
Package ‘varhandle’
July 22, 2025

Version 2.0.6

Date 2023-09-30

Title Functions for Robust Variable Handling

Author Mehrad Mahmoudian [aut, cre]

Maintainer Mehrad Mahmoudian <m.mahmoudian@gmail.com>

Depends R (>= 3.0.1),

Imports utils, graphics

Description Variables are the fundamental parts of each programming language but handling them ef-
ficiently might be frustrating for programmers. This package contains some func-
tions to help user (especially data explorers) to make more sense of their vari-
ables and take the most out of variables and hardware resources. These functions are writ-
ten and crafted since 2014 with years of experience in statistical data analysis on high-
dimensional data, and for each of them there was a need. Functions in this package are sup-
posed to be efficient and easy to use, hence they will be frequently up-
dated to make them more convenient.

License GPL (>= 2)

URL https://codeberg.org/mehrad/varhandle

BugReports https://codeberg.org/mehrad/varhandle/issues

RoxygenNote 7.2.3

NeedsCompilation no

Repository CRAN

Date/Publication 2023-09-30 19:30:02 UTC

Contents
varhandle-package . 2
check.numeric . 2
inspect.na . 4
pin.na . 6
rm.all.but . 7

1

https://codeberg.org/mehrad/varhandle
https://codeberg.org/mehrad/varhandle/issues

2 check.numeric

save.var . 9
to.dummy . 10
unfactor . 11
var.info . 12

Index 15

varhandle-package A Package to Work and Handle Variables Easier, Convenient and
Flawless

Description

A collection of functions for working and handling variables easier, convenient and flawless in R
programming environment. It is suitable for Projects: Small to semi-large projects with massive
amount of data. Programmers: Programming and exploring data on the fly or preparing and assem-
bling a pipeline.

Details

Package: varhandle
Type: Package
Version: 2.0.6
Date: 2023-09-30
License: GPL (>=2)

Author(s)

Mehrad Mahmoudian [aut, cre] Who to complain to <m.mahmoudian@gmail.com> Reporting is-
sues: https://codeberg.org/mehrad/varhandle/issues

check.numeric Check the vector’s possibility to convert to numeric

Description

This function gets a character or factor vector and checks if all the value can be safely converted to
numeric.

Usage

check.numeric(v=NULL, na.rm=FALSE, only.integer=FALSE, exceptions=c(""),
ignore.whitespace=TRUE)

check.numeric 3

Arguments

v The character vector or factor vector. (Mandatory)

na.rm logical. Should the function ignore NA? Default value is FALSE since NA can
be converted to numeric. (Optional)

only.integer logical. Only check for integers and do not accept floating point. Default value
is FALSE. (Optional)

exceptions A character vector containing the strings that should be considered as valid to
be converted to numeric. (Optional)

ignore.whitespace

logical. Ignore leading and tailing whitespace characters before assessing if the
vector can be converted to numeric. Default value is TRUE. (Optional)

Details

This function checks if it is safe to convert the vector to numeric and this conversion will not end
up in producing NA. In nutshell this function tries to make sure provided vector contains numbers
but in a non-numeric class. See example for better understanding.

This function can be configured to only accept integer numbers and ignoring those with decimal
point (by setting the argument ‘only.integer‘ to ‘TRUE‘). It can also ignore NA values (‘na.rm‘
argument) and ignore heading/tailing whitespaces (‘ignore.whitespace‘ argument).

There is also room to manually define exceptions to be considered as numbers (exceptions argu-
ment).

Value

The function return a logical vector. TRUE for all the elements in the given vector if they are safe
to be converted into numeric in R (does not turned into NA). Remember that ‘""‘ and ‘" "‘ can
be converted to numeric safely (without getting the "NAs introduced by coercion" error), but their
value would be NA.

In case of a integer, numeric or logical vector, the function simply returns all TRUE logical vector.

