
samples |
(Optional) character vector of samples to be plotted. |
abs.count |
Should absolute counts be plotted instead of frequencies? Default is FALSE. |
y_min |
Minimum y-axis value, default is 0 |
y_max |
Maximum y-axis value, default is NULL (autoscale) |
theme |
Plotting theme to use, default is classic. |
option |
Color palette to use. |
direction |
Orientation of the color palette. |
plot.text |
Should non-references bases be indicated above the bar? |
plot.ref |
If true show reference base instead of position on x-axis. |
stack.plot |
Show all variant alleles in a stacked bar plot. |
classic.plot |
Show classical debarcer amplicon plot with raw error. |
fdr |
False-discovery-rate cut-off for variants. |
font.size |
Font size |
angle |
Font angle |
use.caller |
Should data from variant caller be used? Default is FALSE |
use.plotly |
Should plotly be used instead of the regular ggplot device? Default is TRUE |
Value
A UMIexperiment object containing a ggplot object with the amplicon plot.
Examples
library(umiAnalyzer)
main = system.file('extdata', package = 'umiAnalyzer')
samples <- list.dirs(path = main, full.names = FALSE, recursive = FALSE)
simsen <- createUmiExperiment(experimentName = 'example',mainDir = main,sampleNames = samples)
simsen <- filterUmiObject(simsen)
amplicon_plot <- AmpliconPlot(simsen)
Consensus depth histograms
Description
Generate histograms for the frequency of barcode family depths.
Usage
BarcodeFamilyHistogram(
object,
xMin = 0,
xMax = 100,
samples = NULL,
option = "viridis",
direction = 1,
theme = "classic"
)
Arguments
object |
Requires a UMI sample or UMI experiment object |
xMin |
Minimum consensus family size to plot, default is 0. |
xMax |
Maximum consensus family size to plot. Default is 100. |
samples |
List of samples to be shown. |
option |
Color scheme to use |
direction |
If using viridis colors sets the orientation of color scale. |
theme |
ggplot theme to use. Defaults to classic. |
Value
A ggplot object
Examples
library(umiAnalyzer)
main = system.file('extdata', package = 'umiAnalyzer')
simsen <- createUmiExperiment(main, importBam = TRUE)
barcode_dist <- BarcodeFamilyHistogram(simsen)
Generate QC plots
Description
Visualize the UMI count for each selected assay and sample for a given consensus depth. This is useful to detect differences in coverage, especially for multiplexed assays.
Usage
QCplot(
object,
group.by = "sample",
plotDepth = 3,
assays = NULL,
samples = NULL,
theme = "classic",
option = "viridis",
direction = "default",
toggle_mean = TRUE,
center = "mean",
line_col = "blue",
angle = 0,
plotly = FALSE
)
Arguments
object |
Requires a UMI sample or UMI experiment object |
group.by |
String. Which variable should be used as a factor on the x-axis. Default is sample |
plotDepth |
Which consensus depth to plot |
assays |
(Optional) user-supplied list of assays to plot. Default is all. |
samples |
(Optional) user-supplied list of samples to plot. Default is all. |
theme |
ggplot theme to use. |
option |
Color palette to use, either ggplot default or viridis colors. |
direction |
If viridis colors are used, choose orientation of color scale. |
toggle_mean |
Show mean or median |
center |
Choose mean or median |
line_col |
Choose color for mean/median line |
angle |
Angle of labels on x-axis. |
plotly |
Should plotly be used for rendering? |
Value
A ggplot object
Examples
library(umiAnalyzer)
main = system.file('extdata', package = 'umiAnalyzer')
samples <- list.dirs(path = main, full.names = FALSE, recursive = FALSE)
simsen <- createUmiExperiment(experimentName = 'example',mainDir = main,sampleNames = samples)
depth_plot <- QCplot(simsen)
UMIexperiment class
Description
The UMIexperiment is the core data object, storing all data and relevant analysis data associated with your experiment. Each object has number of slots storing raw data, graphs and processed data.
Value
An object of class UMIexperiment
Slots
name
Optional project name for record keeping.
cons.data
The raw consensus data supplied by the user.
summary.data
Summary data from UMIErrorCorrect
raw.error
Cons0 error profile
reads
Consensus reads imported using the parseBamFiles function.
meta.data
Sample data optionally supplied by the user.
filters
A list of filtered cons.data, which can be accessed separately.
plots
A list of generated plots.
variants
Consensus table generated with the umiAnalyzer variant caller.
merged.data
Data generated using the mergeTechnicalReplicates function.
