Title: | Generate Random Data Sets |
Version: | 0.3.6 |
Maintainer: | Tyler Rinker <tyler.rinker@gmail.com> |
Description: | Generates random data sets including: data.frames, lists, and vectors. |
Depends: | R (≥ 3.2.0) |
Imports: | chron, ggplot2, dplyr, stringi |
Suggests: | testthat |
License: | GPL-2 |
LazyData: | TRUE |
URL: | https://github.com/trinker/wakefield |
BugReports: | https://github.com/trinker/wakefield/issues |
Collate: | 'utils.R' 'r_sample.R' 'age.R' 'r_sample_factor.R' 'animal.R' 'r_sample_binary.R' 'answer.R' 'area.R' 'as_integer.R' 'car.R' 'children.R' 'coin.R' 'color.R' 'date_stamp.R' 'r_sample_logical.R' 'death.R' 'dice.R' 'dna.R' 'dob.R' 'dummy.R' 'education.R' 'employment.R' 'eye.R' 'grade.R' 'grade_level.R' 'group.R' 'hair.R' 'normal.R' 'height.R' 'hour.R' 'id.R' 'income.R' 'internet_browser.R' 'interval.R' 'iq.R' 'language.R' 'level.R' 'r_sample_ordered.R' 'likert.R' 'lorem_ipsum.R' 'marital.R' 'military.R' 'minute.R' 'month.R' 'r_sample_replace.R' 'wakefield-package.R' 'name.R' 'peek.R' 'political.R' 'probs.R' 'r_data.R' 'r_data_frame.R' 'r_dummy.R' 'seriesname.R' 'r_insert.R' 'r_list.R' 'r_na.R' 'r_sample_integer.R' 'r_series.R' 'race.R' 'relate.R' 'religion.R' 'sat.R' 'second.R' 'sentence.R' 'sex.R' 'sex_inclusive.R' 'smokes.R' 'speed.R' 'state.R' 'string.R' 'table_heat.R' 'time_stamp.R' 'upper.R' 'valid.R' 'variables.R' 'varname.R' 'year.R' 'zip_code.R' |
RoxygenNote: | 7.1.1 |
NeedsCompilation: | no |
Packaged: | 2020-09-12 16:47:35 UTC; trinker |
Author: | Tyler Rinker [aut, cre], Josh O'Brien [ctb], Ananda Mahto [ctb], Matthew Sigal [ctb], Jonathan Carroll [ctb], Scott Westenberger [ctb] |
Repository: | CRAN |
Date/Publication: | 2020-09-13 17:30:02 UTC |
Generate Random Vector of Ages
Description
Generate a random vector of ages within the provided range. The default age range is set between 18 and 89, to match the age ranges which appear (see e.g., https://gssdataexplorer.norc.org/variables/53/vshow).
Usage
age(n, x = 18:89, prob = NULL, name = "Age")
Arguments
n |
The number elements to generate. This can be globally set within
the environment of |
x |
A vector of elements to chose from. |
prob |
A vector of probabilities to chose from. |
name |
The name to assign to the output vector's |
Value
Returns a random integer vector of ages within the provided range (defaults to 18:89).
See Also
Other variable functions:
animal()
,
answer()
,
area()
,
car()
,
children()
,
coin()
,
color
,
date_stamp()
,
death()
,
dice()
,
dna()
,
dob()
,
dummy()
,
education()
,
employment()
,
eye()
,
grade_level()
,
grade()
,
group()
,
hair()
,
height()
,
income()
,
internet_browser()
,
iq()
,
language
,
level()
,
likert()
,
lorem_ipsum()
,
marital()
,
military()
,
month()
,
name
,
normal()
,
political()
,
race()
,
religion()
,
sat()
,
sentence()
,
sex_inclusive()
,
sex()
,
smokes()
,
speed()
,
state()
,
string()
,
upper()
,
valid()
,
year()
,
zip_code()
Examples
age(10) # draw 10 ages with default values
hist(age(n=10000))
interval(age, 3, n = 1000)
Generate Random Vector of animals
Description
animal
- Generate a random vector of animals.
pet
- Generate a random vector of pets.
Usage
animal(n, k = 10, x = wakefield::animal_list, prob = NULL, name = "Animal")
pet(
n,
x = c("Dog", "Cat", "None", "Bird", "Horse"),
prob = c(0.365, 0.304, 0.258, 0.031, 0.015),
name = "Pet"
)
Arguments
n |
The number elements to generate. This can be globally set within
the environment of |
k |
The number of the elements of x to sample from (uses |
x |
A vector of elements to chose from. |
prob |
A vector of probabilities to chose from. |
name |
The name to assign to the output vector's |
Details
The household pets and probabilities:
Dog | 36.5 % |
Cat | 30.4 % |
None | 25.8 % |
Bird | 3.1 % |
Horse | 1.5 % |
Value
Returns a random factor vector of animal elements.
See Also
Other variable functions:
age()
,
answer()
,
area()
,
car()
,
children()
,
coin()
,
color
,
date_stamp()
,
death()
,
dice()
,
dna()
,
dob()
,
dummy()
,
education()
,
employment()
,
eye()
,
grade_level()
,
grade()
,
group()
,
hair()
,
height()
,
income()
,
internet_browser()
,
iq()
,
language
,
level()
,
likert()
,
lorem_ipsum()
,
marital()
,
military()
,
month()
,
name
,
normal()
,
political()
,
race()
,
religion()
,
sat()
,
sentence()
,
sex_inclusive()
,
sex()
,
smokes()
,
speed()
,
state()
,
string()
,
upper()
,
valid()
,
year()
,
zip_code()
Examples
animal(10)
pie(table(animal(10000)))
pet(10)
pie(table(pet(10000)))
Animal List
Description
A dataset containing a character vector animals
Usage
data(animal_list)
Format
A character vector with 591 elements
References
https://a-z-animals.com/animals
Generate Random Vector of Answers (Yes/No)
Description
Generate a random vector of answers (yes/no).
Usage
answer(n, x = c("No", "Yes"), prob = NULL, name = "Answer")
Arguments
n |
The number elements to generate. This can be globally set within
the environment of |
x |
A vector of answers to sample from. |
prob |
A vector of probabilities to chose from. |
name |
The name to assign to the output vector's |
Value
Returns a random factor vector of answers (yes/no) outcome elements.
See Also
Other variable functions:
age()
,
animal()
,
area()
,
car()
,
children()
,
coin()
,
color
,
date_stamp()
,
death()
,
dice()
,
dna()
,
dob()
,
dummy()
,
education()
,
employment()
,
eye()
,
grade_level()
,
grade()
,
group()
,
hair()
,
height()
,
income()
,
internet_browser()
,
iq()
,
language
,
level()
,
likert()
,
lorem_ipsum()
,
marital()
,
military()
,
month()
,
name
,
normal()
,
political()
,
race()
,
religion()
,
sat()
,
sentence()
,
sex_inclusive()
,
sex()
,
smokes()
,
speed()
,
state()
,
string()
,
upper()
,
valid()
,
year()
,
zip_code()
Examples
answer(10)
100*table(answer(n <- 10000))/n
Generate Random Vector of Areas
Description
Generate a random vector of areas ("Suburban", "Urban", "Rural").
Usage
area(n, x = c("Suburban", "Urban", "Rural"), prob = NULL, name = "Area")
Arguments
n |
The number elements to generate. This can be globally set within
the environment of |
x |
A vector of elements to chose from. |
prob |
A vector of probabilities to chose from. |
name |
The name to assign to the output vector's |
Value
Returns a random vector of area status elements.
See Also
Other variable functions:
age()
,
animal()
,
answer()
,
car()
,
children()
,
coin()
,
color
,
date_stamp()
,
death()
,
dice()
,
dna()
,
dob()
,
dummy()
,
education()
,
employment()
,
eye()
,
grade_level()
,
grade()
,
group()
,
hair()
,
height()
,
income()
,
internet_browser()
,
iq()
,
language
,
level()
,
likert()
,
lorem_ipsum()
,
marital()
,
military()
,
month()
,
name
,
normal()
,
political()
,
race()
,
religion()
,
sat()
,
sentence()
,
sex_inclusive()
,
sex()
,
smokes()
,
speed()
,
state()
,
string()
,
upper()
,
valid()
,
year()
,
zip_code()
Examples
area(10)
barplot(table(area(10000)))
Convert a Factor Data Frame to Integer
Description
Converts a data.frame
of factor
s to
integers.
Usage
as_integer(x, cols = NULL, fun = as.integer)
Arguments
x |
A |
cols |
Numeric indices of the columns to incude (use |
fun |
An |
Value
Returns a data.frame
equal to the
class
of x
with integer columns rather than factor.
See Also
Examples
as_integer(r_series(likert_7, 5, 10))
as_integer(r_series(likert_7, 5, 10), cols = c(2, 4))
library(dplyr)
r_data_frame(n=100,
age,
political,
sex,
grade
) %>%
as_integer(2:3)
Generate Random Vector of Cars
Description
Generate a random vector of cars (see ?mtcars
).
Usage
car(n, x = rownames(datasets::mtcars), prob = NULL, name = "Car")
Arguments
n |
The number elements to generate. This can be globally set within
the environment of |
x |
A vector of elements to chose from. |
prob |
A vector of probabilities to chose from. |
name |
The name to assign to the output vector's |
Value
Returns a random vector of car elements.
See Also
Other variable functions:
age()
,
animal()
,
answer()
,
area()
,
children()
,
coin()
,
color
,
date_stamp()
,
death()
,
dice()
,
dna()
,
dob()
,
dummy()
,
education()
,
employment()
,
eye()
,
grade_level()
,
grade()
,
group()
,
hair()
,
height()
,
income()
,
internet_browser()
,
iq()
,
language
,
level()
,
likert()
,
lorem_ipsum()
,
marital()
,
military()
,
month()
,
name
,
normal()
,
political()
,
race()
,
religion()
,
sat()
,
sentence()
,
sex_inclusive()
,
sex()
,
smokes()
,
speed()
,
state()
,
string()
,
upper()
,
valid()
,
year()
,
zip_code()
Examples
car(10)
table(car(10000))
Generate Random Vector of Number of Children
Description
Generate a random vector of number of children.
Usage
children(
n,
x = 0:10,
prob = c(0.25, 0.25, 0.15, 0.15, 0.1, 0.02, 0.02, 0.02, 0.02, 0.01, 0.01),
name = "Children"
)
Arguments
n |
The number elements to generate. This can be globally set within
the environment of |
x |
A vector of elements to chose from. |
prob |
A vector of probabilities to chose from. |
name |
The name to assign to the output vector's |
Value
Returns a random vector of number of children elements.
See Also
Other variable functions:
age()
,
animal()
,
answer()
,
area()
,
car()
,
coin()
,
color
,
date_stamp()
,
death()
,
dice()
,
dna()
,
dob()
,
dummy()
,
education()
,
employment()
,
eye()
,
grade_level()
,
grade()
,
group()
,
hair()
,
height()
,
income()
,
internet_browser()
,
iq()
,
language
,
level()
,
likert()
,
lorem_ipsum()
,
marital()
,
military()
,
month()
,
name
,
normal()
,
political()
,
race()
,
religion()
,
sat()
,
sentence()
,
sex_inclusive()
,
sex()
,
smokes()
,
speed()
,
state()
,
string()
,
upper()
,
valid()
,
year()
,
zip_code()
Examples
children(10)
pie(table(children(100)))
Generate Random Vector of Coin Flips
Description
Generate a random vector of coin flips (heads/tails).
Usage
coin(n, x = c("Tails", "Heads"), prob = NULL, name = "Coin")
Arguments
n |
The number elements to generate. This can be globally set within
the environment of |
x |
A vector of coin outcomes to sample from. |
prob |
A vector of probabilities to chose from. |
name |
The name to assign to the output vector's |
Value
Returns a random factor vector of coin flip outcome elements.
See Also
Other variable functions:
age()
,
animal()
,
answer()
,
area()
,
car()
,
children()
,
color
,
date_stamp()
,
death()
,
dice()
,
dna()
,
dob()
,
dummy()
,
education()
,
employment()
,
eye()
,
grade_level()
,
grade()
,
group()
,
hair()
,
height()
,
income()
,
internet_browser()
,
iq()
,
language
,
level()
,
likert()
,
lorem_ipsum()
,
marital()
,
military()
,
month()
,
name
,
normal()
,
political()
,
race()
,
religion()
,
sat()
,
sentence()
,
sex_inclusive()
,
sex()
,
smokes()
,
speed()
,
state()
,
string()
,
upper()
,
valid()
,
year()
,
zip_code()
Examples
coin(10)
100*table(coin(n <- 10000))/n
Generate Random Vector of Colors
Description
color
- Generate a random vector of colors (sampled from colors()
).
color
- Generate a random vector of psycological primary
colors (sampled from colors()
).
Usage
color(n, k = 10, x = grDevices::colors(), prob = NULL, name = "Color")
primary(
n,
x = c("Red", "Green", "Blue", "Yellow", "Black", "White"),
prob = NULL,
name = "Color"
)
Arguments
n |
The number elements to generate. This can be globally set within
the environment of |
k |
The number of the elements of x to sample from (uses |
x |
A vector of elements to chose from. |
prob |
A vector of probabilities to chose from. |
name |
The name to assign to the output vector's |
Value
Returns a random factor vector of color elements.
