
Package ‘webfakes’
July 22, 2025

Title Fake Web Apps for HTTP Testing

Version 1.4.0

Description Create a web app that makes it easier to test web clients
without using the internet. It includes a web app framework with path
matching, parameters and templates. Can parse various 'HTTP' request
bodies. Can send 'JSON' data or files from the disk. Includes a web
app that implements the 'httpbin.org' web service.

License MIT + file LICENSE

URL https://webfakes.r-lib.org/, https://github.com/r-lib/webfakes

BugReports https://github.com/r-lib/webfakes/issues

Depends R (>= 3.6)

Imports stats, tools, utils

Suggests brotli, callr, covr, curl, digest, glue, httpuv, httr,
jsonlite, processx, testthat (>= 3.0.0), withr, xml2, zip (>=
2.3.0)

Biarch true

Config/Needs/website tidyverse/tidytemplate

Config/testthat/edition 3

Config/usethis/last-upkeep 2025-04-28

Encoding UTF-8

RoxygenNote 7.3.2

NeedsCompilation yes

Author Gábor Csárdi [aut, cre],
Posit Software, PBC [cph, fnd] (ROR: <https://ror.org/03wc8by49>),
Civetweb contributors [ctb] (see inst/credits/ciwetweb.md),
Redoc contributors [ctb] (see inst/credits/redoc.md),
L. Peter Deutsch [ctb] (src/md5.h),
Martin Purschke [ctb] (src/md5.h),
Aladdin Enterprises [cph] (src/md5.h),
Maëlle Salmon [ctb] (ORCID: <https://orcid.org/0000-0002-2815-0399>)

1

https://webfakes.r-lib.org/
https://github.com/r-lib/webfakes
https://github.com/r-lib/webfakes/issues
https://ror.org/03wc8by49
https://orcid.org/0000-0002-2815-0399

2 git_app

Maintainer Gábor Csárdi <csardi.gabor@gmail.com>

Repository CRAN

Date/Publication 2025-06-24 19:20:02 UTC

Contents
git_app . 2
glossary . 3
how-to . 5
httpbin_app . 16
http_time_stamp . 17
introduction . 18
local_app_process . 20
mw_cgi . 21
mw_cookie_parser . 22
mw_etag . 23
mw_json . 24
mw_log . 25
mw_multipart . 26
mw_range_parser . 26
mw_raw . 27
mw_static . 28
mw_text . 28
mw_urlencoded . 29
new_app . 30
new_app_process . 36
new_regexp . 38
oauth2_httr_login . 38
oauth2_login . 39
oauth2_resource_app . 40
oauth2_third_party_app . 42
server_opts . 43
tmpl_glue . 45
webfakes_request . 46
webfakes_response . 47

Index 50

git_app Web app that acts as a git http server

Description

It is useful for tests that need an HTTP git server.

glossary 3

Usage

git_app(
git_root,
git_cmd = "git",
git_timeout = as.difftime(1, units = "mins"),
filter = TRUE,
cleanup = TRUE

)

Arguments

git_root Path to the root of the directory tree to be served.
git_cmd Command to call, by default it is "git". It may also be a full path to git.
git_timeout A difftime object, time limit for the git command.
filter Whether to support the filter capability in the server.
cleanup Whether to clean up git_root when the app is garbage collected.

Examples

dir.create(tmp <- tempfile())
setwd(tmp)
system("git clone --bare https://github.com/cran/crayon")
system("git clone --bare https://github.com/cran/glue")
app <- git_app(tmp)
git <- new_app_process(app)
system(paste("git ls-remote", git$url("/crayon")))

glossary webfakes glossary

Description

webfakes glossary

Webfakes glossary

The webfakes package uses vocabulary that is standard for web apps, especially those developed
with Express.js, but not necessarily well known to all R package developers.

app:
(Also: fake web app, webfakes app.) A web application that can be served by webfakes’s web
server, typically in another process, an app process. Sometimes we call it a fake web app, to
emphasize that we use it for testing real web apps and APIs.
You can create a webfakes app with the new_app() function. A webfakes app is an R object that
you can save to disk with saveRDS() , and you can also include it in your package.
You can start an with its $listen() method. Since the main R process runs that test suite code,
you usually run them in a subprocess, see new_app_process() or local_app_process().

4 glossary

app process:
(Also: web server process, webfakes subprocess.) An app process is an R subprocess, started
from the main R process, to serve a webfakes app.
You can create an app process object with new_app_process() or local_app_process(). By
default the actual process does not start yet, when you create it. You can start it explicitly with
the $start method of the app process object, or by querying its URL with $url() or its port with
$get_port().
For test cases, you typically start app processes at these places:

• In a setup*.R file, to start an app that the whole test suite can use.
• Alternatively, in a helper*.R file, to start an app that the whole test suite can use, and it

works better for interactive development.
• At the beginning of a test file, to create an app for a single test file.
• Inside test_that(), to create an app for a single test block.

See the How-to for details about each.

handler:
(Or handler function.) A handler is a route or a middleware.

handler stack:
This is a stack of handler functions, which are called by the app one after the other, passing the
request and response objects to them. Handlers typically manipulate the request and/or response
objects. A terminal handler instructs the app to return the response to the HTTP client. A non-
terminal handler tells the app to keep calling handlers, by returning the string "next".

httpbin app:
This is an example app, which implements the excellent https://httpbin.org/ web service.
You can use it to simulate certain HTTP responses. It is most handy for HTTP clients, but poten-
tially useful for other tools as well.
Use httpbin_app() to create an instance of this app.

middleware:
A middleware is a handler function that is not bound to a path. It is called by the router, like other
handler functions. It may manipulate the request or the response, or can have a side effect. Some
example built-in middleware functions in webfakes:

• mw_json() parses a request’s JSON body into an R object.
• mw_log() logs requests and responses to the screen or to a file.
• mw_static() serves static files from the directory.

You can also write your own middleware functions.

path matching:
The router performs path matching when it goes over the handler stack. If the HTTP method
and path of a route match the HTTP method and URL of the request, then the handler is called,
otherwise it is not. Paths can have parameters and be regular expressions. See ?new_regexp()
for regular expressions and "Path parameters" in ?new_app() for parameters.

how-to 5

route:
A route is a handler function that is bound to certain paths of you web app. If the request URL
matches the path of the route, then the handler function is called, to give it a chance to send the
appropriate response. Route paths may have parameters or they can be regular expressions in
webfakes.

routing:
Routing is the process of going over the handlers stack, and calling handler functions, one after
the other, until one handles the request. If a handler function is a route, then the router only calls
it if its path matches the request URL.

how-to How to use webfakes in your tests

Description

How to use webfakes in your tests

How to use webfakes in your tests

How do I use webfakes in my package?:
First, you need to add webfakes to the DESCRIPTION file of your package. Use the Suggests field,
as webfakes is only needed for testing:

...
Suggests:
webfakes,
testthat

...

Then, unless the URL to the web service is an argument of your package functions, you might
need to tweak your package code slightly to make sure every call to a real web service can be
targeted at another URL instead (of a fake app). See next subsection.
Last but not least, you need to decide if you want a single web app for all your test cases. The
alternative is to use different apps for some or all test files. Occasionally you may want to use a
special app for a single test case. Each app runs in a new subprocess, and it takes typically about
100-400ms to start.
See the sections later on on writing tests with a single app or multiple apps.

