Title: | Vaccine Induced Cellular Immunogenicity with Bivariate Modeling |
Version: | 0.7.3 |
Date: | 2024-02-02 |
Description: | A shiny app for accurate estimation of vaccine induced immunogenicity with bivariate linear modeling. Method is detailed in: Lhomme, Hejblum, Lacabaratz, Wiedemann, Lelievre, Levy, Thiebaut & Richert (2020). Journal of Immunological Methods, 477:112711. <doi:10.1016/j.jim.2019.112711>. |
BugReports: | https://github.com/sistm/vici/issues |
License: | GPL-3 |
Encoding: | UTF-8 |
LazyData: | true |
Imports: | cowplot, DT, ggplot2, grDevices, ggpubr, nlme, shiny, stats, tidyr, utils, numDeriv, stringr, RColorBrewer, scales, shinyWidgets |
Suggests: | testthat |
RoxygenNote: | 7.3.0 |
NeedsCompilation: | no |
Packaged: | 2024-02-02 16:05:11 UTC; boris |
Author: | Boris Hejblum [cre, aut], Melanie Huchon [aut], Clement Nerestan [aut] |
Maintainer: | Boris Hejblum <boris.hejblum@u-bordeaux.fr> |
Repository: | CRAN |
Date/Publication: | 2024-02-02 16:20:02 UTC |
Toy data to upload in the app.
Description
Toy data to upload in the app.
Usage
data(ICS_ex)
Format
A tab-separated .txt file
Examples
if(interactive()){
set.seed(1382019)
nsubj <- 20
ntp <- 3
nstim <- 3
narm <- 3
subj <- rep(rep(rep(1:nsubj, each = ntp), times = nstim), times = narm)
stim <- rep(rep(c("NS", "S1", "S2"), each = nsubj*ntp), times = narm)
tp <- rep(rep(c("D0", "D1", "D3"), times=nsubj*nstim), times = narm)
a <- rep(c("Placebo", "A2", "A3"), each = nsubj*nstim*ntp)
y1 <- round(abs(rnorm(n=nsubj*nstim*ntp*narm,m = 0.03, sd=0.06)) +
(stim=="S2" & a == "A2" & tp == "D1")*abs(rnorm(n=nsubj*nstim*ntp*narm, m = 0.05, sd=0.01)), 4)
y2 <- round(abs(rnorm(n=nsubj*nstim*ntp*narm,m = 0.03, sd=0.06)) +
(stim=="S1" & a =="A3" & tp == "D3")*abs(rnorm(n=nsubj*nstim*ntp*narm, m = 0.1, sd=0.02)), 4)
ICS_ex <- cbind.data.frame("Subject" = subj, "StimulationPool" = stim, "TimePoint" = tp,
"Arm" = a, "Response1" = y1, "Response2" = y2)
#View(ICS_ex)
write.table(ICS_ex, file="Documents/GitHub/vici/data/ICS_ex.txt", sep="\t",
row.names = FALSE, quote = FALSE)
}
Plotting function for displaying boxplots and associated p-values
Description
Internal function for displaying significance boxplots
Usage
boxplot_VICI(
data_df,
pval_2plot,
response_name,
input,
inter = TRUE,
baseline = NULL,
fill = FALSE
)
Arguments
data_df |
a |
pval_2plot |
a |
response_name |
a character string indicating the name of the response. |
input |
internal input from UI. |
inter |
a logical flag indicating whether we are in the interarm setting or not.
Default is |
baseline |
baseline value used in title when |
fill |
a logical flag indicating if the boxplot is filled
Default if |
Value
a ggpubr
plot object
Author(s)
Boris Hejblum
Compute_jaclist quantities needed for the Satterthwaite approximation.
Description
Computes vcov of variance parameters (theta, sigma), jacobian of each variance parameter etc.
Usage
compute_jaclist(object, tol = 1e-06)
Arguments
object |
a |
tol |
a tolerance |
Details
This code is adapted from code in compute_auxillary
internal
function of pbkrtest package.
Value
a list.
Between-Within functions to obtain Denominator degrees of freedom
Description
Between-Within functions to obtain Denominator degrees of freedom
Usage
ddf_BW(object, L)
Compute Full Deviance
Description
Compute Full Deviance
Usage
devfun_gls(varpar, gls_obj)
Arguments
varpar |
variance parameters. |
gls_obj |
a |
Details
This code is adapted from code in devfun_vp
internal function of
pbkrtest package.
Value
the full deviance, a numerical scalar.
Functions to obtain coefficient, degree of freedom, p-value
Description
This function allows to calculate the different approximations of degrees of freedom and returns the table of results in the app.