See Also
Other variable functions:
age()
,
animal()
,
answer()
,
area()
,
car()
,
children()
,
coin()
,
date_stamp()
,
death()
,
dice()
,
dna()
,
dob()
,
dummy()
,
education()
,
employment()
,
eye()
,
grade_level()
,
grade()
,
group()
,
hair()
,
height()
,
income()
,
internet_browser()
,
iq()
,
language
,
level()
,
likert()
,
lorem_ipsum()
,
marital()
,
military()
,
month()
,
name
,
normal()
,
political()
,
race()
,
religion()
,
sat()
,
sentence()
,
sex_inclusive()
,
sex()
,
smokes()
,
speed()
,
state()
,
string()
,
upper()
,
valid()
,
year()
,
zip_code()
Examples
color(10)
pie(tab <- table(color(10000)), col = names(tab))
primary(10)
pie(tab <- table(primary(10000)), col = names(tab))
barplot(tab <- table(primary(10000, prob = probs(6))), col = names(tab))
Generate Random Vector of Dates
Description
Generate a random vector of dates.
Usage
date_stamp(
n,
random = FALSE,
x = NULL,
start = Sys.Date(),
k = 12,
by = "-1 months",
prob = NULL,
name = "Date"
)
Arguments
n |
The number elements to generate. This can be globally set within
the environment of |
random |
logical. If |
x |
A vector of elements to chose from. This may be |
start |
A date to start the sequence at. |
k |
The length of the sequence (number of the elements) so build out from
|
by |
The interval to use in building the sequence. |
prob |
A vector of probabilities to chose from. |
name |
The name to assign to the output vector's |
Value
Returns a random factor vector of date elements.
See Also
Other variable functions:
age()
,
animal()
,
answer()
,
area()
,
car()
,
children()
,
coin()
,
color
,
death()
,
dice()
,
dna()
,
dob()
,
dummy()
,
education()
,
employment()
,
eye()
,
grade_level()
,
grade()
,
group()
,
hair()
,
height()
,
income()
,
internet_browser()
,
iq()
,
language
,
level()
,
likert()
,
lorem_ipsum()
,
marital()
,
military()
,
month()
,
name
,
normal()
,
political()
,
race()
,
religion()
,
sat()
,
sentence()
,
sex_inclusive()
,
sex()
,
smokes()
,
speed()
,
state()
,
string()
,
upper()
,
valid()
,
year()
,
zip_code()
Examples
date_stamp(10)
pie(table(date_stamp(2000, prob = probs(12))))
## Supply dates to `x` to sample from
date_stamp(10, x = seq(as.Date("1980-11-16"), length = 30, by = "1 years"))
Generate Random Vector of Deaths Outcomes
Description
Generate a random logical vector of deaths (TRUE
/FALSE
).
Usage
death(n, prob = NULL, name = "Death")
died(n, prob = NULL, name = "Died")
Arguments
n |
The number elements to generate. This can be globally set within
the environment of |
prob |
A vector of probabilities to chose from. |
name |
The name to assign to the output vector's |
Value
Returns a random logical vector of death outcome elements.
See Also
Other variable functions:
age()
,
animal()
,
answer()
,
area()
,
car()
,
children()
,
coin()
,
color
,
date_stamp()
,
dice()
,
dna()
,
dob()
,
dummy()
,
education()
,
employment()
,
eye()
,
grade_level()
,
grade()
,
group()
,
hair()
,
height()
,
income()
,
internet_browser()
,
iq()
,
language
,
level()
,
likert()
,
lorem_ipsum()
,
marital()
,
military()
,
month()
,
name
,
normal()
,
political()
,
race()
,
religion()
,
sat()
,
sentence()
,
sex_inclusive()
,
sex()
,
smokes()
,
speed()
,
state()
,
string()
,
upper()
,
valid()
,
year()
,
zip_code()
Examples
death(10)
died(10)
100*table(death(n <- 10000))/n
100*table(death(n <- 10000, prob = c(.3, .7)))/n
r_data_frame(10, died)
Generate Random Vector of Dice Throws
Description
Generate a random vector of dice throws.
Usage
dice(n, x = 1:6, prob = NULL, name = "Dice")
Arguments
n |
The number elements to generate. This can be globally set within
the environment of |
x |
A vector of elements to chose from. |
prob |
A vector of probabilities to chose from. |
name |
The name to assign to the output vector's |
Value
Returns a random vector of dice throw elements.
See Also
Other variable functions:
age()
,
animal()
,
answer()
,
area()
,
car()
,
children()
,
coin()
,
color
,
date_stamp()
,
death()
,
dna()
,
dob()
,
dummy()
,
education()
,
employment()
,
eye()
,
grade_level()
,
grade()
,
group()
,
hair()
,
height()
,
income()
,
internet_browser()
,
iq()
,
language
,
level()
,
likert()
,
lorem_ipsum()
,
marital()
,
military()
,
month()
,
name
,
normal()
,
political()
,
race()
,
religion()
,
sat()
,
sentence()
,
sex_inclusive()
,
sex()
,
smokes()
,
speed()
,
state()
,
string()
,
upper()
,
valid()
,
year()
,
zip_code()
Examples
dice(10)
barplot(table(dice(10000)))
Generate Random Vector of DNA Nucleobases
Description
Generate a random vector of DNA nucleobases ("Guanine", "Adenine", "Thymine", "Cytosine").
Usage
dna(
n,
x = c("Guanine", "Adenine", "Thymine", "Cytosine"),
prob = NULL,
name = "DNA"
)
Arguments
n |
The number elements to generate. This can be globally set within
the environment of |
x |
A vector of elements to chose from. |
prob |
A vector of probabilities to chose from. |
name |
The name to assign to the output vector's |
Value
Returns a random vector of DNA nucleobase elements.
See Also
Other variable functions:
age()
,
animal()
,
answer()
,
area()
,
car()
,
children()
,
coin()
,
color
,
date_stamp()
,
death()
,
dice()
,
dob()
,
dummy()
,
education()
,
employment()
,
eye()
,
grade_level()
,
grade()
,
group()
,
hair()
,
height()
,
income()
,
internet_browser()
,
iq()
,
language
,
level()
,
likert()
,
lorem_ipsum()
,
marital()
,
military()
,
month()
,
name
,
normal()
,
political()
,
race()
,
religion()
,
sat()
,
sentence()
,
sex_inclusive()
,
sex()
,
smokes()
,
speed()
,
state()
,
string()
,
upper()
,
valid()
,
year()
,
zip_code()
Examples
dna(10)
barplot(table(dna(10000)))
Generate Random Vector of Birth Dates
Description
Generate a random vector of birth dates.
Usage
dob(
n,
random = TRUE,
x = NULL,
start = Sys.Date() - 365 * 15,
k = 365 * 2,
by = "1 days",
prob = NULL,
name = "DOB"
)
birth(
n,
random = TRUE,
x = NULL,
start = Sys.Date() - 365 * 15,
k = 365 * 2,
by = "1 days",
prob = NULL,
name = "Birth"
)
Arguments
n |
The number elements to generate. This can be globally set within
the environment of |
random |
logical. If |
x |
A vector of elements to chose from. This may be |
start |
A date to start the sequence at. |
k |
The length of the sequence (number of the elements) so build out from
|
by |
The interval to use in building the sequence. |
prob |
A vector of probabilities to chose from. |
name |
The name to assign to the output vector's |
Value
Returns a random vector of birth date elements.
See Also
Other variable functions:
age()
,
animal()
,
answer()
,
area()
,
car()
,
children()
,
coin()
,
color
,
date_stamp()
,
death()
,
dice()
,
dna()
,
dummy()
,
education()
,
employment()
,
eye()
,
grade_level()
,
grade()
,
group()
,
hair()
,
height()
,
income()
,
internet_browser()
,
iq()
,
language
,
level()
,
likert()
,
lorem_ipsum()
,
marital()
,
military()
,
month()
,
name
,
normal()
,
political()
,
race()
,
religion()
,
sat()
,
sentence()
,
sex_inclusive()
,
sex()
,
smokes()
,
speed()
,
state()
,
string()
,
upper()
,
valid()
,
year()
,
zip_code()
Examples
dob(10)
barplot(table(birth(15)))
barplot(table(birth(30)))
Generate Random Dummy Coded Vector
Description
Generate a random dummy coded (0/1) vector.
Usage
dummy(n, prob = NULL, name = "Dummy")
Arguments
n |
The number elements to generate. This can be globally set within
the environment of |
prob |
A vector of probabilities to chose from. |
name |
The name to assign to the output vector's |
Value
Returns a random dummy vector of (0/1) elements.
See Also
Other variable functions:
age()
,
animal()
,
answer()
,
area()
,
car()
,
children()
,
coin()
,
color
,
date_stamp()
,
death()
,
dice()
,
dna()
,
dob()
,
education()
,
employment()
,
eye()
,
grade_level()
,
grade()
,
group()
,
hair()
,
height()
,
income()
,
internet_browser()
,
iq()
,
language
,
level()
,
likert()
,
lorem_ipsum()
,
marital()
,
military()
,
month()
,
name
,
normal()
,
political()
,
race()
,
religion()
,
sat()
,
sentence()
,
sex_inclusive()
,
sex()
,
smokes()
,
speed()
,
state()
,
string()
,
upper()
,
valid()
,
year()
,
zip_code()
Examples
dummy(100, name = "Var")
table(dummy(1000))
Generate Random Vector of Educational Attainment Level
Description
Generate a random vector of educational attainment level.
Usage
education(
n,
x = c("No Schooling Completed", "Nursery School to 8th Grade",
"9th Grade to 12th Grade, No Diploma", "Regular High School Diploma",
"GED or Alternative Credential", "Some College, Less than 1 Year",
"Some College, 1 or More Years, No Degree", "Associate's Degree",
"Bachelor's Degree", "Master's Degree", "Professional School Degree",
"Doctorate Degree"),
prob = c(0.013, 0.05, 0.085, 0.246, 0.039, 0.064, 0.15, 0.075, 0.176, 0.072, 0.019,
0.012),
name = "Education"
)
Arguments
n |
The number elements to generate. This can be globally set within
the environment of |
x |
A vector of elements to chose from. |
prob |
A vector of probabilities to chose from. |
name |
The name to assign to the output vector's |
Details
The educational attainments and probabilities used match approximate U.S. educational attainment make-up (http://www.census.gov):
Highest Attainment | Percent |
No Schooling Completed | 1.3 % |
Nursery School to 8th Grade | 5 % |
9th Grade to 12th Grade, No Diploma | 8.5 % |
Regular High School Diploma | 24.6 % |
GED or Alternative Credential | 3.9 % |
Some College, Less than 1 Year | 6.4 % |
Some College, 1 or More Years, No Degree | 15 % |
Associate's Degree | 7.5 % |
Bachelor's Degree | 17.6 % |
Master's Degree | 7.2 % |
Professional School Degree | 1.9 % |
Doctorate Degree | 1.2 % |
Value
Returns a random vector of educational attainment level elements.
References
http://www.census.gov
See Also
Other variable functions:
age()
,
animal()
,
answer()
,
area()
,
car()
,
children()
,
coin()
,
color
,
date_stamp()
,
death()
,
dice()
,
dna()
,
dob()
,
dummy()
,
employment()
,
eye()
,
grade_level()
,
grade()
,
group()
,
hair()
,
height()
,
income()
,
internet_browser()
,
iq()
,
language
,
level()
,
likert()
,
lorem_ipsum()
,
marital()
,
military()
,
month()
,
name
,
normal()
,
political()
,
race()
,
religion()
,
sat()
,
sentence()
,
sex_inclusive()
,
sex()
,
smokes()
,
speed()
,
state()
,
string()
,
upper()
,
valid()
,
year()
,
zip_code()
Examples
education(10)
pie(table(education(10000)))
Generate Random Vector of Employment Statuses
Description
Generate a random vector of employment statuses.
Usage
employment(
n,
x = c("Full Time", "Part Time", "Unemployed", "Retired", "Student"),
prob = c(0.6, 0.1, 0.1, 0.1, 0.1),
name = "Employment"
)
Arguments
n |
The number elements to generate. This can be globally set within
the environment of |
x |
A vector of elements to chose from. |
prob |
A vector of probabilities to chose from. |
name |
The name to assign to the output vector's |
Details
The following arbitrary probabilities are used:
Employment Status | Percent |
Full Time | 60% |
Part Time | 10% |
Unemployed | 10% |
Retired | 10% |
Student | 10% |
Value
Returns a random vector of employment status elements.
See Also
Other variable functions:
age()
,
animal()
,
answer()
,
area()
,
car()
,
children()
,
coin()
,
color
,
date_stamp()
,
death()
,
dice()
,
dna()
,
dob()
,
dummy()
,
education()
,
eye()
,
grade_level()
,
grade()
,
group()
,
hair()
,
height()
,
income()
,
internet_browser()
,
iq()
,
language
,
level()
,
likert()
,
lorem_ipsum()
,
marital()
,
military()
,
month()
,
name
,
normal()
,
political()
,
race()
,
religion()
,
sat()
,
sentence()
,
sex_inclusive()
,
sex()
,
smokes()
,
speed()
,
state()
,
string()
,
upper()
,
valid()
,
year()
,
zip_code()
Examples
employment(10)
pie(table(employment(10000)))
barplot(table(employment(10000)))
Generate Random Vector of Eye Colors
Description
Generate a random vector of eye colors.