UMIsample class
Description
UMIsample class
Value
An object of class UMIsample
Slots
name
Sample name
cons.data
Raw consensus data
summary.data
Summary data from UMIErrorCorrect
reads
Consensus reads imported from a bam file.
Plot UMI counts
Description
Visualize the number detected UMI for each consensus depth cut-off. This may may helpful in choosing the right consensus depth for your analysis, by checking the number of reads still available for each assay and sample for your chosen cut-off.
Usage
UmiCountsPlot(
object,
amplicons = NULL,
samples = NULL,
theme = "classic",
option = "viridis",
direction = 1
)
Arguments
object |
Requires a UMI sample or UMI experiment object |
amplicons |
(Optional) user-supplied list of assays to plot. Default is all. |
samples |
(Optional) user-supplied list of samples to plot. Default is all. |
theme |
Plotting theme, default is classic |
option |
Color palette. Default uses ggplot standard, otherwise viridis options. |
direction |
If using viridis colors should the scale be inverted or default? |
Value
A UMIexperiment object
Examples
library(umiAnalyzer)
main = system.file('extdata', package = 'umiAnalyzer')
samples <- list.dirs(path = main, full.names = FALSE, recursive = FALSE)
simsen <- createUmiExperiment(experimentName = 'example',mainDir = main,sampleNames = samples)
simsen <- filterUmiObject(simsen)
count_plot <- UmiCountsPlot(simsen)
Add metaData
Description
Add metaData
Usage
addMetaData(object, attributeName, attributeValue)
Arguments
object |
R object to which meta data should be added |
attributeName |
Name of the meta data attribute. |
attributeValue |
Meta data to be saved. |
Value
A UMIexperiment object
Examples
library(umiAnalyzer)
main <- system.file("extdata", package = "umiAnalyzer")
simsen <- createUmiExperiment(main)
metaData <- system.file("extdata", "metadata.txt", package = "umiAnalyzer")
simsen <- addMetaData(simsen,'metaData',metaData)
Add UMI sample to an existing experiment object
Description
Add UMI sample to an existing experiment object
Usage
addUmiSample(object, sampleName, sampleDir, clearData = FALSE)
Arguments
object |
UMIexperiment object |
sampleName |
Name of new sample |
sampleDir |
Directory to new sample |
clearData |
Should other data in UMIexperiment be cleared |
Value
A UMIexperiment object
Beta binomial model
Description
Code was obtained from VGAM package function VGAM::rbetabinom.ab. The VGAM package is available under the GPL-3 license and maintained by Thomas Yee <t.yee at auckland.ac.nz>. Source code of the function is identical to rbetabinom.ab, but the function name was changed to beta_binom.
Usage
beta_binom(n, size, shape1, shape2, limit.prob = 0.5, .dontuse.prob = NULL)
Arguments
n |
n |
size |
size |
shape1 |
alpha |
shape2 |
beta |
limit.prob |
0.5 |
.dontuse.prob |
NULL |
Value
Numeric
References
Yee TW (2015). Vector Generalized Linear and Additive Models: With an Implementation in R. Springer, New York, USA.
Examples
beta_binom(10,5, 0.5, 1)
beta_binom(10,2, 0.5, 1)
callVariants using beta binomial distribution
Description
Calculate variant p-values using permutation-based testing. A prior is fitted to model the background error using maximum likelihood estimation of a beta distribution. The maximum likelihood estimate of the beta distribution is then used to define the shape of a beta-binomial distribution used to estimate variant P-Values. This can be interpreted as a probability for a variant to not have arisen by chance.
Usage
callVariants(object, minDepth = 3, minCoverage = 100, computePrior = FALSE)
Arguments
object |
A UMIErrorCorrect object. |
minDepth |
Minimum consensus depth required default is 3 |
minCoverage |
Minimum Coverage to use, default is 100 reads. |
computePrior |
Should a new distribution be derived from data? Default is FALSE. |
Value
Object containing raw and FDR-adjusted P-Values
See Also
filterVariants
on how to filter variants.
