Title: | Pretty Timelines in R |
Version: | 1.2.4 |
Date: | 2023-10-28 |
Description: | A library for creating time based charts, like Gantt or timelines. Possible outputs include 'ggplot2' diagrams, 'plotly.js' graphs, 'Highcharts.js' widgets and data.frames. Results can be used in the 'RStudio' viewer pane, in 'RMarkdown' documents or in Shiny apps. In the interactive outputs created by vistime() and hc_vistime(), you can interact with the plot using mouse hover or zoom. |
License: | GPL-3 | file LICENSE |
URL: | https://shosaco.github.io/vistime/ |
BugReports: | https://github.com/shosaco/vistime/issues |
Depends: | R (≥ 3.2.0) |
Imports: | rlang, assertthat (≥ 0.1), plotly (≥ 4.0.0), ggplot2 (≥ 3.4.0), ggrepel (≥ 0.7.0), RColorBrewer (≥ 0.2.2) |
Encoding: | UTF-8 |
RoxygenNote: | 7.2.3 |
Suggests: | prettydoc, knitr, rmarkdown, testthat (≥ 3.0.0), covr, highcharter (> 0.1.0) |
Config/testthat/edition: | 3 |
VignetteBuilder: | knitr |
Language: | en-US |
NeedsCompilation: | no |
Packaged: | 2023-10-29 11:49:26 UTC; sandro |
Author: | Sandro Raabe [aut, cre] |
Maintainer: | Sandro Raabe <sa.ra.online@posteo.de> |
Repository: | CRAN |
Date/Publication: | 2023-10-29 21:30:02 UTC |
vistime: Pretty Timeline Charts in R
Description
A library for creating time based charts, like Gantt or timelines. Possible outputs include ggplot2 diagrams, plotly.js graphs, Highcharts.js widgets and data.frames. Results can be used in the RStudio viewer pane, in RMarkdown documents or in Shiny apps. In the interactive outputs created by vistime() and hc_vistime(), you can interact with the plot using mouse hover or zoom.
Details
Pretty timelines in R
Author(s)
Sandro Raabe sa.ra.online@posteo.de
See Also
Useful links:
Create a Timeline rendered by ggplot2
Description
Provide a data frame with event data to create a static timeline plot created by ggplot2. Simplest drawable dataframe can have columns 'event' and 'start'.
Usage
gg_vistime(
data,
col.event = "event",
col.start = "start",
col.end = "end",
col.group = "group",
col.color = "color",
col.fontcolor = "fontcolor",
optimize_y = TRUE,
linewidth = NULL,
title = NULL,
show_labels = TRUE,
background_lines = NULL,
...
)
Arguments
data |
|
col.event |
(optional, character) the column name in |
col.start |
(optional, character) the column name in |
col.end |
(optional, character) the column name in |
col.group |
(optional, character) the column name in |
col.color |
(optional, character) the column name in |
col.fontcolor |
(optional, character) the column name in |
optimize_y |
(optional, logical) distribute events on y-axis by smart heuristic (default), otherwise use order of input data. |
linewidth |
(optional, numeric) the linewidth (in pixel) for the events (typically used for large amount of parallel events). Default: heuristic value. |
title |
(optional, character) the title to be shown on top of the timeline.
Default: |
show_labels |
(optional, boolean) choose whether or not event labels shall be
visible. Default: |
background_lines |
(optional, integer) the number of vertical lines to draw in the background to demonstrate structure (default: heuristic). |
... |
for deprecated arguments up to vistime 1.1.0 (like events, colors, ...) |
Value
gg_vistime
returns an object of class gg
and ggplot
.
See Also
Functions ?vistime
and ?hc_vistime
for different charting engines (Plotly and Highcharts).
Examples
# presidents and vice presidents
pres <- data.frame(
Position = rep(c("President", "Vice"), each = 3),
Name = c("Washington", rep(c("Adams", "Jefferson"), 2), "Burr"),
start = c("1789-03-29", "1797-02-03", "1801-02-03"),
end = c("1797-02-03", "1801-02-03", "1809-02-03"),
color = c("#cbb69d", "#603913", "#c69c6e")
)
gg_vistime(pres, col.event = "Position", col.group = "Name", title = "Presidents of the USA")
## Not run:
# ------ It is possible to change all attributes of the timeline using ggplot2::theme()
data <- read.csv(text="event,start,end
Phase 1,2020-12-15,2020-12-24
Phase 2,2020-12-23,2020-12-29
Phase 3,2020-12-28,2021-01-06
Phase 4,2021-01-06,2021-02-02")
p <- gg_vistime(data, optimize_y = T, col.group = "event", title = "ggplot customization example")
library(ggplot2)
p + theme(
plot.title = element_text(hjust = 0, size=30),
axis.text.x = element_text(size = 30, color = "violet"),
axis.text.y = element_text(size = 30, color = "red", angle = 30),
panel.border = element_rect(linetype = "dashed", fill=NA),
panel.background = element_rect(fill = 'green')) +
coord_cartesian(ylim = c(0.7, 3.5))
## End(Not run)
Create a Timeline rendered by Highcharts.js
Description
Provide a data frame with event data to create a visual and interactive timeline plot rendered by Highcharts. Simplest drawable dataframe can have columns 'event' and 'start'. This feature is facilitated by the 'highcharter' package, so, this package needs to be installed before attempting to produce any 'hc_vistime()' output.