Usage
eye(
n,
x = c("Brown", "Blue", "Green", "Hazel", "Gray"),
prob = c(0.44, 0.3, 0.13, 0.09, 0.04),
name = "Eye"
)
Arguments
n |
The number elements to generate. This can be globally set within
the environment of |
x |
A vector of elements to chose from. |
prob |
A vector of probabilities to chose from. |
name |
The name to assign to the output vector's |
Details
The eye colors and probabilities:
Color | Percent |
Brown | 44 % |
Blue | 30 % |
Green | 13 % |
Hazel | 9 % |
Gray | 4 % |
Value
Returns a random vector of eye color elements.
See Also
Other variable functions:
age()
,
animal()
,
answer()
,
area()
,
car()
,
children()
,
coin()
,
color
,
date_stamp()
,
death()
,
dice()
,
dna()
,
dob()
,
dummy()
,
education()
,
employment()
,
grade_level()
,
grade()
,
group()
,
hair()
,
height()
,
income()
,
internet_browser()
,
iq()
,
language
,
level()
,
likert()
,
lorem_ipsum()
,
marital()
,
military()
,
month()
,
name
,
normal()
,
political()
,
race()
,
religion()
,
sat()
,
sentence()
,
sex_inclusive()
,
sex()
,
smokes()
,
speed()
,
state()
,
string()
,
upper()
,
valid()
,
year()
,
zip_code()
Examples
eye(10)
barplot(v <- table(eye(10000)), col = replace(names(v), 4, "yellowgreen"))
Generate Random Vector of Grades
Description
grade
- Generate a random normal vector of percent grades.
grade
- Generate a random normal vector of letter grades.
grade
- Generate a random normal vector of grade point averages (GPA;
0.0 - 4.0 scale).
Usage
grade(n, mean = 88, sd = 4, name = "Grade", digits = 1)
grade_letter(n, mean = 88, sd = 4, name = "Grade_Letter")
gpa(n, mean = 88, sd = 4, name = "GPA")
Arguments
n |
The number elements to generate. This can be globally set within
the environment of |
mean |
The mean value for the normal distribution to be drawn from. |
sd |
The standard deviation of the normal distribution to draw from. |
name |
The name to assign to the output vector's |
digits |
Integer indicating the number of decimal places to be used.
Negative values are allowed (see |
Details
The conversion between percent range, letter grade, and GPA is:
Percent | Letter | GPA |
97-100 | A+ | 4.00 |
93-96 | A | 4.00 |
90-92 | A- | 3.67 |
87-89 | B+ | 3.33 |
83-86 | B | 3.00 |
80-82 | B- | 2.67 |
77-79 | C+ | 2.33 |
73-76 | C | 2.00 |
70-72 | C- | 1.67 |
67-69 | D+ | 1.33 |
63-66 | D | 1.00 |
60-62 | D- | 0.67 |
< 60 | F | 0.00 |
Value
Returns a random normal vector of grade elements.
See Also
Other variable functions:
age()
,
animal()
,
answer()
,
area()
,
car()
,
children()
,
coin()
,
color
,
date_stamp()
,
death()
,
dice()
,
dna()
,
dob()
,
dummy()
,
education()
,
employment()
,
eye()
,
grade_level()
,
group()
,
hair()
,
height()
,
income()
,
internet_browser()
,
iq()
,
language
,
level()
,
likert()
,
lorem_ipsum()
,
marital()
,
military()
,
month()
,
name
,
normal()
,
political()
,
race()
,
religion()
,
sat()
,
sentence()
,
sex_inclusive()
,
sex()
,
smokes()
,
speed()
,
state()
,
string()
,
upper()
,
valid()
,
year()
,
zip_code()
Examples
grade(10)
hist(grade(10000))
interval(grade, 5, n = 1000)
grade_letter(10)
barplot(table(grade_letter(10000)))
gpa(10)
hist(gpa(10000))
Generate Random Vector of Grade Levels
Description
Generate a random vector of grade levels.
Usage
grade_level(
n,
x = c("K", "1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12"),
prob = NULL,
name = "Grade_Level"
)
Arguments
n |
The number elements to generate. This can be globally set within
the environment of |
x |
A vector of elements to chose from. |
prob |
A vector of probabilities to chose from. |
name |
The name to assign to the output vector's |
Value
Returns a random vector of grade level elements.
See Also
Other variable functions:
age()
,
animal()
,
answer()
,
area()
,
car()
,
children()
,
coin()
,
color
,
date_stamp()
,
death()
,
dice()
,
dna()
,
dob()
,
dummy()
,
education()
,
employment()
,
eye()
,
grade()
,
group()
,
hair()
,
height()
,
income()
,
internet_browser()
,
iq()
,
language
,
level()
,
likert()
,
lorem_ipsum()
,
marital()
,
military()
,
month()
,
name
,
normal()
,
political()
,
race()
,
religion()
,
sat()
,
sentence()
,
sex_inclusive()
,
sex()
,
smokes()
,
speed()
,
state()
,
string()
,
upper()
,
valid()
,
year()
,
zip_code()
Examples
grade_level(10)
barplot(table(grade_level(10000)))
Augmented List of Grady Ward's English Words and Mark Kantrowitz's Names List
Description
A dataset containing a vector of Grady Ward's English words augmented with
qdapDictionaries's DICTIONARY
, Mark Kantrowitz's names list,
other proper nouns, and contractions.
Usage
data(grady_augmented)
Format
A character vector with 122806 elements
Details
A dataset containing a vector of Grady Ward's English words augmented with proper nouns (U.S. States, Countries, Mark Kantrowitz's Names List, and months) and contractions. That dataset is augmented to increase the data set size.
References
Moby Thesaurus List by Grady Ward https://www.gutenberg.org
List of names from Mark Kantrowitz http://www.cs.cmu.edu/afs/cs/project/ai-repository/ai/areas/nlp/corpora/names/.
A copy of the http://www.cs.cmu.edu/afs/cs/project/ai-repository/ai/areas/nlp/corpora/names/readme.txt
per the author's request.
Generate Random Vector of Control/Treatment Groups
Description
Generate a random vector of binary groups (e.g., control/treatment).
Usage
group(n, x = c("Control", "Treatment"), prob = NULL, name = "Group")
Arguments
n |
The number elements to generate. This can be globally set within
the environment of |
x |
A vector of groups to sample from. |
prob |
A vector of probabilities to chose from. |
name |
The name to assign to the output vector's |
Value
Returns a random factor vector of group (control/treatment) elements.
Note
If you want > 2 groups see 'r_sample_factor'.
See Also
Other variable functions:
age()
,
animal()
,
answer()
,
area()
,
car()
,
children()
,
coin()
,
color
,
date_stamp()
,
death()
,
dice()
,
dna()
,
dob()
,
dummy()
,
education()
,
employment()
,
eye()
,
grade_level()
,
grade()
,
hair()
,
height()
,
income()
,
internet_browser()
,
iq()
,
language
,
level()
,
likert()
,
lorem_ipsum()
,
marital()
,
military()
,
month()
,
name
,
normal()
,
political()
,
race()
,
religion()
,
sat()
,
sentence()
,
sex_inclusive()
,
sex()
,
smokes()
,
speed()
,
state()
,
string()
,
upper()
,
valid()
,
year()
,
zip_code()
Examples
group(10)
100*table(group(n <- 10000))/n
100*table(group(n <- 10000, prob = c(.3, .7)))/n
Generate Random Vector of Hair Colors
Description
Generate a random vector of hair colors.
Usage
hair(
n,
x = c("Brown", "Black", "Blonde", "Red"),
prob = c(0.35, 0.28, 0.26, 0.11),
name = "Hair"
)
Arguments
n |
The number elements to generate. This can be globally set within
the environment of |
x |
A vector of elements to chose from. |
prob |
A vector of probabilities to chose from. |
name |
The name to assign to the output vector's |
Details
The hair colors and probabilities:
Color | Percent |
Brown | 35 % |
Black | 28 % |
Blonde | 26 % |
Red | 11 % |
Value
Returns a random vector of hair color elements.
See Also
Other variable functions:
age()
,
animal()
,
answer()
,
area()
,
car()
,
children()
,
coin()
,
color
,
date_stamp()
,
death()
,
dice()
,
dna()
,
dob()
,
dummy()
,
education()
,
employment()
,
eye()
,
grade_level()
,
grade()
,
group()
,
height()
,
income()
,
internet_browser()
,
iq()
,
language
,
level()
,
likert()
,
lorem_ipsum()
,
marital()
,
military()
,
month()
,
name
,
normal()
,
political()
,
race()
,
religion()
,
sat()
,
sentence()
,
sex_inclusive()
,
sex()
,
smokes()
,
speed()
,
state()
,
string()
,
upper()
,
valid()
,
year()
,
zip_code()
Examples
hair(10)
v <- table(hair(10000))
lbs <- paste0(names(v), "\n", round(100*v/sum(v), 1), "%")
pie(v, col = replace(names(v), 3, "yellow"), labels = lbs)
Generate Random Vector of Heights
Description
height
and height_in
- Generate a random normal vector of
heights in inches.
height_cm
- Generate a random normal vector of heights in centimeters.
Usage
height(
n,
mean = 69,
sd = 3.75,
min = 1,
max = NULL,
digits = 0,
name = "Height"
)
height_in(
n,
mean = 69,
sd = 3.75,
min = 1,
max = NULL,
digits = 1,
name = "Height(in)"
)
height_cm(
n,
mean = 175.26,
sd = 9.525,
min = 1,
max = NULL,
digits = 1,
name = "Height(cm)"
)
Arguments
n |
The number elements to generate. This can be globally set within
the environment of |
mean |
The mean value for the normal distribution to be drawn from. |
sd |
The standard deviation of the normal distribution to draw from. |
min |
A numeric lower boundary cutoff. Results less than this value will be
replaced with |
max |
A numeric upper boundary cutoff. Results greater than this value will
be replaced with |
digits |
Integer indicating the number of decimal places to be used.
Negative values are allowed (see |
name |
The name to assign to the output vector's |
Value
Returns a random normal vector of height elements.
Note
height
rounds to nearest whole number. height_in
&
height_in
round to the nearest tenths.
See Also
Other variable functions:
age()
,
animal()
,
answer()
,
area()
,
car()
,
children()
,
coin()
,
color
,
date_stamp()
,
death()
,
dice()
,
dna()
,
dob()
,
dummy()
,
education()
,
employment()
,
eye()
,
grade_level()
,
grade()
,
group()
,
hair()
,
income()
,
internet_browser()
,
iq()
,
language
,
level()
,
likert()
,
lorem_ipsum()
,
marital()
,
military()
,
month()
,
name
,
normal()
,
political()
,
race()
,
religion()
,
sat()
,
sentence()
,
sex_inclusive()
,
sex()
,
smokes()
,
speed()
,
state()
,
string()
,
upper()
,
valid()
,
year()
,
zip_code()
Examples
height(10)
hist(height(10000))
interval(height, 5, n = 1000)
Generate a Random Sequence of H:M:S Times
Description
Generate a random vector of H:M:S times.
Usage
hour(n, x = seq(0, 23.5, by = 0.5), prob = NULL, random = FALSE, name = "Hour")
Arguments
n |
The number elements to generate. This can be globally set within
the environment of |
x |
A vector of elements to chose from. |
prob |
A vector of probabilities to chose from. |
random |
logical. If |
name |
The name to assign to the output vector's |
Value
Returns a random vector of H:M:S time elements.
See Also
Examples
hour(20)
hour(20, random=TRUE)
Identification Numbers
Description
id
- Generate a sequential character
vector of
zero-padded identification numbers (IDs).
id_factor
- Generate a sequential factor
vector
of zero-padded identification numbers (IDs).
Usage
id(n, random = FALSE, name = "ID")
id_factor(n, random = FALSE, name = "ID")
Arguments
n |
The number elements to generate. This can be globally set within
the environment of |
random |
logical. If |
name |
The name to assign to the output vector's |
Value
Returns a (optionally random) vector of
character
/factor
observations
ID numbers.
Warning
id
uses sprintf
to generate the
padded ID. Per sprintf
's documentation: “The format
string is passed down the OS's sprintf function...The behaviour on inputs not
documented here is 'undefined', which means it is allowed to differ by
platform.” See sprintf
for details.
Note
id
is faster than id_factor
, as the later coerces the
vector to a factor
.
See Also
Examples
id(1000)
r_data_frame(n=21, id)
Generate Random Gamma Vector of Incomes
Description
Generate a random gamma vector of incomes.
Usage
income(n, digits = 2, name = "Income")
Arguments
n |
The number elements to generate. This can be globally set within
the environment of |
digits |
Integer indicating the number of decimal places to be used.
Negative values are allowed (see |
name |
The name to assign to the output vector's |
Details
Incomes are generated using: rgamma(n, 2) * 2000
.
Value
Returns a random gamma vector of income elements.
See Also
Other variable functions:
age()
,
animal()
,
answer()
,
area()
,
car()
,
children()
,
coin()
,
color
,
date_stamp()
,
death()
,
dice()
,
dna()
,
dob()
,
dummy()
,
education()
,
employment()
,
eye()
,
grade_level()
,
grade()
,
group()
,
hair()
,
height()
,
internet_browser()
,
iq()
,
language
,
level()
,
likert()
,
lorem_ipsum()
,
marital()
,
military()
,
month()
,
name
,
normal()
,
political()
,
race()
,
religion()
,
sat()
,
sentence()
,
sex_inclusive()
,
sex()
,
smokes()
,
speed()
,
state()
,
string()
,
upper()
,
valid()
,
year()
,
zip_code()
Examples
income(10)
hist(income(10000))
pie(table(cut(income(10000), 10)))
Generate Random Vector of Internet Browsers
Description
Generate a random vector of Internet browser.
