Type: | Package |
Title: | Visualization of Adverse Events |
Version: | 0.2.1 |
Description: | Implementation of 'shiny' app to visualize adverse events based on the Common Terminology Criteria for Adverse Events (CTCAE) using stacked correspondence analysis as described in Diniz et. al (2021)<doi:10.1186/s12874-021-01368-w>. |
BugReports: | https://github.com/dnzmarcio/visae/issues |
License: | GPL-2 | GPL-3 [expanded from: GPL (≥ 2)] |
Depends: | shiny (≥ 1.4.0), dplyr (≥ 1.0.0), ggplot2 (≥ 3.3.0), R (≥ 4.1.0) |
Imports: | shinyjs (≥ 1.1), ca (≥ 0.71), tidyr (≥ 1.1.0), ggrepel (≥ 0.8.2), rlang (≥ 0.4.6), DT (≥ 0.13) |
Encoding: | UTF-8 |
RoxygenNote: | 7.3.1 |
Suggests: | rmarkdown, knitr, testthat (≥ 3.0.0) |
VignetteBuilder: | knitr |
Config/testthat/edition: | 3 |
NeedsCompilation: | no |
Packaged: | 2025-03-05 06:10:29 UTC; dinizm01 |
Author: | Marcio A. Diniz |
Maintainer: | Marcio A. Diniz <marcio.diniz@mountsinai.org> |
Repository: | CRAN |
Date/Publication: | 2025-03-07 11:10:02 UTC |
Correspondence Analysis of Adverse Events
Description
Correspondence Analysis of Adverse Events
Usage
ca_ae(
data,
id,
group,
ae_class,
label = "AE",
contr_indicator = TRUE,
mass_indicator = TRUE,
contr_threshold = NULL,
mass_threshold = NULL
)
Arguments
data |
data.frame or tibble object. |
id |
unquoted expression indicating the
variable name in |
group |
unquoted expression indicating the
variable name in |
ae_class |
unquoted expression indicating the
variable name in |
label |
character value indicating the column name of AE class in resulting tables. |
contr_indicator |
logical value indicating the
use of color intensity to represent the maximum contribution of each |
mass_indicator |
logical value indicating the
use of dot size to represent the overall relative frequency of each |
contr_threshold |
numerical value between 0 an 1 filtering
|
mass_threshold |
numerical value between 0 an 1 filtering
|
Value
a list of
tab_abs |
a tibble showing absolute frequency of |
tab_rel |
a tibble showing percent of |
total_inertia |
a numerical value indicating the total inertia; |
tab_inertia |
a tibble showing inertia broken down by dimension and the percent relative to the total inertia; |
asymmetric_plot |
a contribution biplot. |
References
Levine RA, Sampson E, Lee TC. Journal of Computational and Graphical Statistics. Wiley Interdisciplinary Reviews: Computational Statistics. 2014 Jul;6(4):233-9.
Examples
library(dplyr)
id <- rep(1:50, each = 2)
group <- c(rep("A", 50), rep("B", 50))
ae_grade <- sample(1:5, size = 100, replace = TRUE)
ae_domain <- sample(c("D", "E"), size = 100, replace = TRUE)
ae_term <- sample(c("F", "G", "H", "I"), size = 100, replace = TRUE)
df <- tibble(id = id, trt = group,
ae_g = ae_grade, ae_d = ae_domain, ae_t = ae_term)
test <- df |> ca_ae(id = id,
group = trt,
ae = ae_g,
label = "AE",
contr_indicator = TRUE,
mass_indicator = TRUE,
contr_threshold = 0.01,
mass_threshold = 0.01)
Shiny App for Correspondence Analysis of Adverse Events
Description
Shiny App for Correspondence Analysis of Adverse Events
Usage
run_ca(
data,
id,
group,
ae_grade = NULL,
ae_domain = NULL,
ae_term = NULL,
ae_cycle = NULL
)
Arguments
data |
data.frame or tibble object. |
id |
unquoted expression indicating the
variable name in |
group |
unquoted expression indicating the
variable name in |
ae_grade |
unquoted expression indicating the
variable name in |
ae_domain |
unquoted expression indicating the
variable name in |
ae_term |
unquoted expression indicating the
variable name in |
ae_cycle |
unquoted expression indicating the
variable name in |
Value
an interactive web application to perform correspondence analysis for adverse event data.
Examples
if (interactive()) {
library(dplyr)
patient_id <- 1:100
group <- c(rep("A", 50), rep("B", 50))
ae_grade <- sample(1:5, size = 100, replace = TRUE)
ae_domain <- sample(c("C", "D"), size = 100, replace = TRUE)
ae_term <- sample(c("E", "F", "G", "H"), size = 100, replace = TRUE)
dt <- tibble(patient_id = patient_id, trt = group,
ae_g = ae_grade, ae_d = ae_domain, ae_t = ae_term)
dt %>% run_ca(., group = trt,
id = patient_id,
ae_grade = ae_g,
ae_domain = ae_d,
ae_term = ae_t)
}