How do I make my app connect to webfakes when the tests are running?:
In the typical scenario, you want your package to connect to the test app only when running the
tests. If the URL to the web service is not an argument of the functions, one way to achieve this
is to allow specifying the web server URL(s) via environment variables. E.g. when writing a
GitHub API client, your package can check use GITHUB_URL environment variable.
E.g.

6 how-to

service_url <- function() {
Sys.getenv("GITHUB_URL", "https://api.github.com")

}

rest of the package code

foobar <- function() {
httr::GET(service_url())

}

When this is not set, the package connects to the proper GitHub API. When testing, you can point
it to your test app.
new_app_process() helps you setting up temporary environment variables. These are active
while the process is running, and they are removed or reset in $stop(). For example:
In $local_env() environment variables, webfakes replaces {url} with the actual app URL. This
is needed by default, because the web server process starts up only later, so the URL is not known
yet.

http <- webfakes::local_app_process(webfakes::httpbin_app(), start = TRUE)
http$local_env(list(GITHUB_API = "{url}"))
Sys.getenv("GITHUB_API")
#> [1] "http://127.0.0.1:64362/"
http$stop()
Sys.getenv("GITHUB_API")
#> [1] ""

How can I write my own app?:
You create a new app with new_app(). This returns an object with methods to add middleware
and API endpoints to it. For example, a simple app that returns the current time in JSON would
look like this:

time <- webfakes::new_app()
time$get("/time", function(req, res) {
res$send_json(list(time = format(Sys.time())), auto_unbox = TRUE)

})

Now you can start this app on a random port using web$listen(). Alternatively, you can start it
in a subprocess with new_app_process().

web <- webfakes::new_app_process(time)
web$url()
#> [1] "http://127.0.0.1:64364/"

Use web$url() to query the URL of the app. For example:

url <- web$url("/time")
httr::content(httr::GET(url))
#> $time
#> [1] "2025-01-14 10:07:38"

web$stop() stops the app and the subprocess as well:

how-to 7

web$stop()
web$get_state()
#> [1] "not running"

local_app_process() is similar to new_app_process(), but it stops the server process at the
end of the calling block. This means that the process is automatically cleaned up at the end of a
test_that() block or at the end of the test file.
You can create your app at the beginning of your test file. Or, if you want to use the same app in
multiple test files, use a testthat helper file. Sometimes it useful if your users can create and use
your test app, for example to create reproducible examples. You can include a (possibly internal)
function in your package, that creates the app.
See ?new_app(), ?new_app_process() and ?local_app_process for more details.

How do I use httpbin_app() (or another app) with testthat?:
You can use testthat’s setup files. You start the app in a setup file and also register a teardown ex-
pression for it. local_app_process() can do both in one go. Your tests/testthat/setup-http.R
may look like this:

http <- webfakes::local_app_process(
webfakes::httpbin_app(),
.local_envir = testthat::teardown_env()

)

(Before testthat 3.0.0, you had to write the teardown expression in a tests/testthat/teardown-http.R
file. That still works, but a single setup file is considered to be better practice, see this testthat
vignette.)
In the test cases you can query the http app process to get the URLs you need to connect to:

test_that("fails on 404", {
url <- http$url("/status/404")
response <- httr::GET(url)
expect_error(
httr::stop_for_status(response),
class = "http_404"

)
})
#> Test passed

When writing your tests interactively, you may create a http app process in the global environ-
ment, for convenience. You can source() your setup-http.R file for this. Alternatively, you
can start the app process in a helper file. See "How do I start the app when writing the tests?" just
below.

How do I start the app when writing the tests?:
It is convenient to start the webfakes server process(es) when working on the tests interactively,
e.g. when using devtools::load_all(). With local_app_process() in the testthat setup*.R
file this is not automatic, because devtools::load_all() does not run these files. So you would
need to source the setup*.R files manually, which is error prone.
One solution is to create server processes in the testthat helper*.R files. load_all() exe-
cutes the helper files by default. So instead of using a setup file, you can simply do this in the
helper-http.R file:

https://testthat.r-lib.org/reference/test_file.html#special-files
https://testthat.r-lib.org/articles/test-fixtures.html
https://testthat.r-lib.org/articles/test-fixtures.html

8 how-to

httpbin <- local_app_process(httpbin_app())

If the app process is created in the helper file, then it is ready use after load_all(), and (by
default) the actual process will be started at the first $url() or $get_port() call. You can also
start it manually with $start().
Processes created in helper files are not cleaned up automatically at the end of the test suite, unless
you clean them up by registering a $stop() call in a setup file, like this:

withr::defer(httpbin$stop(), testthat::teardown_env())

In practice this is not necessary, because R CMD check runs the tests in a separate process, and
when that finishes, the webfakes processes are cleaned up as well.
When running devtools::test(), testthat::test_local() or another testthat function to run
(part of) the test suite in the current session, the helper*.R files are (re)loaded first. This will
terminate the currently running app processes, if any, and create new app process objects. Should
the test suite auto-start some of the test processes from helper*.R, these will not be cleaned up
at the end of the test suite, but only at the next load_all() or test() call, or at the end of the
R session. This lets you run your test code interactively, either via test() or manually, without
thinking too much about the webfakes processes.

Can I have an app for a single testthat test file?:
To run a web app for a single test file, start it with new_app_process() at the beginning of the
file, and register its cleanup using withr::defer(). Even simpler, use local_app_process()
which is the same as new_app_process() but it automatically stops the web server process, at
the end of the test file:

app <- webfakes::new_app()
app$get("/hello/:user", function(req, res) {
res$send(paste0("Hello ", req$params$user, "!"))

})

web <- webfakes::local_app_process(app)

Then in the test cases, use web$url() to get the URL to connect to.

test_that("can use hello API", {
url <- web$url("/hello/Gabor")
expect_equal(httr::content(httr::GET(url)), "Hello Gabor!")

})
#> No encoding supplied: defaulting to UTF-8.
#> Test passed

Can I use an app for a single testthat test?:
Sure. For this you need to create the app process within the testthat::test_that() test case.
local_app_process() automatically cleans it up at the end of the block. It goes like this:

test_that("query works", {
app <- webfakes::new_app()
app$get("/hello", function(req, res) res$send("hello there"))
web <- webfakes::local_app_process(app)

how-to 9

echo <- httr::content(httr::GET(web$url("/hello")))
expect_equal(echo, "hello there")

})
#> No encoding supplied: defaulting to UTF-8.
#> Test passed

How do I test a sequence of requests?:
To test a sequence of requests, the app needs state information that is kept between requests.
app$locals is an environment that belongs to the app, and it can be used to record information
and then retrieve it in future requests. You could store anything in app$locals, something sim-
ple like a counter variable, something fancier like a sqlite database. You can add something to
app$locals via methods or directly after creating the app.

store <- webfakes::new_app()
store$locals$packages <- list("webfakes")
ls(store$locals)
#> [1] "packages"
store$locals$packages
#> [[1]]
#> [1] "webfakes"

E.g. here is an end point that fails three times, then succeeds once, fails again three times, etc.
Note that the counter created by the code below starts at 0, not 1.

flaky <- webfakes::new_app()
flaky$get("/unstable", function(req, res) {
if (identical(resapplocals$counter, 3L)) {
resapplocals$counter <- NULL
res$send_json(object = list(result = "ok"))

} else {
resapplocals$counter <- c(res$app$locals$counter, 0L)[[1]] + 1L
res$send_status(401)

}
})

Let’s run this app in another process and connect to it:

pr <- webfakes::new_app_process(flaky)
url <- pr$url("/unstable")
httr::RETRY("GET", url, times = 4)
#> Request failed [401]. Retrying in 1 seconds...
#> Request failed [401]. Retrying in 1 seconds...
#> Request failed [401]. Retrying in 2.1 seconds...
#> Response [http://127.0.0.1:64374/unstable]
#> Date: 2025-01-14 10:07
#> Status: 200
#> Content-Type: application/json
#> Size: 17 B

Another example where we send information to an app and then retrieve it. On a POST request
we store the name query parameter in app$locals$packages, which can be queried with a GET
request.