Usage
internet_browser(
n,
x = c("Chrome", "IE", "Firefox", "Safari", "Opera", "Android"),
prob = c(0.5027, 0.175, 0.1689, 0.0994, 0.017, 0.0132),
name = "Browser"
)
Arguments
n |
The number elements to generate. This can be globally set within
the environment of |
x |
A vector of elements to chose from. |
prob |
A vector of probabilities to chose from. |
name |
The name to assign to the output vector's |
Details
The browser use and probabilities (from https://gs.statcounter.com/):
Browser | Percent |
Chrome | 50.27 % |
IE | 17.50 % |
Firefox | 16.89 % |
Safari | 9.94 % |
Opera | 1.70 % |
Android | 1.32 % |
Value
Returns a random factor vector of Internet browser elements.
References
https://gs.statcounter.com/
See Also
Other variable functions:
age()
,
animal()
,
answer()
,
area()
,
car()
,
children()
,
coin()
,
color
,
date_stamp()
,
death()
,
dice()
,
dna()
,
dob()
,
dummy()
,
education()
,
employment()
,
eye()
,
grade_level()
,
grade()
,
group()
,
hair()
,
height()
,
income()
,
iq()
,
language
,
level()
,
likert()
,
lorem_ipsum()
,
marital()
,
military()
,
month()
,
name
,
normal()
,
political()
,
race()
,
religion()
,
sat()
,
sentence()
,
sex_inclusive()
,
sex()
,
smokes()
,
speed()
,
state()
,
string()
,
upper()
,
valid()
,
year()
,
zip_code()
Examples
internet_browser(20)
barplot(table(internet_browser(10000)))
pie(table(internet_browser(10000)))
Cut Numeric Into Factor
Description
A wrapper for cut
that cuts the vector and then adds the
varname
produced by the original function.
Usage
interval(
fun,
breaks,
...,
labels = NULL,
include.lowest = FALSE,
right = TRUE,
dig.lab = 3,
ordered_result = FALSE,
n
)
Arguments
fun |
A vector producing function. |
breaks |
Either a numeric vector of two or more unique cut points or a
single number (greater than or equal to 2) giving the number of intervals
into which the vector produced from |
labels |
Labels for the levels of the resulting category. By default,
labels are constructed using "(a,b]" interval notation. If
|
include.lowest |
logical. If |
right |
logical. If |
dig.lab |
An integer which is used when labels are not given. It determines the number of digits used in formatting the break numbers. |
ordered_result |
logical. If |
n |
The number elements to generate. This can be globally set within
the environment of |
... |
Other arguments passed to |
Value
Returns a cut
factor vector.
See Also
Examples
interval(normal, 4, n=100)
attributes(interval(normal, 4, n=100))
interval(age, 3, n = 1000)
Generate Random Vector of Intelligence Quotients (IQs)
Description
Generate a random normal vector of intelligence quotients (IQs).
Usage
iq(n, mean = 100, sd = 10, min = 0, max = NULL, digits = 0, name = "IQ")
Arguments
n |
The number elements to generate. This can be globally set within
the environment of |
mean |
The mean value for the normal distribution to be drawn from. |
sd |
The standard deviation of the normal distribution to draw from. |
min |
A numeric lower boundary cutoff. Results less than this value will be
replaced with |
max |
A numeric upper boundary cutoff. Results greater than this value will
be replaced with |
digits |
Integer indicating the number of decimal places to be used.
Negative values are allowed (see |
name |
The name to assign to the output vector's |
Value
Returns a random normal vector of IQ elements.
See Also
Other variable functions:
age()
,
animal()
,
answer()
,
area()
,
car()
,
children()
,
coin()
,
color
,
date_stamp()
,
death()
,
dice()
,
dna()
,
dob()
,
dummy()
,
education()
,
employment()
,
eye()
,
grade_level()
,
grade()
,
group()
,
hair()
,
height()
,
income()
,
internet_browser()
,
language
,
level()
,
likert()
,
lorem_ipsum()
,
marital()
,
military()
,
month()
,
name
,
normal()
,
political()
,
race()
,
religion()
,
sat()
,
sentence()
,
sex_inclusive()
,
sex()
,
smokes()
,
speed()
,
state()
,
string()
,
upper()
,
valid()
,
year()
,
zip_code()
Examples
iq(10)
hist(iq(10000))
interval(iq, 5, n = 1000)
Generate Random Vector of Languages
Description
Generate a random vector of languages from the
presidential_debates_2012
.
Usage
language(
n,
x = wakefield::languages[["Language"]],
prob = wakefield::languages[["Proportion"]],
name = "Language"
)
Arguments
n |
The number elements to generate. This can be globally set within
the environment of |
x |
A vector of elements to chose from. |
prob |
A vector of probabilities to chose from. |
name |
The name to assign to the output vector's |
Value
Returns a random character vector of language elements.
See Also
Other variable functions:
age()
,
animal()
,
answer()
,
area()
,
car()
,
children()
,
coin()
,
color
,
date_stamp()
,
death()
,
dice()
,
dna()
,
dob()
,
dummy()
,
education()
,
employment()
,
eye()
,
grade_level()
,
grade()
,
group()
,
hair()
,
height()
,
income()
,
internet_browser()
,
iq()
,
level()
,
likert()
,
lorem_ipsum()
,
marital()
,
military()
,
month()
,
name
,
normal()
,
political()
,
race()
,
religion()
,
sat()
,
sentence()
,
sex_inclusive()
,
sex()
,
smokes()
,
speed()
,
state()
,
string()
,
upper()
,
valid()
,
year()
,
zip_code()
Examples
language(10)
pie(table(language(10000)))
lang <- wakefield::languages[sample(1:99, 6), ]
lang["prop"] <- lang[["N"]]/sum(lang[["N"]])
labs <- round(100 * lang[["prop"]], 1)
pie(lang[["prop"]], paste0(lang[["Language"]], "\n", labs, "%"))
Languages of the World
Description
A dataset containing native language use statistics taken from: https://en.wikipedia.org/wiki/List_of_languages_by_number_of_native_speakers.
Usage
data(languages)
Format
A data frame with 99 rows and 4 variables
Details
Language. The language spoken.
N. The number of speakers world-wide.
Proportion. The proportion of speakers.
Percent. The percentage of speakers.
References
https://en.wikipedia.org/wiki/List_of_languages_by_number_of_native_speakers
Generate Random Vector of Levels
Description
level
- Generate a random vector of integer levels (1-4).
math
- Generate a random vector of integer mathematics levels (1-4)
similar to New York State grades 3-8 assessment results.
ela
- Generate a random vector of integer English language arts (ELA)
levels (1-4) similar to New York State grades 3-8 assessment results.
Usage
level(n, x = 1:4, prob = NULL, name = "Level")
math(n, x = 1:4, prob = c(0.29829, 0.33332, 0.22797, 0.14042), name = "Math")
ela(n, x = 1:4, prob = c(0.3161, 0.37257, 0.2233, 0.08803), name = "ELA")
Arguments
n |
The number elements to generate. This can be globally set within
the environment of |
x |
A vector of elements to chose from. |
prob |
A vector of probabilities to chose from. |
name |
The name to assign to the output vector's |
Details
Distribution of levels (used in prob
) were taken from New
York State' s 2014 assessment report: http://www.p12.nysed.gov/irs/
Level | ELA | Math |
1 | 31.6% | 29.8% |
2 | 37.3% | 33.3% |
3 | 22.3% | 22.8% |
4 | 8.8% | 14.0% |
Value
Returns a random vector of integer levels (1-4) elements.
See Also
Other variable functions:
age()
,
animal()
,
answer()
,
area()
,
car()
,
children()
,
coin()
,
color
,
date_stamp()
,
death()
,
dice()
,
dna()
,
dob()
,
dummy()
,
education()
,
employment()
,
eye()
,
grade_level()
,
grade()
,
group()
,
hair()
,
height()
,
income()
,
internet_browser()
,
iq()
,
language
,
likert()
,
lorem_ipsum()
,
marital()
,
military()
,
month()
,
name
,
normal()
,
political()
,
race()
,
religion()
,
sat()
,
sentence()
,
sex_inclusive()
,
sex()
,
smokes()
,
speed()
,
state()
,
string()
,
upper()
,
valid()
,
year()
,
zip_code()
Examples
level(10)
barplot(table(level(10000, prob = probs(4))))
math(10)
barplot(table(math(10000)))
ela(10)
barplot(table(ela(10000)))
Generate Random Vector of Likert-Type Responses
Description
Generate a random vector of Likert-type responses.
Usage
likert(
n,
x = c("Strongly Agree", "Agree", "Neutral", "Disagree", "Strongly Disagree"),
prob = NULL,
name = "Likert"
)
likert_5(
n,
x = c("Strongly Agree", "Agree", "Neutral", "Disagree", "Strongly Disagree"),
prob = NULL,
name = "Likert"
)
likert_7(
n,
x = c("Strongly Agree", "Agree", "Somewhat Agree", "Neutral", "Somewhat Disagree",
"Disagree", "Strongly Disagree"),
prob = NULL,
name = "Likert"
)
Arguments
n |
The number elements to generate. This can be globally set within
the environment of |
x |
A vector of elements to chose from. |
prob |
A vector of probabilities to chose from. |
name |
The name to assign to the output vector's |
Value
Returns a random vector of Likert-type response elements.
Note
likert
& likert_5
are identical outputs, sampling from a
5-point response scale. likert_7
samples from a 7-point response
scale.
See Also
Other variable functions:
age()
,
animal()
,
answer()
,
area()
,
car()
,
children()
,
coin()
,
color
,
date_stamp()
,
death()
,
dice()
,
dna()
,
dob()
,
dummy()
,
education()
,
employment()
,
eye()
,
grade_level()
,
grade()
,
group()
,
hair()
,
height()
,
income()
,
internet_browser()
,
iq()
,
language
,
level()
,
lorem_ipsum()
,
marital()
,
military()
,
month()
,
name
,
normal()
,
political()
,
race()
,
religion()
,
sat()
,
sentence()
,
sex_inclusive()
,
sex()
,
smokes()
,
speed()
,
state()
,
string()
,
upper()
,
valid()
,
year()
,
zip_code()
Examples
dice(10)
barplot(table(dice(10000)))
Generate Random Lorem Ipsum Strings
Description
Generates (pseudo)random lorem ipsum text.
Usage
lorem_ipsum(n, ..., name = "Lorem_Ipsum")
paragraph(n, ..., name = "Paragraph")
Arguments
n |
The number elements to generate. This can be globally set within
the environment of |
... |
Other arguments passed to |
name |
The name to assign to the output vector's |
Value
Returns a random character vector of string elements.
Note
lorem_ipsum
and paragraph
produce identical strings but
will produce different vector/column names when used inside of
r_data_frame
or r_list
.
See Also
Other variable functions:
age()
,
animal()
,
answer()
,
area()
,
car()
,
children()
,
coin()
,
color
,
date_stamp()
,
death()
,
dice()
,
dna()
,
dob()
,
dummy()
,
education()
,
employment()
,
eye()
,
grade_level()
,
grade()
,
group()
,
hair()
,
height()
,
income()
,
internet_browser()
,
iq()
,
language
,
level()
,
likert()
,
marital()
,
military()
,
month()
,
name
,
normal()
,
political()
,
race()
,
religion()
,
sat()
,
sentence()
,
sex_inclusive()
,
sex()
,
smokes()
,
speed()
,
state()
,
string()
,
upper()
,
valid()
,
year()
,
zip_code()
Examples
lorem_ipsum(10)
paragraph(10)
lorem_ipsum(10, start_lipsum = FALSE)
Generate Random Vector of Marital Statuses
Description
Generate a random vector of marital statuses.
Usage
marital(
n,
x = c("Married", "Divorced", "Widowed", "Separated", "Never Married"),
prob = NULL,
name = "Marital"
)
Arguments
n |
The number elements to generate. This can be globally set within
the environment of |
x |
A vector of elements to chose from. |
prob |
A vector of probabilities to chose from. |
name |
The name to assign to the output vector's |
Value
Returns a random vector of marital status elements.
See Also
Other variable functions:
age()
,
animal()
,
answer()
,
area()
,
car()
,
children()
,
coin()
,
color
,
date_stamp()
,
death()
,
dice()
,
dna()
,
dob()
,
dummy()
,
education()
,
employment()
,
eye()
,
grade_level()
,
grade()
,
group()
,
hair()
,
height()
,
income()
,
internet_browser()
,
iq()
,
language
,
level()
,
likert()
,
lorem_ipsum()
,
military()
,
month()
,
name
,
normal()
,
political()
,
race()
,
religion()
,
sat()
,
sentence()
,
sex_inclusive()
,
sex()
,
smokes()
,
speed()
,
state()
,
string()
,
upper()
,
valid()
,
year()
,
zip_code()
Examples
marital(10)
barplot(table(marital(10000)))
Generate Random Vector of Military Branches
Description
Generate a random vector of military branches.
Usage
military(
n,
x = c("Army", "Air Force", "Navy", "Marine Corps", "Coast Guard"),
prob = c(0.3785, 0.2334, 0.2218, 0.1366, 0.0296),
name = "Military"
)
Arguments
n |
The number elements to generate. This can be globally set within
the environment of |
x |
A vector of elements to chose from. |
prob |
A vector of probabilities to chose from. |
name |
The name to assign to the output vector's |
Details
The military branches and probabilities used match approximate U.S. military make-up:
Branch | N | Percent |
Army | 541,291 | 37.9% |
Air Force | 333,772 | 23.3% |
Navy | 317,237 | 22.2% |
Marine Corps | 195,338 | 13.7% |
Coast Guard | 42,357 | 3.0% |
Value
Returns a random factor vector of military branch elements.