Usage
hc_vistime(
data,
col.event = "event",
col.start = "start",
col.end = "end",
col.group = "group",
col.color = "color",
col.tooltip = "tooltip",
optimize_y = TRUE,
title = NULL,
show_labels = TRUE,
...
)
Arguments
data |
|
col.event |
(optional, character) the column name in |
col.start |
(optional, character) the column name in |
col.end |
(optional, character) the column name in |
col.group |
(optional, character) the column name in |
col.color |
(optional, character) the column name in |
col.tooltip |
(optional, character) the column name in |
optimize_y |
(optional, logical) distribute events on y-axis by smart heuristic (default), otherwise use order of input data. |
title |
(optional, character) the title to be shown on top of the timeline.
Default: |
show_labels |
(optional, boolean) choose whether or not event labels shall be
visible. Default: |
... |
for deprecated arguments up to vistime 1.1.0 (like events, colors, ...) |
Value
hc_vistime
returns an object of class highchart
and htmlwiget
See Also
Functions ?vistime
and ?gg_vistime
for different charting engines (Plotly and ggplot2).
Examples
# presidents and vice presidents
pres <- data.frame(
Position = rep(c("President", "Vice"), each = 3),
Name = c("Washington", rep(c("Adams", "Jefferson"), 2), "Burr"),
start = c("1789-03-29", "1797-02-03", "1801-02-03"),
end = c("1797-02-03", "1801-02-03", "1809-02-03"),
color = c("#cbb69d", "#603913", "#c69c6e")
)
hc_vistime(pres, col.event = "Position", col.group = "Name", title = "Presidents of the USA")
#'
## Not run:
# ------ It is possible to change all attributes of the timeline using highcharter::hc_*():
data <- read.csv(text="event,start,end
Phase 1,2020-12-15,2020-12-24
Phase 2,2020-12-23,2020-12-29
Phase 3,2020-12-28,2021-01-06
Phase 4,2021-01-06,2021-02-02")
library(highcharter)
p <- hc_vistime(data, optimize_y = T, col.group = "event",
title = "Highcharts customization example")
p %>% hc_title(style = list(fontSize=30)) %>%
hc_yAxis(labels = list(style = list(fontSize=30, color="violet"))) %>%
hc_xAxis(labels = list(style = list(fontSize=30, color="red"), rotation=30)) %>%
hc_chart(backgroundColor = "lightgreen")
## End(Not run)
Create a Timeline rendered by Plotly
Description
Provide a data frame with event data to create a visual and interactive timeline plot rendered by Plotly. Simplest drawable dataframe can have columns 'event' and 'start'.
Usage
vistime(
data,
col.event = "event",
col.start = "start",
col.end = "end",
col.group = "group",
col.color = "color",
col.fontcolor = "fontcolor",
col.tooltip = "tooltip",
optimize_y = TRUE,
linewidth = NULL,
title = NULL,
show_labels = TRUE,
background_lines = NULL,
...
)
Arguments
data |
|
col.event |
(optional, character) the column name in |
col.start |
(optional, character) the column name in |
col.end |
(optional, character) the column name in |
col.group |
(optional, character) the column name in |
col.color |
(optional, character) the column name in |
col.fontcolor |
(optional, character) the column name in |
col.tooltip |
(optional, character) the column name in |
optimize_y |
(optional, logical) distribute events on y-axis by smart heuristic (default), otherwise use order of input data. |
linewidth |
(optional, numeric) the linewidth (in pixel) for the events (typically used for large amount of parallel events). Default: heuristic value. |
title |
(optional, character) the title to be shown on top of the timeline.
Default: |
show_labels |
(optional, boolean) choose whether or not event labels shall be
visible. Default: |
background_lines |
(optional, integer) the number of vertical lines to draw in the background to demonstrate structure (default: 10). Less means more memory-efficient plot. |
... |
for deprecated arguments up to vistime 1.1.0 (like events, colors, ...) |
Value
vistime
returns an object of class plotly
and htmlwidget
.
See Also
Functions ?hc_vistime
and ?gg_vistime
for different charting engines (Highcharts and ggplot2).