10 how-to

store <- webfakes::new_app()
Initial "data" for the app
store$locals$packages <- list("webfakes")
Get method
store$get("/packages", function(req, res) {
res$send_json(res$app$locals$packages, auto_unbox = TRUE)

})
Post method, store information from the query
store$post("/packages", function(req, res) {
resapplocals$packages <- c(res$app$locals$packages, req$query$name)
res$send_json(res$app$locals$packages, auto_unbox = TRUE)

})

Now we start the app in a subprocess, and run a GET query against it.

web <- webfakes::local_app_process(store, start = TRUE)
Get current information
get_packages <- function() {
httr::content(
httr::GET(
httr::modify_url(
web$url(),
path = "packages"
)

)
)

}
get_packages()
#> [[1]]
#> [1] "webfakes"

Let’s POST some new information.

post_package <- function(name) {
httr::POST(
httr::modify_url(
web$url(),
path = "packages",
query = list(name = name)

)
)
}
post_package("vcr")
#> Response [http://127.0.0.1:64380/packages?name=vcr]
#> Date: 2025-01-14 10:07
#> Status: 200
#> Content-Type: application/json
#> Size: 18 B
Get current information
get_packages()

how-to 11

#> [[1]]
#> [1] "webfakes"
#>
#> [[2]]
#> [1] "vcr"

post_package("httptest")
#> Response [http://127.0.0.1:64380/packages?name=httptest]
#> Date: 2025-01-14 10:07
#> Status: 200
#> Content-Type: application/json
#> Size: 29 B
Get current information
get_packages()
#> [[1]]
#> [1] "webfakes"
#>
#> [[2]]
#> [1] "vcr"
#>
#> [[3]]
#> [1] "httptest"

Stop the app process:

web$stop()

How can I debug an app?:
To debug an app, it is best to run it in the main R process, i.e. not via new_app_process(). You
can add breakpoints, or browser() calls to your handler functions, and then invoke your app from
another process. You might find the curl command line tool to send HTTP requests to the app, or
you can just use another R process. Here is an example. We will simply print the incoming request
object to the screen now. For a real debugging session you probably want to place a browser()
command there.

app <- webfakes::new_app()
app$get("/debug", function(req, res) {
print(req)
res$send("Got your back")

})

Now start the app on port 3000:

app$listen(port = 3000)

#> Running webfakes web app on port 3000

Connect to the app from another R or curl process:

curl -v http://127.0.0.1:3000/debug

12 how-to

#> * Trying 127.0.0.1...
#> * TCP_NODELAY set
#> * Connected to 127.0.0.1 (127.0.0.1) port 3000 (#0)
#> > GET /debug HTTP/1.1
#> > Host: 127.0.0.1:3000
#> > User-Agent: curl/7.54.0
#> > Accept: */*
#> >
#> < HTTP/1.1 200 OK
#> < Content-Type: text/plain
#> < Content-Length: 13
#> <
#> * Connection #0 to host 127.0.0.1 left intact
#> Got your back

Your main R session will print the incoming request:

#> <webfakes_request>
#> method:
#> get
#> url:
#> http://127.0.0.1:3000/debug
#> client:
#> 127.0.0.1
#> query:
#> headers:
#> Host: 127.0.0.1:3000
#> User-Agent: curl/7.54.0
#> Accept: */*
#> fields and methods:
#> app # the webfakes_app the request belongs to
#> headers # HTTP request headers
#> hostname # server hostname, the Host header
#> method # HTTP method of request (lowercase)
#> path # server path
#> protocol # http or https
#> query_string # raw query string without '?'
#> query # named list of query parameters
#> remote_addr # IP address of the client
#> url # full URL of the request
#> get_header(field) # get a request header
#> # see ?webfakes_request for details

Press CTRL+C or ESC to interrupt the app in the main session.

How can I test HTTPS requests?:
Serving HTTPS from localhost or 127.0.0.1 instead of HTTP is easy, all you need to do is

1. Set the port to an HTTPS port by adding an "s" suffix to the port number. Use "0s" for an
OS assigned free port:

how-to 13

new_app_process(app, port = "0s")

By default webfakes uses the server key + certificate in the file at
system.file("cert/localhost/server.pem", package = "webfakes")

This certificate includes localhost, 127.0.0.1 and localhost.localdomain. If you need
another domain or IP address, you’ll need to create your own certificate. The generate.sh
file in the same directory helps with that.

2. Specify the certificate bundle to the HTTP client you are using. For the default server key
use the ca.crt file from the webfakes package:
system.file("cert/localhost/ca.crt", package = "webfakes")

See examples for HTTP clients below.

If you are using the curl package, use the ca_info option in curl::new_handle() or curl::handle_setopt():

cainfo <- system.file("cert/localhost/ca.crt", package = "webfakes")
curl::curl_fetch_memory(
http$url("/path/to/endpoint"),
handle = curl::new_handle(cainfo = cainfo)

)

For the httr package, use httr::config(cainfo = ...):

httr::GET(
http$url("/headers", https = TRUE),
httr::config(cainfo = cainfo)

)

For the httr2 package:

httr2::request("https://example.com") |>
httr2::req_options(cainfo = cainfo) |>
httr2::req_perform()

For utils::download.file point the CURL_CA_BUNDLE environment variable to the ca.crt file.
Don’t forget to undo this, once the HTTP request is done.

Sys.setenv(
CURL_CA_BUNDLE = system.file("cert/localhost/ca.crt", package = "webfakes")

)
download.file(http$url("/path/to/endpoint"), res <- tempfile())

Special considerations for tests on Windows:
Unfortunately things are not that simple on Windows, for the HTTP clients. As far as I can
tell, it is not easily possible to make the HTTP clients accept a new self-signed certificate. It is
possible with libcurl, though, but you need to set the CURL_SSL_BACKEND=openssl environment
variable. (And libcurl must be built with openssl support of course.) You need to set this env var
before loading libcurl, so it is best to set it before starting R. One way to do this in the tests is to
run the tests in a subprocess, with the callr package. Look at the test-https.R file in webfakes
for a complete, current example. The tests use this helper function, defined in helper.R:
callr_curl <- function(url, options = list()) {
callr::r(
function(url, options) {

14 how-to

h <- curl::new_handle()
curl::handle_setopt(h, .list = options)
curl::curl_fetch_memory(url, handle = h)

},
list(url = url, options = options),
env = c(
callr::rcmd_safe_env(),
CURL_SSL_BACKEND = "openssl",
CURL_CA_BUNDLE = if ("cainfo" %in% names(options)) options$cainfo

)
)

}

Example test case:

...
cainfo <- system.file("cert/localhost/ca.crt", package = "webfakes")
resp <- if (.Platform$OS.type == "windows") {
callr_curl(http$url("/hello"), list(cainfo = cainfo))

} else {
curl::curl_fetch_memory(
http$url("/hello"),
handle = curl::new_handle(cainfo = cainfo)

)
}

...