See Also
Other variable functions:
age()
,
animal()
,
answer()
,
area()
,
car()
,
children()
,
coin()
,
color
,
date_stamp()
,
death()
,
dice()
,
dna()
,
dob()
,
dummy()
,
education()
,
employment()
,
eye()
,
grade_level()
,
grade()
,
group()
,
hair()
,
height()
,
income()
,
internet_browser()
,
iq()
,
language
,
level()
,
likert()
,
lorem_ipsum()
,
marital()
,
month()
,
name
,
normal()
,
political()
,
race()
,
religion()
,
sat()
,
sentence()
,
sex_inclusive()
,
sex()
,
smokes()
,
speed()
,
state()
,
string()
,
upper()
,
valid()
,
year()
,
zip_code()
Examples
military(10)
barplot(table(military(10000)))
pie(table(military(10000)))
Generate a Random Sequence of Minutes in H:M:S Format
Description
Generate a random vector of minutes in H:M:S format.
Usage
minute(
n,
x = seq(0, 59, by = 1)/60,
prob = NULL,
random = FALSE,
name = "Minute"
)
Arguments
n |
The number elements to generate. This can be globally set within
the environment of |
x |
A vector of elements to chose from. |
prob |
A vector of probabilities to chose from. |
random |
logical. If |
name |
The name to assign to the output vector's |
Value
Returns a random vector of minute time elements in H:M:S format.
See Also
Examples
minute(20)
minute(20, random=TRUE)
pie(table(minute(2000, x = seq(0, 59, by = 10)/60, prob = probs(6))))
Generate Random Vector of Months
Description
Generate a random factor vector of months.
Usage
month(n, x = month.name, prob = NULL, name = "Month")
Arguments
n |
The number elements to generate. This can be globally set within
the environment of |
x |
A vector of elements to chose from. |
prob |
A vector of probabilities to chose from. |
name |
The name to assign to the output vector's |
Value
Returns a random character vector of month elements.
See Also
Other variable functions:
age()
,
animal()
,
answer()
,
area()
,
car()
,
children()
,
coin()
,
color
,
date_stamp()
,
death()
,
dice()
,
dna()
,
dob()
,
dummy()
,
education()
,
employment()
,
eye()
,
grade_level()
,
grade()
,
group()
,
hair()
,
height()
,
income()
,
internet_browser()
,
iq()
,
language
,
level()
,
likert()
,
lorem_ipsum()
,
marital()
,
military()
,
name
,
normal()
,
political()
,
race()
,
religion()
,
sat()
,
sentence()
,
sex_inclusive()
,
sex()
,
smokes()
,
speed()
,
state()
,
string()
,
upper()
,
valid()
,
year()
,
zip_code()
Examples
month(10)
pie(table(month(10000, prob = probs(12))))
Generate Random Vector of Names
Description
Generate a random vector of first names. This dataset includes all unique entries
from the babynames
package.
Usage
name(
n,
x = wakefield::name_neutral,
prob = NULL,
replace = FALSE,
name = "Name"
)
Arguments
n |
The number elements to generate. This can be globally set within
the environment of |
x |
A vector of elements to chose from. |
prob |
A vector of probabilities to chose from. |
replace |
logical. If |
name |
The name to assign to the output vector's |
Value
Returns a random vector of name elements.
See Also
Other variable functions:
age()
,
animal()
,
answer()
,
area()
,
car()
,
children()
,
coin()
,
color
,
date_stamp()
,
death()
,
dice()
,
dna()
,
dob()
,
dummy()
,
education()
,
employment()
,
eye()
,
grade_level()
,
grade()
,
group()
,
hair()
,
height()
,
income()
,
internet_browser()
,
iq()
,
language
,
level()
,
likert()
,
lorem_ipsum()
,
marital()
,
military()
,
month()
,
normal()
,
political()
,
race()
,
religion()
,
sat()
,
sentence()
,
sex_inclusive()
,
sex()
,
smokes()
,
speed()
,
state()
,
string()
,
upper()
,
valid()
,
year()
,
zip_code()
Examples
name(10)
name(100)
name(1000, replace = TRUE)
Gender Neutral Names
Description
A dataset containing a character vector gender neutral names according to the U.S. Census.
Usage
data(name_neutral)
Format
A character vector with 662 elements
References
http://www.census.gov
Generate Random Normal Vector
Description
normal
- A wrapper for rnorm
that generate a
random normal vector.
normal_round
- A wrapper for rnorm
that generate
a rounded random normal vector.
Usage
normal(n, mean = 0, sd = 1, min = NULL, max = NULL, name = "Normal")
normal_round(
n,
mean = 0,
sd = 1,
min = NULL,
max = NULL,
digits = 2,
name = "Normal"
)
Arguments
n |
The number elements to generate. This can be globally set within
the environment of |
mean |
The mean value for the normal distribution to be drawn from. |
sd |
The standard deviation of the normal distribution to draw from. |
min |
A numeric lower boundary cutoff. Results less than this value will be
replaced with |
max |
A numeric upper boundary cutoff. Results greater than this value will
be replaced with |
name |
The name to assign to the output vector's |
digits |
Integer indicating the number of decimal places to be used.
Negative values are allowed (see |
Value
Returns a random vector of elements.
See Also
Other variable functions:
age()
,
animal()
,
answer()
,
area()
,
car()
,
children()
,
coin()
,
color
,
date_stamp()
,
death()
,
dice()
,
dna()
,
dob()
,
dummy()
,
education()
,
employment()
,
eye()
,
grade_level()
,
grade()
,
group()
,
hair()
,
height()
,
income()
,
internet_browser()
,
iq()
,
language
,
level()
,
likert()
,
lorem_ipsum()
,
marital()
,
military()
,
month()
,
name
,
political()
,
race()
,
religion()
,
sat()
,
sentence()
,
sex_inclusive()
,
sex()
,
smokes()
,
speed()
,
state()
,
string()
,
upper()
,
valid()
,
year()
,
zip_code()
Examples
normal(100, name = "Var")
hist(normal(10000, 100, 10))
interval(normal, 9, n = 1000)
Data Frame Viewing
Description
Convenience function to view all the columns of the head
of a truncated data.frame
. peek
invisibly returns
x
. This makes its use ideal in a dplyr/magrittr pipeline.
Usage
peek(x, n = 10, width = 10, ...)
Arguments
x |
A |
n |
Number of rows to display. |
width |
The width of the columns to be displayed. |
... |
For internal use. |
Details
By default dplyr does not print all columns of a data frame
(tbl_df
). This makes inspection of data difficult at times,
particularly with text string data. peek
allows the user to see a
truncated head for inspection purposes.
Value
Prints a truncated head but invisibly returns x
.
See Also
Examples
(dat1 <- r_data_frame(100, id, sentence, paragraph))
peek(dat1)
peek(dat1, n = 20)
peek(dat1, width = 40)
library(dplyr)
## Use in a dplyr/magrittr pipeline to view the data (silly example)
par(mfrow = c(2, 2))
r_data_frame(1000, id, sex, pet, employment, eye, sentence, paragraph) %>%
peek %>%
(function(x, ind = 2:5){ invisible(lapply(ind, function(i) pie(table(x[[i]]))))})
## A wider data set example
dat2 <- r_data_theme()
dat2
peek(dat2)
Plots a tbl_df Object
Description
Plots a tbl_df object.
Usage
## S3 method for class 'tbl_df'
plot(x, ...)
Arguments
x |
The tbl_df object. |
... |
Arguments passed to |
Generate Random Vector of Political Parties
Description
Generate a random vector of political parties.
Usage
political(
n,
x = c("Democrat", "Republican", "Constitution", "Libertarian", "Green"),
prob = c(0.577269133302094, 0.410800432748879, 0.00491084954793489,
0.00372590303330866, 0.0032936813677832),
name = "Political"
)
Arguments
n |
The number elements to generate. This can be globally set within
the environment of |
x |
A vector of elements to chose from. |
prob |
A vector of probabilities to chose from. |
name |
The name to assign to the output vector's |
Details
The political parties and probabilities used match approximate U.S. political make-up of registered voters (2014). The default make up is:
Party | N | Percent |
Democrat | 43,140,758 | 57.73% |
Republican | 30,700,138 | 41.08% |
Constitution | 367,000 | .49% |
Libertarian | 278,446 | .37% |
Green | 246,145 | .33% |
Value
Returns a random factor vector of political party elements.
See Also
Other variable functions:
age()
,
animal()
,
answer()
,
area()
,
car()
,
children()
,
coin()
,
color
,
date_stamp()
,
death()
,
dice()
,
dna()
,
dob()
,
dummy()
,
education()
,
employment()
,
eye()
,
grade_level()
,
grade()
,
group()
,
hair()
,
height()
,
income()
,
internet_browser()
,
iq()
,
language
,
level()
,
likert()
,
lorem_ipsum()
,
marital()
,
military()
,
month()
,
name
,
normal()
,
race()
,
religion()
,
sat()
,
sentence()
,
sex_inclusive()
,
sex()
,
smokes()
,
speed()
,
state()
,
string()
,
upper()
,
valid()
,
year()
,
zip_code()
Examples
political(10)
barplot(table(political(10000)))
2012 U.S. Presidential Debate Dialogue
Description
A dataset containing 2911 ordered sentences used by speakers during the three 2012 presidential debates.
Usage
data(presidential_debates_2012)
Format
A character vector with 2911 elements
Prints an available Object.
Description
Prints an available object.
Usage
## S3 method for class 'available'
print(x, ...)
Arguments
x |
The available object |
... |
ignored |
Prints a variable Object
Description
Prints a variable
object
Usage
## S3 method for class 'variable'
print(x, ...)
Arguments
x |
The |
... |
Ignored. |
Generate a Random Vector of Probabilities.
Description
Generate a random vector of probabilities that sum to 1.
Usage
probs(j, upper = 1e+06)
Arguments
j |
An integer of number of probability elements (typically performs best at j < 4000). |
upper |
|
Value
Returns a vector of probabilities summing to 1.
Examples
probs(10)
sum(probs(100))
pie(table(month(10000, prob = probs(12))))
Pre-Selected Column Data Set
Description
r_data
- Generate a data set with pre-set columns selected.
r_data_theme
- Generate a themed data set with pre-set columns.
Usage
r_data(n = 500, ...)
r_data_theme(n = 100, data_theme = "the_works")
Arguments
n |
The length to pass to the randomly generated vectors (number of rows). |
data_theme |
A data theme. Currently selections include:
|
... |
A set of optionally named arguments. Using wakefield variable functions require no name or call parenthesis. |
Details
The pre-selected columns include:
ID
Race
Age
Sex
Hour
IQ
Height
Died
The user may use ... to add additional columns. r_data
is a
convenience function to quickly produce a data set. For more specific usage
use the more flexible r_data_frame
function.
Value
Returns a tbl_df
.
See Also
Examples
r_data()
r_data(10)
r_data(10, paragraph, Attending = valid)
peek(r_data_theme())
plot(r_data_theme(), flip=TRUE)
r_data_theme(, "survey")
r_data_theme(, "survey2")
Data Frame Production (From Variable Functions)
Description
Produce a tbl_df
data frame that allows the user to
lazily pass unnamed wakefield variable functions (optionally, without
call parenthesis).
Usage
r_data_frame(n, ..., rep.sep = "_")
Arguments
n |
The length to pass to the randomly generated vectors. |
rep.sep |
A separator to use for repeated variable names. For example
if the |
... |
A set of optionally named arguments. Using wakefield variable functions require no name or call parenthesis. |
Value
Returns a tbl_df
.
Author(s)
Josh O'Brien and Tyler Rinker <tyler.rinker@gmail.com>.
References
https://stackoverflow.com/a/29617983/1000343
See Also
Examples
r_data_frame(n = 30,
id,
race,
age,
sex,
hour,
iq,
height,
died,
Scoring = rnorm,
Smoker = valid
)
r_data_frame(n = 30,
id,
race,
age(x = 8:14),
Gender = sex,
Time = hour,
iq,
grade, grade, grade, #repeated measures
height(mean=50, sd = 10),
died,
Scoring = rnorm,
Smoker = valid
)
r_data_frame(n = 500,
id,
age, age, age,
grade, grade, grade
)
## Repeated Measures/Time Series
r_data_frame(n=100,
id,
age,
sex,
r_series(likert, 3),
r_series(likert, 4, name = "Item", integer = TRUE)
)
## Expanded Dummy Coded Variables
r_data_frame(n=100,
id,
age,
r_dummy(sex, prefix=TRUE),
r_dummy(political)
)
## `peek` to view al columns
## `plot` (`table_heat`) for a graphic representation
library(dplyr)
r_data_frame(n=100,
id,
dob,
animal,
grade, grade,
death,
dummy,
grade_letter,
gender,
paragraph,
sentence
) %>%
r_na() %>%
peek %>%
plot(palette = "Set1")
Generate Random Dummy Values
Description
Generate random values from a wakefield variable function.
Usage
r_dummy(fun, n, ..., prefix = FALSE, rep.sep = "_")
Arguments
fun |
A wakefield variable function. |
n |
The number of rows to produce. |
prefix |
logical. If |
rep.sep |
A separator to use for the variable and category part of names
when |
... |
Additional arguments passed to |
Value
Returns a tbl_df
.