Examples
library(umiAnalyzer)
main <- system.file("extdata", package = "umiAnalyzer")
simsen <- createUmiExperiment(main)
simsen <- filterUmiObject(simsen)
simsen <- callVariants(simsen, computePrior = FALSE)
Method for creating a UMI experiment object
Description
Method for creating a UMI experiment object
Usage
createUMIexperiment_Debarcer(experiment.name, main.dir, dir.names)
Arguments
experiment.name |
Name of the experiment |
main.dir |
Main experiment directory |
dir.names |
List of sample names |
Value
A UMIexperiment object
Method for creating a UMIsample object
Description
Method for creating a UMIsample object
Usage
createUMIsample_Debarcer(sample.name, sample.dir, cons = "10")
Arguments
sample.name |
UMI sample object name |
sample.dir |
Path to UMI sample |
cons |
Consensus depth. Needs to be string; default is 10. |
Value
A UMIsample object
Method for creating a UMI experiment object
Description
Method for creating a UMI experiment object
Usage
createUmiExperiment(
mainDir,
experimentName = NULL,
sampleNames = NULL,
importBam = FALSE,
as.shiny = FALSE
)
Arguments
mainDir |
Main experiment directory |
experimentName |
Name of the experiment |
sampleNames |
List of sample names. Can be either NULL or list. If NULL all subdirectories of mainDir will be searched. |
importBam |
Logical. Should bam files be imported on creation? Default is False. |
as.shiny |
Set to TRUE if run within a shiny::withProgress environment |
Value
An object of class UMIexperiment
Examples
library(umiAnalyzer)
main = system.file('extdata', package = 'umiAnalyzer')
samples <- list.dirs(path = main, full.names = FALSE, recursive = FALSE)
exp1 <- createUmiExperiment(experimentName = 'exp1',mainDir = main,sampleNames = samples)
createUmiSample
Description
Method for creating a UMI sample from UMIErrorCorrect output.
Usage
createUmiSample(sampleName, sampleDir, importBam = FALSE)
Arguments
sampleName |
UMI sample object name |
sampleDir |
Path to UMI sample folders. Must be a folder generated by UMIErrorCorrect |
importBam |
Logical. Should BAM files be imported at object initialization? Default is False. |
Value
An object of class UMIsample
Examples
library(umiAnalyzer)
main = system.file('extdata', package = 'umiAnalyzer')
samples <- list.dirs(path = main, full.names = FALSE, recursive = FALSE)
s1 <- createUmiSample('s1',sampleDir = paste(main,"/",samples[1],sep=""))
Download meta data template
Description
Function for downloading a template file containing metadata.
Usage
download_template(object)
Arguments
object |
A UMIexperiment object |
Value
A tibble containing a metadata template
Examples
library(umiAnalyzer)
main <- system.file("extdata", package = "umiAnalyzer")
simsen <- createUmiExperiment(main)
download_template(simsen)
Method for filtering UMIexperiment and sample objects
Description
Method for filtering UMIexperiment and sample objects
Usage
filterUmiObject(
object,
name = "default",
minDepth = 3,
minCoverage = 100,
minFreq = 0,
minCount = 0
)
Arguments
object |
Requires a UMI sample or UMI experiment object. |
name |
String. Name of the filter. Default is "default". |
minDepth |
Consensus depth to analyze. Default is 3. |
minCoverage |
Minimum coverage required for amplicons. Default is 1. |
minFreq |
Minimum variant allele frequency to keep. Default is 0. |
minCount |
Minimum variant allele count to keep. Default is 3. |
Value
A UMI sample or UMI experiment object.
Examples
library(umiAnalyzer)
main = system.file('extdata', package = 'umiAnalyzer')
samples <- list.dirs(path = main, full.names = FALSE, recursive = FALSE)
simsen <- createUmiExperiment(experimentName = 'simsen',mainDir = main,sampleNames = samples)
simsen <- filterUmiObject(simsen)
Filter variants based on p values or depth
Description
You can filter variants called with the the "callVariants" function based on adjusted p-value, minimum variant allele count and supply a list of assays and samples to plot.
Usage
filterVariants(
object,
p.adjust = 0.2,
minVarCount = 5,
amplicons = NULL,
samples = NULL
)
Arguments
object |
A UMIexperiment object |
p.adjust |
Numeric. Adjusted p value (FDR). Default is 0.2. |
minVarCount |
Integer. Minimum variant allele count. Default is 5. |
amplicons |
NULL or list of assays to plot. NULL uses all. |
samples |
NULL or list of samples to plot. NULL uses all. |
Value
A UMIexperiment object with filtered variants. Can be used to generate VCF files.