It seems like a good idea to skip_on_cran() HTTPS tests, at least on Windows, because this
setup is not yet tested enough to consider it robust.
webfakes uses Mbed TLS for serving HTTPS.

How can I run a server on multiple ports?:
You can specify multiple port numbers, in a vector. webfakes will then listen on all those ports.
You can also mix HTTP and HTTP ports.
To redirect from an HTTP port to an HTTPS port, append an "r" suffix to the HTTP port number.
THis port will be redirected to the next HTTPS port. E.g.

new_app_process(app, port = c("3000r", "3001s"))

will redirect HTTP from port 3000 to HTTPS on port 3001.
To redirect from an OS assigned HTTP port to an OS assigned HTTPS port, use zeros for the port
numbers:

http <- new_app_process(app, port = c("0r", "0s"))

Then you can use http$get_ports() to query all port numbers.
You can also use

http$url(..., https = TRUE)

to get an HTTPS URL instead of the default one (the one with the first port).

https://www.trustedfirmware.org/projects/mbed-tls/

how-to 15

Can I test asynchronous or parallel HTTP requests?:
R is single threaded and a webfakes app runs an R interpreter, so it cannot process multiple
requests at the same time. The web server itself runs in a separate thread, and it can also process
each request in a separate thread, but at any time only one request can use the R interpreter.
This is important, because sometimes test requests may take longer to process. For example the
/delay/:secs end point of httpbin_app() wait for the specified number of seconds before re-
sponding, to simulate a slow web server. If this wait is implemented via the standard Sys.sleep()
R function, then no other requests can be processed until the sleep is over. To avoid this, webfakes
can put the waiting request on hold, return from the R interpreter, and respond to other incoming
requests. Indeed, the /delay/ end point is implemented using this feature.
However, the request thread of the web server is still busy while on hold, so to take advantage of
this, you need to allow multiple threads. The num_threads argument of the $listen() method of
webfakes_app lets you specify the number of request threads the web server will use. Similarly,
the num_threads argument of local_app_process() lets you modify the number of threads.
When testing asynchronous or parallel code, that might invoke multiple, possibly delayed re-
quests, it is best to increase the number of threads. The code below calls the same API request
concurrently, three times. Each request takes 1 second to answer, but if the web server has more
than three threads, together they’ll still take about 1 second.

web <- webfakes::local_app_process(
webfakes::httpbin_app(),
opts = webfakes::server_opts(num_threads = 6, enable_keep_alive = TRUE)

)

testthat::test_that("parallel requests", {
url <- web$url("/delay/0.5")
p <- curl::new_pool()
handles <- replicate(3, curl::new_handle(url = url))
resps <- list()
for (handle in handles) {
curl::multi_add(
handle,
done = function(x) resps <<- c(resps, list(x)),
fail = stop,
pool = p

)
}
st <- system.time(curl::multi_run(timeout = 3, pool = p))
testthat::expect_true(st[["elapsed"]] < 1.5)

})
#> Test passed

(If this should fail for you and webfakes appears to process the requests sequentially, see issue
#108 for possible workarounds.)

How to make sure that my code works with the real API?:
Indeed, if you use webfakes for your test cases, then they never touch the real web server. As you
might suspect, this is not ideal, especially when you do not control the server. The web service
might change their API, and your test cases will fail to warn you.

https://github.com/r-lib/webfakes/issues/108
https://github.com/r-lib/webfakes/issues/108

16 httpbin_app

One practical solution is to write (at least some) flexible tests, that can run against a local fake
webserver, or a real one, and you have a quick switch to change their behavior. I have found that
environment variables work great for this.
E.g. if the FAKE_HTTP_TESTS environment variable is not set, the tests run with the real web
server, otherwise they use a fake one. Another solution, that works best is the HTTP requests are
in the downstream package code, is to introduce one environment variable for each API you need
to connect to. These might be set to the real API servers, or to the fake ones.
Once you have some tests that can use both kinds or servers, you can set up your continuous
integration (CI) framework, to run the tests agains the real server (say) once a day. This special
CI run makes sure that your code works well with the real API. You can run all the other tests,
locally and in the CI, against the fake local web server.
See the question on how webfakes helps you setting environment variables that point to your local
server.

How do I simulate a slow internet connection?:
You need to use the throttle server option when you start your web app. This means that you
can run the very same app with different connection speed. This is how it goes:

library(webfakes)
slow <- new_app_process(

httpbin_app(),
opts = server_opts(throttle = 100)

)
resp <- curl::curl_fetch_memory(slow$url("/bytes/200"))
resp$times
#> redirect namelookup connect pretransfer starttransfer
#> 0.000000 0.000087 0.000266 0.000284 0.004878
#> total
#> 2.013756

throttle gives the number of bytes per second, so downloading 200 random bytes from the fake
app will take about 2 seconds.

httpbin_app Generic web app for testing HTTP clients

Description

A web app similar to https://httpbin.org. See its specific docs. You can also see these docs
locally, by starting the app:

httpbin <- new_app_process(httpbin_app())
browseURL(httpbin$url())

Usage

httpbin_app(log = interactive())

https://webfakes.r-lib.org/httpbin.html

http_time_stamp 17

Arguments

log Whether to log requests to the standard output.

Value

A webfakes_app.

Examples

app <- httpbin_app()
proc <- new_app_process(app)
url <- proc$url("/get")
resp <- curl::curl_fetch_memory(url)
curl::parse_headers_list(resp$headers)
cat(rawToChar(resp$content))
proc$stop()

http_time_stamp Format a time stamp for HTTP

Description

Format a time stamp for HTTP

Usage

http_time_stamp(t = Sys.time())

Arguments

t Date-time value to format, defaults to the current date and time. It must be a
POSIXct object.

Value

Character vector, formatted date-time.

18 introduction

introduction Happy HTTP testing with webfakes

Description

Happy HTTP testing with webfakes

Happy HTTP testing with webfakes

What is webfakes?:
Webfakes is an R package that can spin up web servers on your machine to facilitate testing R
code. R code that needs an HTTP connection is not trivial to test:

• Connectivity problems might prevent the tests from accessing the web server.
• The web server might need authentication, and it is not easy to convey login information to

the test suite in a secure way.
• The web server might have rate limits, i.e, it limits the number of queries per hour or day,

causing some spurious test failures.
• You might want to test in non-normal conditions, e.g. with low bandwidth, or when the client

is rate limited. These conditions don’t normally happen on the web server and they are hard
to trigger.

With webfakes you can easily start a custom web app, that is running on the local machine.

• Webfakes does not need a network connection.
• Webfakes does not need authentication. Well, unless you want it to.
• Webfakes does not have rate limits.
• Webfakes can simulate low bandwidth, or a broken connection.

Webfakes vs mocking:
Mocking is a general technique to mimic the behavior of a function or object that is needed in test
case. In the case of HTTP requests, this typically means that both the request and its response
are recorded when the tests run the first time, and saved to disk. Subsequent test runs intercept
the HTTP requests, match them against the recorded requests and then replay the corresponding
recorded response. See for example the vcr and httptest R packages.
The advantages of using your own webfakes server, over mocking:

• Simpler infrastructure. No separate recording and replaying phases, no recorded files. No
request matching.

• You can use any web client you want. E.g. curl and base R’s HTTP functions do not explicitly
support mocking currently.