Author(s)

Mehrad Mahmoudian

See Also

as.numeric

Examples

Create a vector with NA
a <- as.character(c(1:5, NA, seq(from=6, to=7, by=0.2)))
see what we created
print(a)
check if the vector is all numbers (not ignoring NAs)
check.numeric(a)

4 inspect.na

check if the vector is all numbers (ignoring NAs)
check.numeric(a, na.rm=TRUE)
if all the items in vector a are safe for numeric conversion
if(all(check.numeric(a))){

convert the vector to numeric
a <- as.numeric(a)

}

create a complicated vector
b <- c("1", "2.2", "3.", ".4", ".5.", "..6", "seven", "00008",

"90000", "-10", "+11", "12-", "--13", "++14", NA, "",
" 7 ", " ", "8e2", "8.6e-10", "-8.6e+10", "e3")

show in proper format
print(data.frame(value=b, check.numeric=check.numeric(b), converted=as.numeric(b)))

value check.numeric converted
1 1 TRUE 1.0e+00
2 2.2 TRUE 2.2e+00
3 3. TRUE 3.0e+00
4 .4 TRUE 4.0e-01
5 .5. FALSE NA
6 ..6 FALSE NA
7 seven FALSE NA
8 00008 TRUE 8.0e+00
9 90000 TRUE 9.0e+04
10 -10 TRUE -1.0e+01
11 +11 TRUE 1.1e+01
12 12- FALSE NA
13 --13 FALSE NA
14 ++14 FALSE NA
15 <NA> TRUE NA
16 TRUE NA
17 7 TRUE 7.0e+00
18 TRUE NA
19 8e2 TRUE 8.0e+02
20 8.6e-10 TRUE 8.6e-10
21 -8.6e+10 TRUE -8.6e+10
22 e3 FALSE NA

remember that "" and " " can be converted to numeric safely, but their value would be NA.

inspect.na inspect matrix or data.frame regarding NAs

Description

This function provides a summary of NAs in a given matrix or data.frame either feature-wise (by
column) or sample-wise (by row). It can also provide a barplot and/or histogram regarding this
statistics.

inspect.na 5

Usage

inspect.na(d, hist=FALSE, summary=TRUE, byrow=FALSE, barplot=TRUE, na.value = NA)

Arguments

d A data.frame or matrix which you want to get the summary of NAs in it (Manda-
tory)

hist logical. Should the function plot histogram. Default is FALSE. (Optional)

summary logical. Should the function returns the result dataframe. Default is TRUE.
(Optional)

byrow logical. Should the function perform row-wise. Default is FALSE. (Optional)

barplot logical. Should the function plot barplot. Default is TRUE. (Optional)

na.value A vector containing the value that should be considered as missing value. The
default is NA, but you can add to it or change it to your preference. See the
example. (Optional)

Details

This function provides a quick and easy way to see how much missing values (e.g NA) exist in a
data.frame or matrix. This function is designed to make the data exploration easier since missing
values are one of the most problematic part in lated stages of analysis.

Value

The function provides a data.frame (in case summary argument is set to TRUE) containing column
or row index, name, number_of_NAs and ratio_of_NA. In case the function does not find any NA,
it will return NULL in case it need to be checked by is.null().

The barplot generated by this function is presenting column names or row names which contain
NAs with their NA ratio to the total number of items in that row or column. The plot also colors the
bars based on their NA ratio: * Gray less than and equal to 10% * Yellow for >10% and <30% *
Orange for >30% and <50% * Red for >50% The plot also has horizontal lines at 10%, 20%, 30%
and 50% to make the plot easier to read.

The histogram generated by this function is meant to provide an overview of how NAs are dis-
tributed in the input data. This plot presents all the columns or rows regardless of having NA values
or not. This plot is more useful when used for small number of rows or columns.

Author(s)

Mehrad Mahmoudian

See Also

pin.na is.na

6 pin.na

Examples

get some data
my_iris <- iris
add 20 NAs randomly
for(i in 1:260){

my_iris[sample(1:nrow(my_iris), 2), sample(c(1,2,3,1,3,3,3), 1)] <- NA
}

now we can inspect the NAs
inspect.na(my_iris)
plot the histogram
inspect.na(my_iris, hist=TRUE, barplot=FALSE)

pin.na Pinpoint NAs in a vector, matrix or data.frame

Description

This function finds NAs (or defined missing values) in a vector, data.frame or matrix and returns a
data.frame which contains two columns that includes the row number and column number of each
NA.