See Also
callVariants
on how to call variants.
Examples
## Not run:
library(umiAnalyzer)
main <- system.file("extdata", package = "umiAnalyzer")
simsen <- createUmiExperiment(main)
simsen <- filterUmiObject(simsen)
simsen <- callVariants(simsen, computePrior = FALSE)
simsen <- filterVariants(simsen, p.adjust = 0.05)
## End(Not run)
Find consensus reads A function to analyze consensus read tables generated with parseBamFiles or a UMIexperiment object containing reads.
Description
Find consensus reads A function to analyze consensus read tables generated with parseBamFiles or a UMIexperiment object containing reads.
Usage
findConsensusReads(
object,
consDepth = 0,
groupBy = c("none", "sample", "position", "both"),
pattern = NULL
)
Arguments
object |
Either a tibble generated with parseBamFiles or a UMIexperiment object |
consDepth |
Minimum consensus depth to keep. Default is 0. |
groupBy |
Should data be grouped by position, sample, both or not at all. |
pattern |
Regular expression |
Value
A data table
Examples
library(umiAnalyzer)
main <- system.file("extdata", package = "umiAnalyzer")
simsen <- createUmiExperiment(main, importBam = TRUE)
reads <- findConsensusReads(simsen)
reads
Generate VCF file from UMI sample or UMI experiment object
Description
Generate VCF file from UMI sample or UMI experiment object
Usage
generateVCF(object, outDir = getwd(), outFile, printAll = FALSE)
Arguments
object |
Requires a UMI sample or UMI experiment object |
outDir |
String. Output directory, defaults to working directory. |
outFile |
String. Name of the output file |
printAll |
Logical. Should all or only trusted variant be printed? |
Value
A VCF file
Examples
## Not run:
library(umiAnalyzer)
main <- system.file("extdata", package = "umiAnalyzer")
simsen <- createUmiExperiment(main)
simsen <- filterUmiObject(simsen)
generateVCF(simsen,'simsen.vcf', printAll = FALSE, save = FALSE)
## End(Not run)
Method for retrieving filtered data
Description
Method for retrieving filtered data
Usage
getFilteredData(
object,
name = "default",
save = FALSE,
outDir = getwd(),
fileName = NULL,
delim = ";"
)
Arguments
object |
Requires a UMI sample or UMI experiment object. |
name |
String. Name of the filter. Default is "default". |
save |
Logical, should data be saved as csv file? Default is FALSE. |
outDir |
Output directory |
fileName |
Filename to be used, default is the same as 'name' |
delim |
Character string denoting delimiter to be used, default is ';'. |
Value
A filtered consensus table, as a tibble.
Examples
library(umiAnalyzer)
main = system.file('extdata', package = 'umiAnalyzer')
samples <- list.dirs(path = main, full.names = FALSE, recursive = FALSE)
simsen <- createUmiExperiment(experimentName = 'simsen',mainDir = main,sampleNames = samples)
simsen <- filterUmiObject(simsen)
myfilter <- getFilteredData(simsen)
myfilter
Retrieve meta data by name.
Description
Retrieve meta data by name.
Usage
getMetaData(object, attributeName)
Arguments
object |
R object from which to get meta data. |
attributeName |
Name of the meta data attribute. |
Value
Metadata
Examples
library(umiAnalyzer)
main <- system.file("extdata", package = "umiAnalyzer")
simsen <- createUmiExperiment(main)
metaData <- system.file("extdata", "metadata.txt", package = "umiAnalyzer")
simsen <- importDesign(object = simsen,file = metaData)
design <- getMetaData(object = simsen, attributeName = "design")
design
Import bed file
Description
Import bed file
Usage
importBedFile(path)
Arguments
path |
path to bed file |
Value
A table containing genome positions
Import experimental design meta data such as replicates, treatments, categorical variables.
Description
Import experimental design meta data such as replicates, treatments, categorical variables.
Usage
importDesign(object, file, delim = NULL)
Arguments
object |
UMI.experiment to which to add metadata |
file |
File containing meta data |
delim |
Column separator. Default is NULL (automatically determine delimiter) |
Value
A UMIexperiment object
Examples
library(umiAnalyzer)
main <- system.file("extdata", package = "umiAnalyzer")
simsen <- createUmiExperiment(main)
metaData <- system.file("extdata", "metadata.txt", package = "umiAnalyzer")
simsen <- importDesign(object = simsen,file = metaData)
# Retrieve meta data
design <- getMetaData(object = simsen, attributeName = "design")
design
Merge assays
Description
Merge assays together by name. Requires a name of the new assay and a list of assays that will be merged.