• No need to worry about sensitive information in recorded requests or responses.
• Often easier to use when testing non-normal conditions, e.g. errors that are hard to trigger,

low bandwidth, or rate limits.
• Works if you stream data from a HTTP connection, instead of reading the whole response at

once.
• You can reuse the same app for multiple tests, in multiple packages.

https://docs.ropensci.org/vcr/
https://enpiar.com/r/httptest/

introduction 19

• Easier to use for tests that require multiple rounds of requests.
• Comes with a built-in https://httpbin.org compatible app, chances are, you don’t even

need to write your testing app, just start writing tests right away.
• Better test writing experience. This is subjective, and your mileage may vary.

Webfakes vs the real API:
• No network needed. No more skip_if_offline().
• Much faster.
• No rate limits. But you can simulate one if you want to.
• You can write your custom app.
• Simulate low bandwidth or a broken connection.

Webfakes vs httpbin.org:
• No network needed. No more skip_if_offline().
• Much faster.
• You can use the built-in webfakes::httpbin_app() app, so it is easy to switch from http-

bin.org.
• You can write your custom app, httpbin.org might not have what you need.

Using webfakes::httpbin_app() with testthat:
You can use testthat’s setup files. You start the app in a setup file and also register a teardown ex-
pression for it. local_app_process() can do both in one go. Your tests/testthat/setup-http.R
may look like this:

http <- webfakes::local_app_process(
webfakes::httpbin_app(),
.local_envir = testthat::teardown_env()

)

(Before testthat 3.0.0, you had to write the teardown expression in a tests/testthat/teardown-http.R
file. That still works, but a single setup file is considered to be better practice, see this testthat
vignette.)
In the test cases you can query the http app process to get the URLs you need to connect to:

test_that("fails on 404", {
url <- http$url("/status/404")
response <- httr::GET(url)
expect_error(
httr::stop_for_status(response),
class = "http_404"

)
})
#> Test passed

When writing your tests interactively, you may create a http app process in the global environ-
ment, for convenience. You can source() your setup-http.R file for this. Alternatively, you
can start the app process in a helper file. See "How do I start the app when writing the tests?" just
below.
You can also create a web server for a test file, or even for a single test case. See vignette("how-to")
for details how.

https://testthat.r-lib.org/articles/test-fixtures.html
https://testthat.r-lib.org/articles/test-fixtures.html

20 local_app_process

Writing apps:
If the builtin httpbin_app() is not appropriate for your tests, you can write your own app. You
can also extend the httpbin_app() app, if you don’t want to start from scratch.
You create a new app with new_app(). This returns an object with methods to add middleware
and API endpoints to it. For example, a simple app that returns the current time in JSON would
look like this:

time <- webfakes::new_app()
time$get("/time", function(req, res) {
res$send_json(list(time = format(Sys.time())), auto_unbox = TRUE)

})

Now you can start this app on a random port using web$listen(). Alternatively, you can start it
in a subprocess with new_app_process().

web <- webfakes::new_app_process(time)
web$url()
#> [1] "http://127.0.0.1:64358/"

Use web$url() to query the URL of the app. For example:

url <- web$url("/time")
httr::content(httr::GET(url))
#> $time
#> [1] "2025-01-14 10:07:33"

web$stop() stops the app and the subprocess as well:

web$stop()
web$get_state()
#> [1] "not running"

local_app_process() is similar to new_app_process(), but it stops the server process at the
end of the calling block. This means that the process is automatically cleaned up at the end of a
test_that() block or at the end of the test file.
You can create your app at the beginning of your test file. Or, if you want to use the same app in
multiple test files, use a testthat helper file. Sometimes it useful if your users can create and use
your test app, for example to create reproducible examples. You can include a (possibly internal)
function in your package, that creates the app.
See ?new_app(), ?new_app_process() and ?local_app_process for more details.

local_app_process App process that is cleaned up automatically

Description

You can start the process with an explicit $start() call. Alternatively it starts up at the first $url()
or $get_port() call.

https://testthat.r-lib.org/reference/test_file.html#special-files

mw_cgi 21

Usage

local_app_process(app, ..., .local_envir = parent.frame())

Arguments

app webfakes_app object, the web app to run.

... Passed to new_app_process().

.local_envir The environment to attach the process cleanup to. Typically a frame. When this
frame finishes, the process is stopped.

See Also

new_app_process() for more details.

mw_cgi Middleware that calls a CGI script

Description

You can use it as an unconditional middleware in app$use(), as a handler on app$get(), app$post(),
etc., or you can call it from a handler. See examples below.

Usage

mw_cgi(command, args = character(), timeout = as.difftime(Inf, units = "secs"))

Arguments

command External command to run.

args Arguments to pass to the external command.

timeout Timeout for the external command. If the command does not terminate in time,
the web server kills it and returns an 500 response.

Value

A function with signature

function(req, res, env = character())

See RFC 3875 for details on the CGI protocol.

The request body (if any) is passed to the external command as standard intput. mw_cgi() sets
CONTENT_LENGTH, CONTENT_TYPE, GATEWAY_INTERFACE, PATH_INFO, QUERY_STRING, REMOTE_ADDR,
REMOTE_HOST, REMOTE_USER, REQUEST_METHOD, SERVER_NAME, SERVER_PORT, SERVER_PROTOCOL,
SERVER_SOFTEWARE.

https://datatracker.ietf.org/doc/html/rfc3875

22 mw_cookie_parser

It does not currently set the AUTH_TYPE, PATH_TRANSLATED, REMOTE_IDENT, SCRIPT_NAME environ-
ment variables.

The standard output of the external command is used to set the response status code, the response
headers and the response body. Example output from git’s CGI:

Status: 200 OK
Expires: Fri, 01 Jan 1980 00:00:00 GMT
Pragma: no-cache
Cache-Control: no-cache, max-age=0, must-revalidate
Content-Type: application/x-git-upload-pack-advertisement

000eversion 2
0015agent=git/2.42.0
0013ls-refs=unborn
0020fetch=shallow wait-for-done
0012server-option
0017object-format=sha1
0010object-info
0000

See Also

Other middleware: mw_cookie_parser(), mw_etag(), mw_json(), mw_log(), mw_multipart(),
mw_range_parser(), mw_raw(), mw_static(), mw_text(), mw_urlencoded()

Examples

app <- new_app()
app$use(mw_cgi("echo", "Status: 200\n\nHello"))
app

app2 <- new_app()
app2$get("/greet", mw_cgi("echo", "Status: 200\n\nHello"))
app2

Using `mw_cgi()` in a handler, you can pass extra environment variables
app3 <- new_app()
cgi <- mw_cgi("echo", "Status: 200\n\nHello")
app2$get("/greet", function(req, res) {

cgi(req, res, env = c("EXTRA_VAR" = "EXTRA_VALUE"))
})
app3

mw_cookie_parser Middleware to parse Cookies

Description

Adds the cookies as the cookies element of the request object.

mw_etag 23

Usage

mw_cookie_parser()

Details

It ignores cookies in an invalid format. It ignores duplicate cookies: if two cookies have the same
name, only the first one is included.

Value

Handler function.

See Also

Other middleware: mw_cgi(), mw_etag(), mw_json(), mw_log(), mw_multipart(), mw_range_parser(),
mw_raw(), mw_static(), mw_text(), mw_urlencoded()

mw_etag Middleware that add an ETag header to the response

Description

If the response already has an ETag header, then it is kept.