Usage

pin.na(x, na.value = NA)

Arguments

x A vector, data.frame or matrix which you want to pinpoint its NAs. (Mandatory)
na.value A vector containing the value that should be considered as missing value. The

default is NA, but you can add to it or change it to your preference. See the
example. (Optional)

Details

This function provides a quick and easy way to locate and pinpoint NAs in a given vector, data.frame
or matrix. This function is also used in inspect.na function of this package.

Value

If a vector is given, the index of NAs will be returned in a numeric vector format. In case of a given
matrix or data.frame the function will return a data.frame with two columns, one indicating the row
number and one indicating the column number. Each row will represent a location of a NA. In case
no NA is found, the function will return NULL which makes it easy to use in if conditions using
is.null.

Author(s)

Mehrad Mahmoudian

rm.all.but 7

See Also

is.na

Examples

generate some variables
create a vector
var1 <- 1:30
add NA at random places
var1[runif(7, 1, 30)] <- NA
pinpoint NAs
pin.na(var1)

create a matrix
var2 <- matrix(runif(100, 10, 99), nrow = 10)
add NA at random places
var2[runif(9, 1, 100)] <- NA
pinpoint NAs
pin.na(var2)

define your own missing values:
var2[runif(5, 1, 100)] <- "."
pin.na(var2, na.value = c(NA, "."))

rm.all.but Remove all variables except those that you mention

Description

This function removes all existing variables (in the defined environment) except the variables given
to it.

Usage

rm.all.but(keep=NULL, envir=.GlobalEnv, keep_functions=TRUE, gc_limit=100,
regex="auto")

Arguments

keep A vector containing the name of variables which you wish to keep and not re-
move or a regular expression to match variables you want to keep. Variable
names and regular expressions can be used combined if the argument ‘regex="auto"‘.
(Mandatory)

envir The environment that this function should be functional in, search in and act in.
(Optional)

8 rm.all.but

keep_functions A logical vector of length 1 indicating exclusion of function variables from re-
moval. (optional)

gc_limit A numeric vector of length 1 indicating the threshold for garbage collection in
Megabyte (MB) scale. (Optional)

regex A vector with length 1 to define whether the function use regular expression in
keep (TRUE or FALSE) or auto detect ("auto")

Details

While working with R it happens that users generates an accumulate many variables and at some
point they just want to keep some of them and remove the rest to make the workspace clean and
reduce memory usage. This is where this function comes in to keep those variables user wants and
remove the rest.

Two criteria can be used as filtering the variables you wish to keep:

* variable names * regular expression

These can be also used in combination in any order. You can also have multiple regular expressions
to match different variable names.

The garbage collection will run if the size of removed variables exceed the ‘gc_limit‘ parameter and
will tell R to give back the amount of occupied memory by removed variables to the system. This
comes handy since usually removed variables are created temporarily and removing them should
free up the memory.

Author(s)

Mehrad Mahmoudian

See Also

remove gc object.size

Examples

create some variable
for(i in names(iris)){
assign(i, iris[,i])
}
see the list of variables
ls()
remove every variable except Petal.Length, Petal.Width and i
rm.all.but(c("Petal*", "i"))
see which variable are left
ls()

save.var 9

save.var Save variables separate files

Description

This function gets a list of variables as a character vector and save each variable name in a separate
file, so that they can be loaded separately.

Usage

save.var(varlist = ls(envir = as.environment(.GlobalEnv)),
path = getwd(), newdir = TRUE, newdirtag = NULL, envir = .GlobalEnv)

Arguments

varlist Character vector containing variable names. If not provided the function will
use all the variables of the environment. (Optional)

path Path to folder that you want to save the files in. If not provided, the current
working directory will be used. (Optional)

newdir Logical vector of length 1 indicating whether you want to create a subdirec-
tory to store your variable files in. This subdirectory will have the execution
time (%Y%m%d-%H%M%S) as folder name in combination with a text tag
(‘newdirtag‘) if provided. (Optional)

newdirtag Character string used in combination with ‘newdir=TRUE‘ to tag the time based
folder name with a custom name. If not provided no tag will be used and the
folder name will just have the time format. (Optional)

envir Character string providing target environment in R session. The default is the
Global Environment. (Optional)

Details

This function is used for saving variables in batch into separate files in an organized way. This
specifically comes handy when you generate many variables either dynamically or manually and
you want to save them for later use and empty your memory. Saving variables in separate files help
finding them as a file easier and faster and also reduces the loading time of the variable since you
are also loading those that you want to use.