Usage
get_coefmat_gls(
model,
ddf = c("Satterthwaite", "Kenward-Roger", "Between-Within")
)
Arguments
model |
a |
ddf |
degrees of freedom approximation. |
Value
a matrix containing coefficient, degrees of freedom and p-value
A heatmap function for displaying
Description
Internal function for displaying significance heatmap when multiple conditions are tested
Usage
heatmap_vici(res_2plot, inter = TRUE, baseline = NULL)
Arguments
res_2plot |
a |
inter |
a logical flag indicating whether we are in the interarm setting or not.
Default is |
Value
a ggplot2
plot object
Author(s)
Boris Hejblum
Plotting function for displaying histograms and associated p-values
Description
Internal function for displaying significance histograms
Usage
histogram_VICI(
data_df,
pval_2plot,
response_name,
input,
inter = TRUE,
baseline = NULL
)
Arguments
data_df |
a |
pval_2plot |
a |
response_name |
a character string indicating the name of the response. |
input |
internal input from UI. |
inter |
a logical flag indicating whether we are in the interarm setting or not.
Default is |
baseline |
baseline value used in title when |
Value
a ggpubr
plot object
Author(s)
Clément NERESTAN
Fitting GLS For Inter-Arm Setting
Description
Fitting GLS For Inter-Arm Setting
Usage
interarm_fit(transformed_data, input, resp)
Fitting GLS For Intra-Arm Setting
Description
Fitting GLS For Intra-Arm Setting
Usage
intraarm_fit(transformed_data, tested_time, input, resp)
mod_modelfit_ui and mod_modelfit_server
Description
A shiny Module.
Usage
mod_modelfit_ui(id)
mod_modelfit_server(input, output, session, datas, parent, origin)
Arguments
id |
shiny id |
input |
internal |
output |
internal |
session |
internal |
datas |
internal |
parent |
internal |
origin |
internal |
mod_settings_pan_ui and mod_settings_pan_server
Description
A shiny Module.
Usage
mod_settings_pan_ui(id)
mod_settings_pan_server(input, output, session, datas, parent)
Arguments
id |
shiny id |
input |
internal |
output |
internal |
session |
internal |
datas |
internal |
parent |
Custom download handler for plots
Description
Custom download handler for plots
Usage
myDownloadHandlerForPlots(name, plot_obj, outputArgs = list())
Arguments
name |
output file name |
plot_obj |
a plot object to be downloaded |
Value
a ggpubr
plot object
Author(s)
Boris Hejblum
Our generalized least squares ls function
Description
Internal function to adapt generalized least squares (gls
) model with more details in output.
Usage
mygls(
model,
data = sys.frame(sys.parent()),
correlation = NULL,
weights = NULL,
subset,
method = c("REML", "ML"),
na.action = na.fail,
control = list(),
verbose = FALSE
)
Arguments
model |
a |
data |
a |
correlation |
a |
weights |
a |
subset |
an optional expression indicating which subset of the rows of |
method |
a character string to choose the maximization method. Default is " |
na.action |
a function that indicates what should happen when the data contain NAs. Default is |
control |
a list of control values. Default is an empty list. |
verbose |
an optional logical value. If TRUE information on the evolution of the iterative algorithm is printed. Default is FALSE. |
Value
a gls
object
Compute Quadratic Form
Description
Compute Quadratic Form
Usage
qform(L, V)
Arguments
L |
a numeric vector. |
V |
a symmetric numeric matrix. |
Value
a numerical scalar.
rbind
Multiple Objects
Description
rbind
Multiple Objects
Usage
rbindall(...)
Arguments
... |
objects to be |
Launch VICI Shiny App
Description
Launch VICI Shiny App
Usage
run_app(host = "127.0.0.1", port = 3838, ...)
Arguments
host |
Default is "127.0.0.1", see runApp for details. |
port |
Default is 3838, see runApp for details. |
... |
additional arguments to be passed to the runApp function. |
Examples
if(interactive()){
vici::run_app()
}
Compute covariance of Beta for a Generalized Least Squares (GLS
) Model
Description
Compute covariance of Beta for a Generalized Least Squares (GLS
) Model
Usage
varBetafun_gls(varpar, gls_obj)
Arguments
varpar |
variance parameters. |
gls_obj |
a |
Details
This code is adapted from code in get_covbeta
internal function of
pbkrtest package.
Value
covariance of Beta, a numerical scalar.
Compute Wald Confidence Interval
Description
Compute Wald Confidence Interval
Usage
waldCI(estimate, se, df = Inf, level = 0.95)
Arguments
estimate |
an estimated coefficient. |
se |
standard error of |
df |
degrees of freedom associate to |
level |
level of confidence interval. |
Details
This code is greatly inspired by code from the lmerTest package.
Value
a matrix of lower and upper confidence interval.