Usage

mw_etag(algorithm = "crc32")

Arguments

algorithm Checksum algorithm to use. Only "crc32" is implemented currently.

Details

This middleware handles the If-None-Match headers, and it sets the status code of the response to
304 if If-None-Match matches the ETag. It also removes the response body in this case.

Value

Handler function.

See Also

Other middleware: mw_cgi(), mw_cookie_parser(), mw_json(), mw_log(), mw_multipart(),
mw_range_parser(), mw_raw(), mw_static(), mw_text(), mw_urlencoded()

24 mw_json

Examples

app <- new_app()
app$use(mw_etag())
app

mw_json Middleware to parse a JSON body

Description

Adds the parsed object as the json element of the request object.

Usage

mw_json(type = "application/json", simplifyVector = FALSE, ...)

Arguments

type Content type to match before parsing. If it does not match, then the request
object is not modified.

simplifyVector Whether to simplify lists to vectors, passed to jsonlite::fromJSON().

... Arguments to pass to jsonlite::fromJSON(), that performs the JSON parsing.

Value

Handler function.

See Also

Other middleware: mw_cgi(), mw_cookie_parser(), mw_etag(), mw_log(), mw_multipart(),
mw_range_parser(), mw_raw(), mw_static(), mw_text(), mw_urlencoded()

Examples

app <- new_app()
app$use(mw_json())
app

mw_log 25

mw_log Log requests to the standard output or other connection

Description

A one line log entry for every request. The output looks like this:

GET http://127.0.0.1:3000/image 200 3 ms - 4742

and contains

• the HTTP method,

• the full request URL,

• the HTTP status code of the response,

• how long it took to process the response, in ms,

• and the size of the response body, in bytes.

Usage

mw_log(format = "dev", stream = "stdout")

Arguments

format Log format. Not implemented currently.

stream R connection to log to. "stdout" means the standard output, "stderr" is the
standard error. You can also supply a connection object, but then you need to be
sure that it will be valid when the app is actually running.

Value

Handler function.

See Also

Other middleware: mw_cgi(), mw_cookie_parser(), mw_etag(), mw_json(), mw_multipart(),
mw_range_parser(), mw_raw(), mw_static(), mw_text(), mw_urlencoded()

Examples

app <- new_app()
app$use(mw_log())
app

26 mw_range_parser

mw_multipart Parse a multipart HTTP request body

Description

Adds the parsed form fields in the form element of the request and the parsed files to the files
element.

Usage

mw_multipart(type = "multipart/form-data")

Arguments

type Content type to match before parsing. If it does not match, then the request
object is not modified.

Value

Handler function.

See Also

Other middleware: mw_cgi(), mw_cookie_parser(), mw_etag(), mw_json(), mw_log(), mw_range_parser(),
mw_raw(), mw_static(), mw_text(), mw_urlencoded()

Examples

app <- new_app()
app$use(mw_multipart())
app

mw_range_parser Middleware to parse a Range header

Description

Adds the requested ranges to the ranges element of the request object. request$ranges is a data
frame with two columns, from and to. Each row corresponds one requested interval.

Usage

mw_range_parser()

mw_raw 27

Details

When the last n bytes of the file are requested, the matrix row is set to c(0, -n). When all bytes
after a p position are requested, the matrix row is set to c(p, Inf).

If the intervals overlap, then ranges is not set, i.e. the Range header is ignored.

If its syntax is invalid or the unit is not bytes, then the Range header is ignored.

Value

Handler function.

See Also

Other middleware: mw_cgi(), mw_cookie_parser(), mw_etag(), mw_json(), mw_log(), mw_multipart(),
mw_raw(), mw_static(), mw_text(), mw_urlencoded()

mw_raw Middleware to read the raw body of a request

Description

Adds the raw body, as a raw object to the raw field of the request.

Usage

mw_raw(type = "application/octet-stream")

Arguments

type Content type to match. If it does not match, then the request object is not modi-
fied.

Value

Handler function.

See Also

Other middleware: mw_cgi(), mw_cookie_parser(), mw_etag(), mw_json(), mw_log(), mw_multipart(),
mw_range_parser(), mw_static(), mw_text(), mw_urlencoded()

Examples

app <- new_app()
app$use(mw_raw())
app

28 mw_text

mw_static Middleware function to serve static files

Description

The content type of the response is set automatically from the extension of the file. Note that this
is a terminal middleware handler function. If a file is served, then the rest of the handler functions
will not be called. If a file was not found, however, the rest of the handlers are still called.

Usage

mw_static(root, set_headers = NULL)

Arguments

root Root path of the served files. Everything under this directory is served automat-
ically. Directory lists are not currently supports.

set_headers Callback function to call before a file is served.

Value

Handler function.

See Also

Other middleware: mw_cgi(), mw_cookie_parser(), mw_etag(), mw_json(), mw_log(), mw_multipart(),
mw_range_parser(), mw_raw(), mw_text(), mw_urlencoded()

Examples

root <- system.file(package = "webfakes", "examples", "static", "public")
app <- new_app()
app$use(mw_static(root = root))
app

mw_text Middleware to parse a plain text body

Description

Adds the parsed object as the text element of the request object.

Usage

mw_text(default_charset = "utf-8", type = "text/plain")

mw_urlencoded 29

Arguments

default_charset

Encoding to set on the text.

type Content type to match before parsing. If it does not match, then the request
object is not modified.

Value

Handler function.

See Also

Other middleware: mw_cgi(), mw_cookie_parser(), mw_etag(), mw_json(), mw_log(), mw_multipart(),
mw_range_parser(), mw_raw(), mw_static(), mw_urlencoded()

Examples

app <- new_app()
app$use(mw_text())
app

mw_urlencoded Middleware to parse an url-encoded request body

Description

This is typically data from a form. The parsed data is added as the form element of the request
object.

Usage

mw_urlencoded(type = "application/x-www-form-urlencoded")

Arguments

type Content type to match before parsing. If it does not match, then the request
object is not modified.

Value

Handler function.

See Also

Other middleware: mw_cgi(), mw_cookie_parser(), mw_etag(), mw_json(), mw_log(), mw_multipart(),
mw_range_parser(), mw_raw(), mw_static(), mw_text()

30 new_app

Examples

app <- new_app()
app$use(mw_urlencoded())
app

new_app Create a new web application

Description

Create a new web application

Usage

new_app()

Details

The typical workflow of creating a web application is:

1. Create a webfakes_app object with new_app().

2. Add middleware and/or routes to it.

3. Start is with the webfakes_app$listen() method, or start it in another process with new_app_process().

4. Make queries to the web app.

5. Stop it via CTRL+C / ESC, or, if it is running in another process, with the $stop() method of
new_app_process().

A web application can be

• restarted,

• saved to disk,

• copied to another process using the callr package, or a similar way,

• embedded into a package,

• extended by simply adding new routes and/or middleware.

The webfakes API is very much influenced by the express.js project.

Create web app objects:

new_app()

new_app() returns a webfakes_app object the has the methods listed on this page.
An app is an environment with S3 class webfakes_app.

The handler stack:
An app has a stack of handlers. Each handler can be a route or middleware. The differences
between the two are:

https://expressjs.com/

new_app 31

• A route is bound to one or more paths on the web server. Middleware is not (currently) bound
to paths, but run for all paths.

• A route is usually (but not always) the end of the handler stack for a request. I.e. a route takes
care of sending out the response to the request. Middleware typically performs some action
on the request or the response, and then the next handler in the stack is invoked.