The save.var function has the feature to save the variables in subfolder to help user manage different
version of same variable which are related to different runs.

Author(s)

Mehrad Mahmoudian

See Also

save.image, save

10 to.dummy

Examples

generate variables dynamically
lapply(letters, function(x){assign(x=x, value=rnorm(1), env=globalenv())})

Not run:
simple usage
save.var()
specify a list of variables with tag
save.var(varlist=c("a","e","i","o","u"), newdirtag="just_vowels")

End(Not run)

to.dummy Convert categorical vector into dummy binary dataframe

Description

This function gets a vector that contains some categories and convert it to dummy columns (also
known as binary columns). The number of output columns is equal to the input categories.

Usage

to.dummy(v, prefix)

Arguments

v A character, numeric or factor vector that contains the categories. (Mandatory)

prefix A character string to attach to the beginning of the column names to prevent
confusion or conflicts. (Mandatory)

Details

This function simplifies the procedure of making data ready for those learning algorithms or meth-
ods that cannot handle categorical columns. It works by getting a character, numeric or factor vector
and convert it to some columns that each of which represent a category from the input vector. For
example a vector of eye color with different categories like Black, Brown, Blue, Green will be
transformed into a dataframe with 4 columns and each column has value of 1 for samples that have
that specific eye color.

Value

A data.frame is returned which only contains 0 and 1 as values. Number of this data.frame columns
is equal to number of categories in the original input vector.

Author(s)

Mehrad Mahmoudian

unfactor 11

Examples

load a dataframe (from base package)
data(iris)

see the actual values of the categorical column
print(iris$Species)

convert to dummy
binary_species <- to.dummy(iris$Species, "species")
view the first few lines of the binary_species data.frame
head(binary_species)

unfactor Convert factor into appropriate class

Description

This function gets a factor vector, data.frame or matrix (that contains factor columns), detects the
real class of the values and convert factor to the real class.

Usage

unfactor(obj, auto_class_conversion = TRUE, verbose = FALSE)

Arguments

obj The factor vector, data.frame or matrix. (Mandatory)

auto_class_conversion

Whether or not the function should automatically convert numbers to numeric.
If set to FALSE, it will return all columns as class characters. Default is TRUE.
(Optional)

verbose Whether or not the function should be verbose, meaning it should message user
about the details of operation. Default is FALSE. (Optional)

Details

This function turns factors to their real values. When a data.frame is given, the function detects
factor columns and unfactor them, so you can give the whole data.frame and the function takes care
of the rest. The values’ real class detection mechanism is in a way that if everything in that column
or vector are numbers and a decimal character, it change it to numeric otherwise it will be changed
to character vector. This functionality can be turned off by setting the ‘auto_class_conversion‘
argument to FALSE

12 var.info

Value

In case of providing a vector as an input, a character vector or numeric vector. This depends on
the type of values the input variable contains. Check the details section for detailed information. In
case of providing a data.frame, the same data.frame will be returned but with converted columns.
In case there is nothing to get converted from factors, the function peacefully exits. You can get the
details of the steps in form of message if you set the ‘verbose‘ argument to TRUE.

Note

In case you have any issues with the function, please report to: https://bitbucket.org/mehrad_mahmoudian/varhandle/issues

Author(s)

Mehrad Mahmoudian

See Also

as.character, as.numeric

Examples

load a dataframe (from base package)
data(iris)

see the actual values of the categorical column
class(iris$Species)

use vector as input
species <- unfactor(iris$Species)
check the class
class(species)

use data.frame as input
my_iris <- data.frame(Sepal.Length=factor(iris$Sepal.Length), sample_id=factor(1:nrow(iris)))
my_iris <- unfactor(my_iris)
check the class
class(my_iris)
class(my_iris$Sepal.Length)
class(my_iris$sample_id)

var.info Get a detailed list of variables

Description

This function provides a detailed information of variables in the specified environment. If no en-
vironment and list of variables provided for the function, it will consider all existing variables in
global environment.

var.info 13

Usage

var.info(list="ALL", regex = NULL, envir=.GlobalEnv, human.readable=TRUE,
sortby="size", decreasing=TRUE, n=Inf, beautify = FALSE,
progressbar = FALSE)