See Also
r_list
,
r_data_frame
,
r_series
Examples
r_dummy(sex, 10)
r_dummy(race, 1000)
r_dummy(race, 1000, name = "Ethnicity")
Insert Data Frames Into r_data_frame
Description
Safely insert data.frame
objects into a
r_data_frame
or r_list
.
Usage
r_insert(x, name = "Inserted")
Arguments
x |
A |
name |
A name to assign to |
Value
Returns a data.frame
with a
attributes(x)[["seriesname"]]
assigned.
See Also
Examples
dat <- dplyr::data_frame(
Age_1 = age(100), Age_2 = age(100), Age_3 = age(100),
Smokes = smokes(n=100),
Sick = ifelse(Smokes, sample(5:10, 100, TRUE), sample(0:4, 100, TRUE)),
Death = ifelse(Smokes, sample(0:1, 100, TRUE, prob = c(.2, .8)),
sample(0:1, 100, TRUE, prob = c(.7, .3)))
)
r_data_frame(100,
id,
r_insert(dat)
)
r_list(10,
id,
r_insert(dat)
)
List Production (From Variable Functions)
Description
Produce a named list
that allows the user to lazily pass
unnamed wakefield variable functions (optionally, without call
parenthesis).
Usage
r_list(n, ..., rep.sep = "_")
Arguments
n |
The length to pass to the randomly generated vectors. |
rep.sep |
A separator to use for repeated variable names. For example
if the |
... |
A set of optionally named arguments. Using wakefield variable functions require no name or call parenthesis. |
Value
Returns a named list of equal length vectors.
Author(s)
Josh O'Brien and Tyler Rinker <tyler.rinker@gmail.com>.
References
https://stackoverflow.com/a/29617983/1000343
See Also
r_data_frame
,
r_series
r_dummy
Examples
r_list(
n = 30,
id,
race,
age,
sex,
hour,
iq,
height,
died,
Scoring = rnorm
)
r_list(
n = 30,
id,
race,
age(x = 8:14),
Gender = sex,
Time = hour,
iq,
height(mean=50, sd = 10),
died,
Scoring = rnorm
)
Replace a Proportion of Values With NA
Description
Replaces a proportion of values with NA. Useful for simulating missing data.
Usage
r_na(x, cols = -1, prob = 0.05)
Arguments
x |
A |
cols |
Numeric indices of the columns to incude (use |
prob |
The proportion of each column/vector elements to assign to
|
Value
Returns a data.frame
or list
with random missing values.
Examples
r_na(mtcars)
r_na(mtcars, NULL)
library(dplyr)
r_data_frame(
n = 30,
id,
race,
age,
sex,
hour,
iq,
height,
died,
Scoring = rnorm,
Smoker = valid
) %>%
r_na(prob=.4)
Generate Random Vector
Description
Generate a random vector.
Usage
r_sample(n, x = 1:100, prob = NULL, name = "Sample")
Arguments
n |
The number elements to generate. This can be globally set within
the environment of |
x |
A vector of elements to chose from. |
prob |
A vector of probabilities to chose from. |
name |
The name to assign to the output vector's |
Value
Returns a random vector of elements.
See Also
Examples
r_sample(100, name = "Var")
table(r_sample(x = c("Dog", "Cat", "Fish", "Bird"), n=1000))
r_sample(x = c("B", "W"), prob = c(.7, .3), n = 25, name = "Race")
r_sample(25, x = c(TRUE, FALSE))
Generate Random Binary Vector
Description
r_sample_binary
- Generate a random binary vector.
r_sample_binary_factor
- Generate a random binary vector and coerces
to a factor.
Usage
r_sample_binary(n, x = 1:2, prob = NULL, name = "Binary")
r_sample_binary_factor(n, x = 1:2, prob = NULL, name = "Binary")
Arguments
n |
The number elements to generate. This can be globally set within
the environment of |
x |
A vector of length 2 to sample from. |
prob |
A vector of probabilities to chose from. |
name |
The name to assign to the output vector's |
Value
Returns a random binary vector of elements.
See Also
Examples
r_sample_binary(100, name = "Var")
table(r_sample_binary(1000))
c("B", "W")[r_sample_binary(10)]
Generate Random Factor Vector
Description
Generate a random vector and coerces to a factor.
Usage
r_sample_factor(n, x = LETTERS, prob = NULL, name = "Factor")
Arguments
n |
The number elements to generate. This can be globally set within
the environment of |
x |
A vector of elements to chose from. |
prob |
A vector of probabilities to chose from. |
name |
The name to assign to the output vector's |
Value
Returns a random actor vector of elements.
See Also
Examples
r_sample_factor(100, name = "Var")
table(r_sample_factor(x = c("Dog", "Cat", "Fish", "Bird"), n=1000))
r_sample_factor(x = c("B", "W"), prob = c(.7, .3), n = 25)
Generate Random Integer Vector
Description
Generate a random integer vector.
Usage
r_sample_integer(n, x = 1:100, prob = NULL, name = "Integer")
Arguments
n |
The number elements to generate. This can be globally set within
the environment of |
x |
A vector of elements to chose from. |
prob |
A vector of probabilities to chose from. |
name |
The name to assign to the output vector's |
Value
Returns a random integer vector of elements.
See Also
Examples
r_sample_integer(100, name = "Var")
table(r_sample_integer(x = c("Dog", "Cat", "Fish", "Bird"), n=1000))
r_sample_integer(x = c("B", "W"), prob = c(.7, .3), n = 25, name = "Race")
r_sample_integer(25, x = c(TRUE, FALSE))
Generate Random Logical Vector
Description
Generate a random logical (TRUE
/FALSE
) vector.
Usage
r_sample_logical(n, prob = NULL, name = "Logical")
Arguments
n |
The number elements to generate. This can be globally set within
the environment of |
prob |
A vector of probabilities to chose from. |
name |
The name to assign to the output vector's |
Value
Returns a random logical (TRUE
/FALSE
) vector of elements.
See Also
Examples
r_sample_logical(100, name = "Var")
table(r_sample_logical(1000))
c("B", "W")[r_sample_logical(10)]
Generate Random Ordered Factor Vector
Description
Generate a random vector and coerces to an ordered factor.
Usage
r_sample_ordered(n, x = LETTERS[1:5], prob = NULL, name = "Ordered")
Arguments
n |
The number elements to generate. This can be globally set within
the environment of |
x |
A vector of elements to chose from. |
prob |
A vector of probabilities to chose from. |
name |
The name to assign to the output vector's |
Value
Returns a random factor vector of elements.
See Also
Examples
r_sample_ordered(100, name = "Var")
lvls <- c("Strongly Agree", "Agree", "Neutral", "Disagree", "Strongly Disagree")
table(r_sample_ordered(x = lvls, n=1000))
(out <- r_sample_ordered(x = c("Black", "Grey", "White"),
prob = c(.5, .2, .3), n = 100))
slices <- c(table(out))
pie(slices, main="Pie Chart of Colors", col = tolower(names(slices)))
Generate Random Vector (Without Replacement)
Description
Generate a random vector without replacement.
Usage
r_sample_replace(n, x = 1:100, prob = NULL, replace = FALSE, name = "Sample")
Arguments
n |
The number elements to generate. This can be globally set within
the environment of |
x |
A vector of elements to chose from. |
prob |
A vector of probabilities to chose from. |
replace |
logical. If |
name |
The name to assign to the output vector's |
Value
Returns a random vector of elements.
See Also
Examples
r_sample(100, name = "Var")
table(r_sample(x = c("Dog", "Cat", "Fish", "Bird"), n=1000))
r_sample(x = c("B", "W"), prob = c(.7, .3), n = 25, name = "Race")
r_sample(25, x = c(TRUE, FALSE))
Data Frame Series (Repeated Measures)
Description
Produce a tbl_df
data frame of repeated measures from a
wakefield variable function.
Usage
r_series(fun, j, n, ..., integer = FALSE, relate = NULL, rep.sep = "_")
Arguments
fun |
A wakefield variable function. |
j |
The number of columns to produce. |
n |
The number of rows to produce. |
integer |
logical. If |
relate |
Allows the user to specify the relationship between columns.
May be a named list of |
rep.sep |
A separator to use for repeated variable names. For example
if the |
... |
Additional arguments passed to |
Value
Returns a tbl_df
.
References
https://github.com/trinker/wakefield/issues/1/#issuecomment-96166910
See Also
Examples
r_series(grade, 5, 10)
## Custom name prefix
r_series(likert, 5, 10, name = "Question")
## Convert factors to integers
r_series(likert_7, 5, 10, integer = TRUE)
## Related variables
r_series(likert, 10, 200, relate = list(operation = "*", mean = 2, sd = 1))
r_series(likert, 10, 200, relate = "--3_1")
r_series(age, 10, 200, relate = "+5_0")
## Change sd to reduce/increase correlation
round(cor(r_series(grade, 10, 10, relate = "+1_2")), 2)
round(cor(r_series(grade, 10, 10, relate = "+1_0")), 2)
round(cor(r_series(grade, 10, 10, relate = "+1_.5")), 2)
round(cor(r_series(grade, 10, 10, relate = "+1_20")), 2)
## Plot Example 1
library(dplyr); library(ggplot2)
dat <- r_data_frame(12,
name,
r_series(likert, 10, relate = "+1_.5")
)
# Suggested use of tidyr or reshape2 package here instead
dat <- data.frame(
ID = rep(dat[[1]], ncol(dat[-1])),
stack(dat[-1])
)
dat[["Time"]] <- factor(sub("Variable_", "", dat[["ind"]]), levels = 1:10)
ggplot(dat, aes(x = Time, y = values, color = ID, group = ID)) +
geom_line(size=.8)
## Plot Example 2
dat <- r_data_frame(12,
name,
r_series(grade, 100, relate = "+1_2")
)
# Suggested use of tidyr or reshape2 package here instead
dat <- data.frame(
ID = rep(dat[[1]], ncol(dat[-1])),
ind = rep(colnames(dat[-1]), each = nrow(dat)),
values = unlist(dat[-1])
)
dat[["Time"]] <- as.numeric(sub("Grade_", "", dat[["ind"]]))
ggplot(dat, aes(x = Time, y = values, color = ID, group = ID)) +
geom_line(size=.8) + theme_bw()
Generate Random Vector of Races
Description
Generate a random vector of races.
Usage
race(
n,
x = c("White", "Hispanic", "Black", "Asian", "Bi-Racial", "Native", "Other",
"Hawaiian"),
prob = c(0.637, 0.163, 0.122, 0.047, 0.019, 0.007, 0.002, 0.0015),
name = "Race"
)
Arguments
n |
The number elements to generate. This can be globally set within
the environment of |
x |
A vector of elements to chose from. |
prob |
A vector of probabilities to chose from. |
name |
The name to assign to the output vector's |
Details
The races and probabilities used match approximate U.S. racial make-up. The default make up is:
Race | Percent |
White | 63.70 % |
Hispanic | 16.30 % |
Black | 12.20 % |
Asian | 4.70 % |
Bi-Racial | 1.90 % |
Native | .70 % |
Other | .20 % |
Hawaiian | .15 % |
Value
Returns a random factor vector of elements.
See Also
Other variable functions:
age()
,
animal()
,
answer()
,
area()
,
car()
,
children()
,
coin()
,
color
,
date_stamp()
,
death()
,
dice()
,
dna()
,
dob()
,
dummy()
,
education()
,
employment()
,
eye()
,
grade_level()
,
grade()
,
group()
,
hair()
,
height()
,
income()
,
internet_browser()
,
iq()
,
language
,
level()
,
likert()
,
lorem_ipsum()
,
marital()
,
military()
,
month()
,
name
,
normal()
,
political()
,
religion()
,
sat()
,
sentence()
,
sex_inclusive()
,
sex()
,
smokes()
,
speed()
,
state()
,
string()
,
upper()
,
valid()
,
year()
,
zip_code()
Examples
race(10)
100*table(race(n <- 10000))/n
Create Related Numeric Columns
Description
Generate columns that are related.
Usage
relate(
x,
j,
name = NULL,
operation = "+",
mean = 5,
sd = 1,
rep.sep = "_",
digits = max(nchar(sub("^[^.]*.", "", x)))
)
Arguments
x |
A starting column. |
j |
The number of columns to produce. |
name |
An optional prefix name to give to the columns. If |
operation |
A operation character vector of length 1; either
|
mean |
Mean is the average value to add, subtract, multiple, or divide by. |
sd |
The amount of variability to allow in |
rep.sep |
A separator to use for repeated variable names. For example
if the |
digits |
The number of digits to round to. Defaults to the max number
of significant digits in |
Value
Returns a tbl_df
.
See Also
Examples
relate(1:10, 10)
(x <- r_data_frame(10, id, relate(1:10, 10, "Time", mean = 2)))
library(ggplot2)
dat <- with(x, data.frame(ID = rep(ID, ncol(x[, -1])), stack(x[, -1])))
dat[["Time"]] <- factor(sub("Time_", "", dat[["ind"]]), levels = 1:10)
ggplot(dat, aes(x = Time, y = values, color = ID, group = ID)) +
geom_line(size=.8)
relate(1:10, 10, name = "X", operation = "-")
relate(1:10, 10, "X", mean = 1, sd = 0)
relate(1:10, 10, "Var", "*")
relate(1:10, 10, "Var", "/")
relate(gpa(30), 5, mean = .1)
relate(likert(10), 5, mean = .1, sd = .2)
relate(date_stamp(10), 6)
relate(time_stamp(10), 6)
relate(rep(100, 10), 6, "Reaction", "-")
Generate Random Vector of Religions
Description
Generate a random vector of religion.