Routes:
The following methods define routes. Each method corresponds to the HTTP verb with the same
name, except for app$all(), which creates a route for all HTTP methods.

app$all(path, ...)
app$delete(path, ...)
app$get(path, ...)
app$head(path, ...)
app$patch(path, ...)
app$post(path, ...)
app$put(path, ...)
... (see list below)

• path is a path specification, see ’Path specification’ below.
• ... is one or more handler functions. These will be placed in the handler stack, and called if

they match an incoming HTTP request. See ’Handler functions’ below.

webfakes also has methods for the less frequently used HTTP verbs: CONNECT, MKCOL, OPTIONS,
PROPFIND, REPORT. (The method names are always in lowercase.)
If a request is not handled by any routes (or handler functions in general), then webfakes will send
a simple HTTP 404 response.

Middleware:
app$use() adds a middleware to the handler stack. A middleware is a handler function, see
’Handler functions’ below. webfakes comes with middleware to perform common tasks:

• mw_cookie_parser() parses Cookie headers.
• mw_etag() adds an ETag header to the response.
• mw_json() parses JSON request bodies.
• mw_log() logs each requests to standard output, or another connection.
• mw_multipart() parses multipart request bodies.
• mw_range_parser() parses Range headers.
• mw_raw() parses raw request bodies.
• mw_static() serves static files from a directory.
• mw_text() parses plain text request bodies.
• mw_urlencoded() parses URL encoded request bodies.

app$use(..., .first = FALSE)

• ... is a set of (middleware) handler functions. They are added to the handler stack, and
called for every HTTP request. (Unless an HTTP response is created before reaching this
point in the handler stack.)

• .first set to TRUE is you want to add the handler function to the bottom of the stack.

32 new_app

Handler functions:
A handler function is a route or middleware. A handler function is called by webfakes with the
incoming HTTP request and the outgoing HTTP response objects (being built) as arguments. The
handler function may query and modify the members of the request and/or the response object. If
it returns the string "next", then it is not a terminal handler, and once it returns, webfakes will
move on to call the next handler in the stack.
A typical route:

app$get("/user/:id", function(req, res) {
id <- req$params$id
...
res$
set_status(200L)$
set_header("X-Custom-Header", "foobar")$
send_json(response, auto_unbox = TRUE)

})

• The handler belongs to an API path, which is a wildcard path in this case. It matches
/user/alice, /user/bob, etc. The handler will be only called for GET methods and match-
ing API paths.

• The handler receives the request (req) and the response (res).
• It sets the HTTP status, additional headers, and sends the data. (In this case the webfakes_response$send_json()

method automatically converts response to JSON and sets the Content-Type and Content-Length
headers.

• This is a terminal handler, because it does not return "next". Once this handler function
returns, webfakes will send out the HTTP response.

A typical middleware:

app$use(function(req, res) {
...
"next"

})

• There is no HTTP method and API path here, webfakes will call the handler for each HTTP
request.

• This is not a terminal handler, it does return "next", so after it returns webfakes will look for
the next handler in the stack.

Errors:
If a handler function throws an error, then the web server will return a HTTP 500 text/plain
response, with the error message as the response body.

Request and response objects:
See webfakes_request and webfakes_response for the methods of the request and response ob-
jects.

Path specification:
Routes are associated with one or more API paths. A path specification can be

• A "plain" (i.e. without parameters) string. (E.g. "/list".)

new_app 33

• A parameterized string. (E.g. "/user/:id".)
• A regular expression created via new_regexp() function.
• A list or character vector of the previous ones. (Regular expressions must be in a list.)

Path parameters:
Paths that are specified as parameterized strings or regular expressions can have parameters.
For parameterized strings the keys may contain letters, numbers and underscores. When webfakes
matches an API path to a handler with a parameterized string path, the parameters will be added
to the request, as params. I.e. in the handler function (and subsequent handler functions, if the
current one is not terminal), they are available in the req$params list.
For regular expressions, capture groups are also added as parameters. It is best to use named
capture groups, so that the parameters are in a named list.
If the path of the handler is a list of parameterized strings or regular expressions, the parameters
are set according to the first matching one.

Templates:
webfakes supports templates, using any template engine. It comes with a template engine that
uses the glue package, see tmpl_glue().
app$engine() registers a template engine, for a certain file extension. The $render() method of
webfakes_response can be called from the handler function to evaluate a template from a file.

app$engine(ext, engine)

• ext: the file extension for which the template engine is added. It should not contain the dot.
E.g. "html"', "brew"‘.

• engine: the template engine, a function that takes the file path (path) of the template, and a
list of local variables (locals) that can be used in the template. It should return the result.

An example template engine that uses glue might look like this:

app$engine("txt", function(path, locals) {
txt <- readChar(path, nchars = file.size(path))
glue::glue_data(locals, txt)

})

(The built-in tmpl_glue() engine has more features.)
This template engine can be used in a handler:

app$get("/view", function(req, res) {
txt <- res$render("test")
res$
set_type("text/plain")$
send(txt)

})

The location of the templates can be set using the views configuration parameter, see the $set_config()
method below.
In the template, the variables passed in as locals, and also the response local variables (see
locals in webfakes_response), are available.

Starting and stopping:

34 new_app

app$listen(port = NULL, opts = server_opts(), cleanup = TRUE)

• port: port to listen on. When NULL, the operating system will automatically select a free
port. Add an "s" suffix to the port to use HTTPS. Use "0s" to use an OS assigned port with
HTTPS. See the how-to manual page if you want to start the web server on more than one
ports.

• opts: options to the web server. See server_opts() for the list of options and their default
values.

• cleanup: stop the server (with an error) if the standard input of the process is closed. This is
handy when the app runs in a callr::r_session subprocess, because it stops the app (and
the subprocess) if the main process has terminated.

This method does not return, and can be interrupted with CTRL+C / ESC or a SIGINT signal. See
new_app_process() for interrupting an app that is running in another process.
When port is NULL, the operating system chooses a port where the app will listen. To be able to
get the port number programmatically, before the listen method blocks, it advertises the selected
port in a webfakes_port condition, so one can catch it:
webfakes by default binds only to the loopback interface at 127.0.0.1, so the webfakes web app is
never reachable from the network.

withCallingHandlers(
app$listen(),
"webfakes_port" = function(msg) print(msg$port)

)

Logging:
webfakes can write an access log that contains an entry for all incoming requests, and also an error
log for the errors that happen while the server is running. This is the default behavior for local app
(the ones started by app$listen() and for remote apps (the ones started via new_app_process():

• Local apps do not write an access log by default.
• Remote apps write an access log into the <tmpdir>/webfakes/<pid>/access.log file,

where <tmpdir> is the session temporary directory of the main process, and <pid> is the
process id of the subprocess.

• Local apps write an error log to <tmpdir>/webfakes/error.log, where <tmpdir> is the
session temporary directory of the current process.

• Remote app write an error log to the <tmpdir>/webfakes/<pid>/error.log, where <tmpdir>
is the session temporary directory of the main process and <pid> is the process id of the sub-
process‘.

See server_opts() for changing the default logging behavior.

Shared app data:

app$locals

It is often useful to share data between handlers and requests in an app. app$locals is an environ-
ment that supports this. E.g. a middleware that counts the number of requests can be implemented
as:

new_app 35

app$use(function(req, res) {
locals <- reqapplocals
if (is.null(locals$num)) locals$num <- 0L
locals$num <- locals$num + 1L
"next"

})

webfakes_response objects also have a locals environment, that is initially populated as a copy
of app$locals.