Arguments

list A list of variables which you want to get information for. If not specified, it gets
all variables (Optional)

regex A regular expression to be applied on the list of variables. This is very useful
for example when ‘list = "ALL"‘. (Optional)

envir The environment in which you want this function to be functional. (Optional)

human.readable If you want to have the variable size in human readable format (Kb, Mb, etc.).
(Optional)

sortby The name of a column that you wish to sort the output with. If not specified
the result will be sorted by "size". Valid options are "name", "class", "size" or
"detail". (Optional)

decreasing A logical parameter (TRUE/FALSE) indicating that you want the sort to be done
decreasingly or increasingly. If not specified it is TRUE. (Optional)

n Number of desired rows in output If you want to have top 10, n should be equal
to 10. If not specified the output will include all variables. (Optional)

beautify A Logical parameter indicating whether the output should beautified. At the
moment it just adds a up/down triangle in the column name, showing the sort
direction and based which column the table is sorted. Default value is FALSE.
See Details for more information. (optional)

progressbar A Logical parameter indicating whether user wants to see progressbar or not.
Default value is FALSE. See Details for more information. (optional)

Details

This function is a quick way to have some basic information about a list of variables. By modifying
and changing the default parameters, you can narrow down the variables you are investigating. The
main objective of this function is providing the following information about the variables in an easy
and intuitive way: class size (amount of memory the variable has occupied) detail (dimension for
data.frame and matrices and length of vectors)

In case the variable is a matrix or data.frame, in detail column the dimension will be provided, if it
is a vector, the length will be reported, otherwise you will see NA in detail column for that specific
variable.

This function is usually very quick but in case of having many variables in the environment, it might
take some time, hence a progressbar is implemented to inform user about the process.

Value

The output will be a sorted data.frame with 4 columns. The "name" column contains the name of
each variable, column "class" contains the class of each variable, columns "size" show the amount of

14 var.info

memory the variable is occupying (it can be configured to be in bytes or human readable format. for
this use the human.readable parameter.) and "detail" column includes variable-specific information
(for matrices and data.frames the dimension and for vectors their list will be reported.)

Author(s)

Mehrad Mahmoudian

See Also

class, object.size

Examples

generate some variables
a data.frame
data(iris)

some character vector
for(i in 1:5){

assign(letters[i], paste("some random text:",
paste0(letters[runif(5, 1, 26)],
collapse="")))

}

a list
f <- lapply(5:10, function(x){paste("some random text:",

paste0(letters[runif(5, 1, 26)],
collapse=""))})

demo of this function
basic usage
var.info()

the sorting
var.info(sortby="name", decreasing=FALSE)

select using regular expression
var.info(regex="^i")

having the top 5 objects that use most memory in a beautified output
var.info(n=5, sortby="size", decreasing=TRUE, beautify=TRUE)

Index

∗ Binary
to.dummy, 10

∗ NA
inspect.na, 4
pin.na, 6

∗ check numeric
check.numeric, 2

∗ defactor
unfactor, 11

∗ dummy
to.dummy, 10

∗ information
var.info, 12

∗ inspect
inspect.na, 4

∗ keep variables
rm.all.but, 7

∗ locate
inspect.na, 4
pin.na, 6

∗ memory usage
var.info, 12

∗ missing
inspect.na, 4
pin.na, 6

∗ package
varhandle-package, 2

∗ pinpoint
pin.na, 6

∗ remove variables
rm.all.but, 7

∗ save to file
save.var, 9

∗ save variable
save.var, 9

∗ size
var.info, 12

∗ summary
inspect.na, 4

∗ unfactor
unfactor, 11

∗ variable
var.info, 12

as.character, 12
as.numeric, 3, 12

check.numeric, 2
class, 14

gc, 8

inspect.na, 4, 6
is.na, 5, 7
is.null, 6

object.size, 8, 14

pin.na, 5, 6

remove, 8
rm.all.but, 7

save, 9
save.image, 9
save.var, 9

to.dummy, 10

unfactor, 11

var.info, 12
varhandle (varhandle-package), 2
varhandle-package, 2

15

	varhandle-package
	check.numeric
	inspect.na
	pin.na
	rm.all.but
	save.var
	to.dummy
	unfactor
	var.info
	Index