Usage
mergeAssays(object, name, assay.list)
Arguments
object |
A UMIexperiment object |
name |
Name of the new assay |
assay.list |
List of assays to merge |
Value
merged consensus data
Examples
library(umiAnalyzer)
main <- system.file("extdata", package = "umiAnalyzer")
simsen <- createUmiExperiment(main)
simsen <- mergeAssays(object = simsen,name = "new",assay.list = c("PIK3CA_123", "PIK3CA_234"))
Function to parse bam files
Description
Function to parse bam files
Usage
parseBamFiles(mainDir, sampleNames = NULL, consDepth = 0, as.shiny = FALSE)
Arguments
mainDir |
Directory containing UMIErrorCorrect output folders. |
sampleNames |
A list of sample names. |
consDepth |
Only retain consensus reads of at least cons.depth. Default is 0. |
as.shiny |
Set to TRUE if run within a shiny::withProgress environment |
Value
A data table
Examples
library(umiAnalyzer)
main <- system.file("extdata", package = "umiAnalyzer")
simsen <- createUmiExperiment(main)
reads <- parseBamFiles(main, consDepth = 10)
Function to run the umiVisualizer shiny app
Description
Function to run the umiVisualizer shiny app
Usage
runUmiVisualizer()
Value
Opens the umiVisualizer app
Examples
## Not run:
library(umiAnalyzer)
runUmiVisualizer()
## End(Not run)
Save consensus data
Description
If save is set to TRUE data will be written to a csv file otherwise consensus data will be returned as a tibble.
Usage
saveConsData(
object,
save = FALSE,
fileName = "consensus_data.csv",
outDir = getwd(),
delim = ";"
)
Arguments
object |
UMIexperiment object |
save |
Logical. Should data be saved to file? Default is FALSE. |
fileName |
String. Name of the file to be saved. Default is 'consensus_data.csv' |
outDir |
output directory, defaults to working directory |
delim |
Single character string, either ';' or ',' or tab |
Value
A data table
Examples
library(umiAnalyzer)
main = system.file('extdata', package = 'umiAnalyzer')
samples <- list.dirs(path = main, full.names = FALSE, recursive = FALSE)
example <- createUmiExperiment(experimentName = 'example',mainDir = main,sampleNames = samples)
consensus_data <- saveConsData(object = example)
consensus_data
UMIexperiment data generated with SiMSen-Seq
Description
UMIexperiment data generated with SiMSen-Seq
Format
An object of class "UMIexperiment"
Plot time series data
Description
Function for plotting time series or other meta data. Uses facet wrap to display user-provided categorical variables.
Usage
timeSeriesGrid(
object,
filter.name = "default",
cut.off = 5,
min.count = 0,
min.vaf = 0,
amplicons = NULL,
samples = NULL,
x_variable = NULL,
y_variable = "Max Non-ref Allele Frequency",
columns = "Sample Name",
rows = "Name",
color_by = "Name",
fdr = 0.05,
use.caller = TRUE,
bed_positions = NULL
)
Arguments
object |
A consensus data table |
filter.name |
"default" |
cut.off |
5 |
min.count |
0 |
min.vaf |
0 |
amplicons |
NULL |
samples |
NULL |
x_variable |
NULL |
y_variable |
"Max Non-ref Allele Frequency" |
columns |
"Sample Name" |
rows |
"Name" |
color_by |
"Name" |
fdr |
0.05 |
use.caller |
TRUE |
bed_positions |
NULL |
Value
A ggplot object.
Examples
library(umiAnalyzer)
main <- system.file("extdata", package = "umiAnalyzer")
simsen <- createUmiExperiment(main)
simsen <- filterUmiObject(simsen)
metaData <- system.file("extdata", "metadata.txt", package = "umiAnalyzer")
simsen <- importDesign(object = simsen,file = metaData)
bed_dir <- system.file("extdata", "simple.bed", package = "umiAnalyzer")
bed <- importBedFile(path = bed_dir)
time_plot <- timeSeriesGrid(simsen, x_variable = "time", bed_positions = bed)