Usage
religion(
n,
x = c("Christian", "Muslim", "None", "Hindu", "Buddhist", "Folk", "Other", "Jewish"),
prob = c(0.31477, 0.23163, 0.16323, 0.14985, 0.07083, 0.05882, 0.00859, 0.00227),
name = "Religion"
)
Arguments
n |
The number elements to generate. This can be globally set within
the environment of |
x |
A vector of elements to chose from. |
prob |
A vector of probabilities to chose from. |
name |
The name to assign to the output vector's |
Details
The religion and probabilities used match approximate world religion make-up (from Pew Research Center). The default make up is:
Religion | N | Percent |
Christian | 2,173,260,000 | 31.48 % |
Muslim | 1,599,280,000 | 23.16 % |
None | 1,127,000,000 | 16.32 % |
Hindu | 1,034,620,000 | 14.99 % |
Buddhist | 489,030,000 | 7.08 % |
Folk | 406,140,000 | 5.88 % |
Other | 59,330,000 | .86 % |
Jewish | 15,670,000 | .23 % |
Value
Returns a random factor vector of religion elements.
References
https://www.pewforum.org/2012/12/18/table-religious-composition-by-country-in-numbers/
See Also
Other variable functions:
age()
,
animal()
,
answer()
,
area()
,
car()
,
children()
,
coin()
,
color
,
date_stamp()
,
death()
,
dice()
,
dna()
,
dob()
,
dummy()
,
education()
,
employment()
,
eye()
,
grade_level()
,
grade()
,
group()
,
hair()
,
height()
,
income()
,
internet_browser()
,
iq()
,
language
,
level()
,
likert()
,
lorem_ipsum()
,
marital()
,
military()
,
month()
,
name
,
normal()
,
political()
,
race()
,
sat()
,
sentence()
,
sex_inclusive()
,
sex()
,
smokes()
,
speed()
,
state()
,
string()
,
upper()
,
valid()
,
year()
,
zip_code()
Examples
religion(10)
barplot(table(religion(10000)))
pie(table(religion(10000)))
Generate Random Vector of Scholastic Aptitude Test (SATs)
Description
grade
- Generate a random normal vector of scholastic aptitude test
(SATs).
Usage
sat(n, mean = 1500, sd = 100, min = 0, max = 2400, digits = 0, name = "SAT")
Arguments
n |
The number elements to generate. This can be globally set within
the environment of |
mean |
The mean value for the normal distribution to be drawn from. |
sd |
The standard deviation of the normal distribution to draw from. |
min |
A numeric lower boundary cutoff. Results less than this value will be
replaced with |
max |
A numeric upper boundary cutoff. Results greater than this value will
be replaced with |
digits |
Integer indicating the number of decimal places to be used.
Negative values are allowed (see |
name |
The name to assign to the output vector's |
Value
Returns a random normal vector of SAT elements.
See Also
Other variable functions:
age()
,
animal()
,
answer()
,
area()
,
car()
,
children()
,
coin()
,
color
,
date_stamp()
,
death()
,
dice()
,
dna()
,
dob()
,
dummy()
,
education()
,
employment()
,
eye()
,
grade_level()
,
grade()
,
group()
,
hair()
,
height()
,
income()
,
internet_browser()
,
iq()
,
language
,
level()
,
likert()
,
lorem_ipsum()
,
marital()
,
military()
,
month()
,
name
,
normal()
,
political()
,
race()
,
religion()
,
sentence()
,
sex_inclusive()
,
sex()
,
smokes()
,
speed()
,
state()
,
string()
,
upper()
,
valid()
,
year()
,
zip_code()
Examples
sat(10)
hist(sat(10000))
interval(sat, 5, n = 1000)
Generate a Random Sequence of Seconds in H:M:S Format
Description
Generate a random vector of seconds in H:M:S format.
Usage
second(
n,
x = seq(0, 59, by = 1)/3600,
prob = NULL,
random = FALSE,
name = "Second"
)
Arguments
n |
The number elements to generate. This can be globally set within
the environment of |
x |
A vector of elements to chose from. |
prob |
A vector of probabilities to chose from. |
random |
logical. If |
name |
The name to assign to the output vector's |
Value
Returns a random vector of second time elements in H:M:S format.
See Also
Examples
second(20)
second(20, random=TRUE)
pie(table(second(2000, x = seq(0, 59, by = 10)/3600, prob = probs(6))))
Generate Random Vector of Sentences
Description
Generate a random vector of sentences from the
presidential_debates_2012
.
Usage
sentence(
n,
x = wakefield::presidential_debates_2012,
prob = NULL,
name = "Sentence"
)
Arguments
n |
The number elements to generate. This can be globally set within
the environment of |
x |
A vector of elements to chose from. |
prob |
A vector of probabilities to chose from. |
name |
The name to assign to the output vector's |
Value
Returns a random character vector of sentence elements.
See Also
Other variable functions:
age()
,
animal()
,
answer()
,
area()
,
car()
,
children()
,
coin()
,
color
,
date_stamp()
,
death()
,
dice()
,
dna()
,
dob()
,
dummy()
,
education()
,
employment()
,
eye()
,
grade_level()
,
grade()
,
group()
,
hair()
,
height()
,
income()
,
internet_browser()
,
iq()
,
language
,
level()
,
likert()
,
lorem_ipsum()
,
marital()
,
military()
,
month()
,
name
,
normal()
,
political()
,
race()
,
religion()
,
sat()
,
sex_inclusive()
,
sex()
,
smokes()
,
speed()
,
state()
,
string()
,
upper()
,
valid()
,
year()
,
zip_code()
Examples
sentence(10)
Add Internal Name to Data Frame
Description
Adds attributes(x)[["seriesname"]]
attribute to a
data.frame
.
Usage
seriesname(x, name)
Arguments
x |
A |
name |
A name to assign to |
Value
Returns a data.frame
with a
attributes(x)[["seriesname"]]
assigned.
Examples
seriesname(mtcars, "Cars")
attributes(seriesname(mtcars, "Cars"))
Generate Random Vector of Genders
Description
Generate a random vector of genders.
Usage
sex(
n,
x = c("Male", "Female"),
prob = c(0.51219512195122, 0.48780487804878),
name = "Sex"
)
gender(
n,
x = c("Male", "Female"),
prob = c(0.51219512195122, 0.48780487804878),
name = "Gender"
)
Arguments
n |
The number elements to generate. This can be globally set within
the environment of |
x |
A vector of length 2 to sample from. |
prob |
A vector of probabilities to chose from. |
name |
The name to assign to the output vector's |
Details
The genders and probabilities used match approximate gender make-up:
Gender | Percent |
Male | 51.22 % |
Female | 48.78 % |
Value
Returns a random factor vector of gender elements.
See Also
Other variable functions:
age()
,
animal()
,
answer()
,
area()
,
car()
,
children()
,
coin()
,
color
,
date_stamp()
,
death()
,
dice()
,
dna()
,
dob()
,
dummy()
,
education()
,
employment()
,
eye()
,
grade_level()
,
grade()
,
group()
,
hair()
,
height()
,
income()
,
internet_browser()
,
iq()
,
language
,
level()
,
likert()
,
lorem_ipsum()
,
marital()
,
military()
,
month()
,
name
,
normal()
,
political()
,
race()
,
religion()
,
sat()
,
sentence()
,
sex_inclusive()
,
smokes()
,
speed()
,
state()
,
string()
,
upper()
,
valid()
,
year()
,
zip_code()
Examples
sex(10)
100*table(sex(n <- 10000))/n
Generate Random Vector of Non-Binary Genders
Description
Generate a random vector of non-binary genders. Proportion of trans* category was taken from the Williams Institute Report (2011), and subtracted equally from the male and female categories.
Usage
sex_inclusive(
n,
x = c("Male", "Female", "Intersex"),
prob = NULL,
name = "Sex"
)
gender_inclusive(
n,
x = c("Male", "Female", "Trans*"),
prob = NULL,
name = "Gender"
)
Arguments
n |
The number elements to generate. This can be globally set within
the environment of |
x |
A vector of elements to chose from. |
prob |
A vector of probabilities to chose from. |
name |
The name to assign to the output vector's |
Details
The genders and probabilities used match approximate gender make-up:
Gender | Percent |
Male | 51.07 % |
Female | 48.63 % |
Trans* | 0.30 % |
Value
Returns a random factor vector of sex or gender elements.
Author(s)
Matthew Sigal <msigal@yorku.ca>
See Also
Other variable functions:
age()
,
animal()
,
answer()
,
area()
,
car()
,
children()
,
coin()
,
color
,
date_stamp()
,
death()
,
dice()
,
dna()
,
dob()
,
dummy()
,
education()
,
employment()
,
eye()
,
grade_level()
,
grade()
,
group()
,
hair()
,
height()
,
income()
,
internet_browser()
,
iq()
,
language
,
level()
,
likert()
,
lorem_ipsum()
,
marital()
,
military()
,
month()
,
name
,
normal()
,
political()
,
race()
,
religion()
,
sat()
,
sentence()
,
sex()
,
smokes()
,
speed()
,
state()
,
string()
,
upper()
,
valid()
,
year()
,
zip_code()
Examples
sex_inclusive(10)
barplot(table(sex_inclusive(10000)))
gender_inclusive(10)
barplot(table(gender_inclusive(10000)))
Generate Random Logical Smokes Vector
Description
Generate a random logical (TRUE
/FALSE
) smokes vector.
Usage
smokes(n, prob = c(0.822, 0.178), name = "Smokes")
Arguments
n |
The number elements to generate. This can be globally set within
the environment of |
prob |
A vector of probabilities to chose from. |
name |
The name to assign to the output vector's |
Details
The probabilities are non-smoker: 82.2% vs. smoker: 17.8%.
Value
Returns a random logical vector of smokes elements.
See Also
Other variable functions:
age()
,
animal()
,
answer()
,
area()
,
car()
,
children()
,
coin()
,
color
,
date_stamp()
,
death()
,
dice()
,
dna()
,
dob()
,
dummy()
,
education()
,
employment()
,
eye()
,
grade_level()
,
grade()
,
group()
,
hair()
,
height()
,
income()
,
internet_browser()
,
iq()
,
language
,
level()
,
likert()
,
lorem_ipsum()
,
marital()
,
military()
,
month()
,
name
,
normal()
,
political()
,
race()
,
religion()
,
sat()
,
sentence()
,
sex_inclusive()
,
sex()
,
speed()
,
state()
,
string()
,
upper()
,
valid()
,
year()
,
zip_code()
Examples
smokes(10)
100*table(smokes(n <- 1000))/n
Generate Random Vector of Speeds
Description
speed
and speed_in
- Generate a random normal vector of
speeds in inches.
speed_cm
- Generate a random normal vector of speeds in centimeters.
Usage
speed(n, mean = 55, sd = 10, min = 0, max = NULL, digits = 0, name = "Speed")
speed_mph(
n,
mean = 55,
sd = 10,
min = 0,
max = NULL,
digits = 1,
name = "Speed(mph)"
)
speed_kph(
n,
mean = 88.5,
sd = 16,
min = 0,
max = NULL,
digits = 1,
name = "Speed(kph)"
)
Arguments
n |
The number elements to generate. This can be globally set within
the environment of |
mean |
The mean value for the normal distribution to be drawn from. |
sd |
The standard deviation of the normal distribution to draw from. |
min |
A numeric lower boundary cutoff. Results less than this value will be
replaced with |
max |
A numeric upper boundary cutoff. Results greater than this value will
be replaced with |
digits |
Integer indicating the number of decimal places to be used.
Negative values are allowed (see |
name |
The name to assign to the output vector's |
Value
Returns a random normal vector of speed elements.
Note
speed
rounds to nearest whole number. speed_in
&
speed_in
round to the nearest tenths.
See Also
Other variable functions:
age()
,
animal()
,
answer()
,
area()
,
car()
,
children()
,
coin()
,
color
,
date_stamp()
,
death()
,
dice()
,
dna()
,
dob()
,
dummy()
,
education()
,
employment()
,
eye()
,
grade_level()
,
grade()
,
group()
,
hair()
,
height()
,
income()
,
internet_browser()
,
iq()
,
language
,
level()
,
likert()
,
lorem_ipsum()
,
marital()
,
military()
,
month()
,
name
,
normal()
,
political()
,
race()
,
religion()
,
sat()
,
sentence()
,
sex_inclusive()
,
sex()
,
smokes()
,
state()
,
string()
,
upper()
,
valid()
,
year()
,
zip_code()
Examples
speed(10)
hist(speed(10000))
interval(speed, 5, n = 1000)
Generate Random Vector of states
Description
Generate a random factor vector of states.