Examples
# presidents and vice presidents
pres <- data.frame(
Position = rep(c("President", "Vice"), each = 3),
Name = c("Washington", rep(c("Adams", "Jefferson"), 2), "Burr"),
start = c("1789-03-29", "1797-02-03", "1801-02-03"),
end = c("1797-02-03", "1801-02-03", "1809-02-03"),
color = c("#cbb69d", "#603913", "#c69c6e"),
fontcolor = c("black", "white", "black")
)
vistime(pres, col.event = "Position", col.group = "Name", title = "Presidents of the USA")
## Not run:
# Argument`optimize_y` can be used to change the look of the timeline. `TRUE` (the default)
# will find a nice heuristic to save `y`-space, distributing the events:
data <- read.csv(text="event,start,end
Phase 1,2020-12-15,2020-12-24
Phase 2,2020-12-23,2020-12-29
Phase 3,2020-12-28,2021-01-06
Phase 4,2021-01-06,2021-02-02")
vistime(data, optimize_y = TRUE)
# `FALSE` will plot events as-is, not saving any space:
vistime(data, optimize_y = FALSE)
# more complex and colorful example
data <- read.csv(text = "event,group,start,end,color
Phase 1,Project,2018-12-22,2018-12-23,#c8e6c9
Phase 2,Project,2018-12-23,2018-12-29,#a5d6a7
Phase 3,Project,2018-12-29,2019-01-06,#fb8c00
Phase 4,Project,2019-01-06,2019-02-02,#DD4B39
Room 334,Team 1,2018-12-22,2018-12-28,#DEEBF7
Room 335,Team 1,2018-12-28,2019-01-05,#C6DBEF
Room 335,Team 1,2019-01-05,2019-01-23,#9ECAE1
Group 1,Team 2,2018-12-22,2018-12-28,#E5F5E0
Group 2,Team 2,2018-12-28,2019-01-23,#C7E9C0
3-200,category 1,2018-12-25,2018-12-25,#1565c0
3-330,category 1,2018-12-25,2018-12-25,#1565c0
3-223,category 1,2018-12-28,2018-12-28,#1565c0
3-225,category 1,2018-12-28,2018-12-28,#1565c0
3-226,category 1,2018-12-28,2018-12-28,#1565c0
3-226,category 1,2019-01-19,2019-01-19,#1565c0
3-330,category 1,2019-01-19,2019-01-19,#1565c0
1-217.0,category 2,2018-12-27,2018-12-27,#90caf9
3-399.7,moon rising,2019-01-13,2019-01-13,#f44336
8-831.0,sundowner drink,2019-01-17,2019-01-17,#8d6e63
9-984.1,birthday party,2018-12-22,2018-12-22,#90a4ae
F01.9,Meetings,2018-12-26,2018-12-26,#e8a735
Z71,Meetings,2019-01-12,2019-01-12,#e8a735
B95.7,Meetings,2019-01-15,2019-01-15,#e8a735
T82.7,Meetings,2019-01-15,2019-01-15,#e8a735")
vistime(data)
# ------ It is possible to change all attributes of the timeline using plotly_build(),
# ------ which generates a list which can be inspected using str
p <- vistime(data.frame(event = 1:4, start = c("2019-01-01", "2019-01-10")))
pp <- plotly_build(p) # transform into a list
# Example 1: change x axis font size:
pp$x$layout$xaxis$tickfont <- list(size = 28)
pp
# Example 2: change y axis font size:
pp$x$layout[["yaxis"]]$tickfont <- list(size = 28)
pp
# Example 3: Changing events font size
for (i in 1:length(pp$x$data)) {
if (pp$x$data[[i]]$mode == "text") pp$x$data[[i]]$textfont$size <- 28
}
pp
# or, using purrr:
text_idx <- which(purrr::map_chr(pp$x$data, "mode") == "text")
for(i in text_idx) pp$x$data[[i]]$textfont$size <- 28
pp
# Example 4: change marker size
# loop over pp$x$data, and change the marker size of all text elements to 50px
for (i in 1:length(pp$x$data)) {
if (pp$x$data[[i]]$mode == "markers") pp$x$data[[i]]$marker$size <- 40
}
pp
# or, using purrr:
marker_idx <- which(purrr::map_chr(pp$x$data, "mode") == "markers")
for(i in marker_idx) pp$x$data[[i]]$marker$size <- 40
pp
## End(Not run)
Standardize data to plot on a timeline plot
Description
Standardize data to plot on a timeline plot
Usage
vistime_data(
data,
col.event = "event",
col.start = "start",
col.end = "end",
col.group = "group",
col.color = "color",
col.fontcolor = "fontcolor",
col.tooltip = "tooltip",
optimize_y = TRUE,
...
)
Arguments
data |
|
col.event |
(optional, character) the column name in |
col.start |
(optional, character) the column name in |
col.end |
(optional, character) the column name in |
col.group |
(optional, character) the column name in |
col.color |
(optional, character) the column name in |
col.fontcolor |
(optional, character) the column name in |
col.tooltip |
(optional, character) the column name in |
optimize_y |
(optional, logical) distribute events on y-axis by smart heuristic (default), otherwise use order of input data. |
... |
for deprecated arguments up to vistime 1.1.0 (like events, colors, ...) |
Value
vistime_data
returns a data.frame with the following columns: event, start, end, group, tooltip, label, col, fontcol, subplot, y
Examples
# presidents and vice presidents
pres <- data.frame(
Position = rep(c("President", "Vice"), each = 3),
Name = c("Washington", rep(c("Adams", "Jefferson"), 2), "Burr"),
start = c("1789-03-29", "1797-02-03", "1801-02-03"),
end = c("1797-02-03", "1801-02-03", "1809-02-03"),
color = c("#cbb69d", "#603913", "#c69c6e"),
fontcolor = c("black", "white", "black")
)
vistime_data(pres, col.event = "Position", col.group = "Name")