Usage
state(
n,
x = datasets::state.name,
prob = wakefield::state_populations[["Proportion"]],
name = "State"
)
Arguments
n |
The number elements to generate. This can be globally set within
the environment of |
x |
A vector of elements to chose from. |
prob |
A vector of probabilities to chose from. |
name |
The name to assign to the output vector's |
Details
The state populations and probabilities:
State | Population | Percent |
California | 37,253,956 | 12.09 % |
Texas | 25,145,561 | 8.16 % |
New York | 19,378,102 | 6.29 % |
Florida | 18,801,310 | 6.10 % |
Illinois | 12,830,632 | 4.16 % |
Pennsylvania | 12,702,379 | 4.12 % |
Ohio | 11,536,504 | 3.74 % |
Michigan | 9,883,640 | 3.21 % |
Georgia | 9,687,653 | 3.14 % |
North Carolina | 9,535,483 | 3.09 % |
New Jersey | 8,791,894 | 2.85 % |
Virginia | 8,001,024 | 2.60 % |
Washington | 6,724,540 | 2.18 % |
Massachusetts | 6,547,629 | 2.12 % |
Indiana | 6,483,802 | 2.10 % |
Arizona | 6,392,017 | 2.07 % |
Tennessee | 6,346,105 | 2.06 % |
Missouri | 5,988,927 | 1.94 % |
Maryland | 5,773,552 | 1.87 % |
Wisconsin | 5,686,986 | 1.85 % |
Minnesota | 5,303,925 | 1.72 % |
Colorado | 5,029,196 | 1.63 % |
Alabama | 4,779,736 | 1.55 % |
South Carolina | 4,625,364 | 1.50 % |
Louisiana | 4,533,372 | 1.47 % |
Kentucky | 4,339,367 | 1.41 % |
Oregon | 3,831,074 | 1.24 % |
Oklahoma | 3,751,351 | 1.22 % |
Connecticut | 3,574,097 | 1.16 % |
Iowa | 3,046,355 | .99 % |
Mississippi | 2,967,297 | .96 % |
Arkansas | 2,915,918 | .95 % |
Kansas | 2,853,118 | .93 % |
Utah | 2,763,885 | .90 % |
Nevada | 2,700,551 | .88 % |
New Mexico | 2,059,179 | .67 % |
West Virginia | 1,852,994 | .60 % |
Nebraska | 1,826,341 | .59 % |
Idaho | 1,567,582 | .51 % |
Hawaii | 1,360,301 | .44 % |
Maine | 1,328,361 | .43 % |
New Hampshire | 1,316,470 | .43 % |
Rhode Island | 1,052,567 | .34 % |
Montana | 989,415 | .32 % |
Delaware | 897,934 | .29 % |
South Dakota | 814,180 | .26 % |
Alaska | 710,231 | .23 % |
North Dakota | 672,591 | .22 % |
Vermont | 625,741 | .20 % |
Wyoming | 563,626 | .18 % |
Value
Returns a random character vector of state elements.
See Also
Other variable functions:
age()
,
animal()
,
answer()
,
area()
,
car()
,
children()
,
coin()
,
color
,
date_stamp()
,
death()
,
dice()
,
dna()
,
dob()
,
dummy()
,
education()
,
employment()
,
eye()
,
grade_level()
,
grade()
,
group()
,
hair()
,
height()
,
income()
,
internet_browser()
,
iq()
,
language
,
level()
,
likert()
,
lorem_ipsum()
,
marital()
,
military()
,
month()
,
name
,
normal()
,
political()
,
race()
,
religion()
,
sat()
,
sentence()
,
sex_inclusive()
,
sex()
,
smokes()
,
speed()
,
string()
,
upper()
,
valid()
,
year()
,
zip_code()
Examples
state(10)
pie(table(state(10000)))
sort(100*table(state(n <- 10000))/n)
State Populations (2010)
Description
A dataset containing U.S. state populations.
Usage
data(state_populations)
Format
A data frame with 50 rows and 3 variables
Details
State. The 50 U.S. states.
Population. Population of state.
Proportion. Proportion of total U.S. population.
References
https://en.wikipedia.org/wiki/List_of_U.S._states_and_territories_by_population
Generate Random Vector of Strings
Description
Generate a random vector of strings.
Usage
string(n, x = "[A-Za-z0-9]", length = 10, name = "String")
Arguments
n |
The number elements to generate. This can be globally set within
the environment of |
x |
A character vector specifying character classes to draw elements from. |
length |
Integer vector, desired string lengths. |
name |
The name to assign to the output vector's |
Value
Returns a random character vector of string elements.
See Also
Other variable functions:
age()
,
animal()
,
answer()
,
area()
,
car()
,
children()
,
coin()
,
color
,
date_stamp()
,
death()
,
dice()
,
dna()
,
dob()
,
dummy()
,
education()
,
employment()
,
eye()
,
grade_level()
,
grade()
,
group()
,
hair()
,
height()
,
income()
,
internet_browser()
,
iq()
,
language
,
level()
,
likert()
,
lorem_ipsum()
,
marital()
,
military()
,
month()
,
name
,
normal()
,
political()
,
race()
,
religion()
,
sat()
,
sentence()
,
sex_inclusive()
,
sex()
,
smokes()
,
speed()
,
state()
,
upper()
,
valid()
,
year()
,
zip_code()
Examples
string(10)
View Data Table Column Types as Heat Map
Description
Generate a heat map of column types from a data.frame
.
Usage
table_heat(
x,
flip = FALSE,
palette = "Set3",
print = interactive(),
sep = "\n"
)
Arguments
x |
A |
flip |
logical. If |
palette |
A palette to chose from. See
|
print |
logical. If |
sep |
A separator to use between column types. Column types are
determined via |
Details
By default coumn names retain their order. Column types are ordered
alphabetically in the legend, with NA
appearing last.
Value
Returns a ggplot2 object.
Examples
table_heat(mtcars) #boring
table_heat(CO2)
table_heat(iris)
table_heat(state_populations)
dat <- r_data_frame(100,
lorem_ipsum,
birth,
animal,
age,
grade, grade,
death,
dummy,
grade_letter
)
table_heat(dat)
table_heat(dat, flip=TRUE)
table_heat(r_data_theme(), flip=TRUE)
## NA values
table_heat(r_na(dat, NULL))
## Colors
table_heat(r_na(dat, NULL), palette = NULL)
table_heat(r_na(dat, NULL), palette = "Set1")
table_heat(r_na(dat, NULL), palette = "Set2")
table_heat(r_na(dat, NULL), palette = "Set1")
table_heat(r_na(dat, NULL), palette = "Dark2")
table_heat(r_na(dat, NULL), palette = "Spectral")
table_heat(r_na(dat, NULL), palette = "Reds")
Generate a Random Sequence of Times in H:M:S Format
Description
Generate a random vector of times in H:M:S format.
Usage
time_stamp(
n,
x = seq(0, 23, by = 1),
prob = NULL,
random = FALSE,
name = "Time"
)
Arguments
n |
The number elements to generate. This can be globally set within
the environment of |
x |
A vector of elements to chose from. |
prob |
A vector of probabilities to chose from. |
random |
logical. If |
name |
The name to assign to the output vector's |
Value
Returns a random vector of time elements in H:M:S format.
See Also
Examples
time_stamp(20)
time_stamp(20, random=TRUE)
pie(table(time_stamp(2000, x = seq(0, 23, by = 2), prob = probs(12))))
Generate Random Letter Vector
Description
upper
- Generates a random character vector of upper case letters.
lower
- Generates a random character vector of lower case letters.
upper_factor
- Generates a random factor vector of upper case letters.
lower_factor
- Generates a random factor vector of lower case letters.
Usage
upper(n, k = 5, x = LETTERS, prob = NULL, name = "Upper")
lower(
n,
k = 5,
x = c("a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p",
"q", "r", "s", "t", "u", "v", "w", "x", "y", "z"),
prob = NULL,
name = "Lower"
)
upper_factor(n, k = 5, x = LETTERS, prob = NULL, name = "Upper")
lower_factor(
n,
k = 5,
x = c("a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p",
"q", "r", "s", "t", "u", "v", "w", "x", "y", "z"),
prob = NULL,
name = "Lower"
)
Arguments
n |
The number elements to generate. This can be globally set within
the environment of |
k |
The number of the elements of x to sample from (uses 1:k). |
x |
A vector of elements to chose from. |
prob |
A vector of probabilities to chose from. |
name |
The name to assign to the output vector's |
Value
Returns a random character/factor vector of letter elements.
See Also
Other variable functions:
age()
,
animal()
,
answer()
,
area()
,
car()
,
children()
,
coin()
,
color
,
date_stamp()
,
death()
,
dice()
,
dna()
,
dob()
,
dummy()
,
education()
,
employment()
,
eye()
,
grade_level()
,
grade()
,
group()
,
hair()
,
height()
,
income()
,
internet_browser()
,
iq()
,
language
,
level()
,
likert()
,
lorem_ipsum()
,
marital()
,
military()
,
month()
,
name
,
normal()
,
political()
,
race()
,
religion()
,
sat()
,
sentence()
,
sex_inclusive()
,
sex()
,
smokes()
,
speed()
,
state()
,
string()
,
valid()
,
year()
,
zip_code()
Examples
upper(10)
lower(10)
upper_factor(10)
lower_factor(10)
barplot(table(upper(10000)))
barplot(table(upper(10000, prob = probs(5))))
Generate Random Logical Vector
Description
Generate a random logical (TRUE
/FALSE
) vector.
Usage
valid(n, prob = NULL, name = "Valid")
Arguments
n |
The number elements to generate. This can be globally set within
the environment of |
prob |
A vector of probabilities to chose from. |
name |
The name to assign to the output vector's |
Value
Returns a random logical vector of elements.
See Also
Other variable functions:
age()
,
animal()
,
answer()
,
area()
,
car()
,
children()
,
coin()
,
color
,
date_stamp()
,
death()
,
dice()
,
dna()
,
dob()
,
dummy()
,
education()
,
employment()
,
eye()
,
grade_level()
,
grade()
,
group()
,
hair()
,
height()
,
income()
,
internet_browser()
,
iq()
,
language
,
level()
,
likert()
,
lorem_ipsum()
,
marital()
,
military()
,
month()
,
name
,
normal()
,
political()
,
race()
,
religion()
,
sat()
,
sentence()
,
sex_inclusive()
,
sex()
,
smokes()
,
speed()
,
state()
,
string()
,
upper()
,
year()
,
zip_code()
Examples
valid(10)
100*table(valid(n <- 1000))/n
Available Variable Functions
Description
See a listing of all available variable functions for use in
r_data_frame
or r_list
.
Usage
variables(type = NULL, ncols = 5, ...)
Arguments
type |
The output type. Must be either |
ncols |
The number of columns to use if |
... |
Other arguments passed to |
Value
Returns a character
vector,
matrix
of all variable functions, or a
list
of variable functions by type.
Examples
variables()
variables("list")
variables(TRUE)
names(variables("list"))
variables("ordered factor")
variables("numeric")
variables("matrix")
variables("matrix", ncols=3)
variables("matrix", 1)
variables("matrix", byrow = TRUE)
Add Internal Name to Vector
Description
Adds the class variable
and an internal
attributes(x)[["varname"]]
attribute to a vector.
Usage
varname(x, name)
Arguments
x |
A vector to add a |
name |
A name to assign to |
Value
Returns a vector of the class variable
with a
attributes(x)[["varname"]]
assigned.
Examples
varname(1:10, "A")
attributes(varname(1:10, "A"))
sum(varname(1:10, "A"))
varname(LETTERS, "Caps")
attributes(varname(LETTERS, "Caps"))
paste(varname(LETTERS, "Caps"), collapse="")
Generate Random Data Sets
Description
Generates random data sets including: data.frames, lists, and vectors.
Generate Random Vector of Years
Description
Generate a random vector of years.
Usage
year(
n,
x = 1996:as.numeric(format(Sys.Date(), "%Y")),
prob = NULL,
name = "Year"
)
Arguments
n |
The number elements to generate. This can be globally set within
the environment of |
x |
A vector of elements to chose from. |
prob |
A vector of probabilities to chose from. |
name |
The name to assign to the output vector's |
Value
Returns a random vector of year elements.
See Also
Other variable functions:
age()
,
animal()
,
answer()
,
area()
,
car()
,
children()
,
coin()
,
color
,
date_stamp()
,
death()
,
dice()
,
dna()
,
dob()
,
dummy()
,
education()
,
employment()
,
eye()
,
grade_level()
,
grade()
,
group()
,
hair()
,
height()
,
income()
,
internet_browser()
,
iq()
,
language
,
level()
,
likert()
,
lorem_ipsum()
,
marital()
,
military()
,
month()
,
name
,
normal()
,
political()
,
race()
,
religion()
,
sat()
,
sentence()
,
sex_inclusive()
,
sex()
,
smokes()
,
speed()
,
state()
,
string()
,
upper()
,
valid()
,
zip_code()
Examples
year(10)
pr <- probs(length(1996:2016))
pie(table(year(10000, x= 1996:2016, prob = pr)))
Generate Random Vector of Zip Codes
Description
Generate a random vector of zip codes.
Usage
zip_code(n, k = 10, x = 10000:99999, prob = NULL, name = "Zip")
Arguments
n |
The number elements to generate. This can be globally set within
the environment of |
k |
The number of the elements of x to sample from (uses |
x |
A vector of elements to chose from. |
prob |
A vector of probabilities to chose from. |
name |
The name to assign to the output vector's |
Value
Returns a random vector of zip code elements.
See Also
Other variable functions:
age()
,
animal()
,
answer()
,
area()
,
car()
,
children()
,
coin()
,
color
,
date_stamp()
,
death()
,
dice()
,
dna()
,
dob()
,
dummy()
,
education()
,
employment()
,
eye()
,
grade_level()
,
grade()
,
group()
,
hair()
,
height()
,
income()
,
internet_browser()
,
iq()
,
language
,
level()
,
likert()
,
lorem_ipsum()
,
marital()
,
military()
,
month()
,
name
,
normal()
,
political()
,
race()
,
religion()
,
sat()
,
sentence()
,
sex_inclusive()
,
sex()
,
smokes()
,
speed()
,
state()
,
string()
,
upper()
,
valid()
,
year()
Examples
zip_code(10)
pie(table(zip_code(10000, prob = probs(10))))