Configuration:

app$get_config(key)
app$set_config(key, value)

• key: configuration key.
• value: configuration value.

Currently used configuration values:
• views: path where webfakes searches for templates.

Value

A new webfakes_app.

See Also

webfakes_request for request objects, webfakes_response for response objects.

Examples

see example web apps in the `/examples` directory in
system.file(package = "webfakes", "examples")

app <- new_app()
app$use(mw_log())

app$get("/hello", function(req, res) {
res$send("Hello there!")

})

app$get(new_regexp("^/hi(/.*)?$"), function(req, res) {
res$send("Hi indeed!")

})

app$post("/hello", function(req, res) {
res$send("Got it, thanks!")

})

app

Start the app with: app$listen()
Or start it in another R session: new_app_process(app)

36 new_app_process

new_app_process Run a webfakes app in another process

Description

Runs an app in a subprocess, using callr::r_session.

Usage

new_app_process(
app,
port = NULL,
opts = server_opts(remote = TRUE),
start = FALSE,
auto_start = TRUE,
process_timeout = NULL,
callr_opts = NULL

)

Arguments

app webfakes_app object, the web app to run.

port Port(s) to use. By default the OS assigns a port. Add an "s" suffix to the port to
use HTTPS. Use "0s" to use an OS assigned port with HTTPS. See the how-to
on how to run the web server on multiple ports.

opts Server options. See server_opts() for the defaults.

start Whether to start the web server immediately. If this is FALSE, and auto_start
is TRUE, then it is started as neeed.

auto_start Whether to start the web server process automatically. If TRUE and the process
is not running, then $start(), $get_port(), $get_ports() and $url() start
the process.

process_timeout

How long to wait for the subprocess to start, in milliseconds.

callr_opts Options to pass to callr::r_session_options() when setting up the subpro-
cess.

Value

A webfakes_app_process object.

Methods:
The webfakes_app_process class has the following methods:

get_app()
get_port()
get_ports()

new_app_process 37

stop()
get_state()
local_env(envvars)
url(path = "/", query = NULL)

• envvars: Named list of environment variables. The {url} substring is replaced by the URL
of the app.

• path: Path to return the URL for.

• query: Additional query parameters, a named list, to add to the URL.

get_app() returns the app object.

get_port() returns the (first) port the web server is running on.

get_ports() returns all ports the web server is running on, and whether it uses SSL on those
ports, in a data frame with columns ipv4, ipv6, port and ssl.

stop() stops the web server, and also the subprocess. If the error log file is not empty, then it
dumps its contents to the screen.

get_state() returns a string, the state of the web server:

• "not running" the server is not running (because it was stopped already).

• "live" means that the server is running.

• "dead" means that the subprocess has quit or crashed.

local_env() sets the given environment variables for the duration of the app process. It resets
them in $stop(). Webfakes replaces {url} in the value of the environment variables with the app
URL, so you can set environment variables that point to the app.

url() returns the URL of the web app. You can use the path parameter to return a specific path.

See Also

local_app_process() for automatically cleaning up the subprocess.

Examples

app <- new_app()
app$get("/foo", function(req, res) {
res$send("Hello world!")

})

proc <- new_app_process(app)
url <- proc$url("/foo")
resp <- curl::curl_fetch_memory(url)
cat(rawToChar(resp$content))

proc$stop()

38 oauth2_httr_login

new_regexp Create a new regular expression to use in webfakes routes

Description

Note that webfakes uses PERL regular expressions.

Usage

new_regexp(x)

Arguments

x String scalar containing a regular expression.

Details

As R does not have data type or class for regular expressions, you can use new_regexp() to mark
a string as a regular expression, when adding routes.

Value

String with class webfakes_regexp.

See Also

The ’Path specification’ and ’Path parameters’ chapters of the manual of new_app().

Examples

new_regexp("^/api/match/(?<pattern>.*)$")

oauth2_httr_login Helper function to use httr’s OAuth2.0 functions non-interactively, e.g.
in test cases

Description

To perform an automatic acknowledgement and log in for a local OAuth2.0 app, run by httr, wrap
the expression that obtains the OAuth2.0 token in oauth2_httr_login().

Usage

oauth2_httr_login(expr)

oauth2_login 39

Arguments

expr Expression that calls httr::oauth2.0_token(), either directly, or indirectly.

Details

In interactive sessions, oauth2_httr_login() overrides the browser option, and when httr opens
a browser page, it calls oauth2_login() in a subprocess.

In non-interactive sessions, httr does not open a browser page, only messages the user to do it manu-
ally. oauth2_httr_login() listens for these messages, and calls oauth2_login() in a subprocess.

Value

The return value of expr.

See Also

See ?vignette("oauth", package = "webfakes") for a case study that uses this function.

Other OAuth2.0 functions: oauth2_login(), oauth2_resource_app(), oauth2_third_party_app()

oauth2_login Helper function to log in to a third party OAuth2.0 app without a
browser

Description

It works with oauth2_resource_app(), and any third party app, including the fake oauth2_third_party_app().

Usage

oauth2_login(login_url)

Arguments

login_url The login URL of the third party app.

Details

See test-oauth.R in webfakes for an example.

Value

A named list with

• login_response The curl HTTP response object for the login page.
• token_response The curl HTTP response object for submitting the login page.

See Also

Other OAuth2.0 functions: oauth2_httr_login(), oauth2_resource_app(), oauth2_third_party_app()

40 oauth2_resource_app

oauth2_resource_app Fake OAuth 2.0 resource and authorization app

Description

The webfakes package comes with two fake apps that allow to imitate the OAuth2.0 flow in your test
cases. (See Aaron Parecki’s tutorial for a good introduction to OAuth2.0.) One app (oauth2_resource_app())
is the API server that serves both as the resource and provides authorization. oauth2_third_party_app()
plays the role of the third-party app. They are useful when testing or demonstrating code handling
OAuth2.0 authorization, token caching, etc. in a package. The apps can be used in your tests
directly, or you could adapt one or both of them to better mimic a particular OAuth2.0 flow.

Usage

oauth2_resource_app(
access_duration = 3600L,
refresh_duration = 7200L,
refresh = TRUE,
seed = NULL,
authorize_endpoint = "/authorize",
token_endpoint = "/token"

)

Arguments

access_duration

After how many seconds should access tokens expire.
refresh_duration

After how many seconds should refresh tokens expire (ignored if refresh is
FALSE).

refresh Should a refresh token be returned (logical).
seed Random seed used when creating tokens. If NULL, we rely on R to provide a

seed. The app uses its own RNG stream, so it does not affect reproducibility of
the tests.

authorize_endpoint

The authorization endpoint of the resource server. Change this from the default
if the real app that you are faking does not use /authorize.

token_endpoint The endpoint to request tokens. Change this if the real app that you are faking
does not use /token.

Details

The app has the following endpoints:

• GET /register is the endpoint that you can use to register your third party app. It needs to
receive the name of the third party app, and its redirect_uri as query parameters, otherwise
returns an HTTP 400 error. On success it returns a JSON dictionary with entries name (the
name of the third party app), client_id, client_secret and redirect_uri.

https://aaronparecki.com/oauth-2-simplified/

oauth2_resource_app 41

• GET /authorize is the endpoint where the user of the third party app is sent. You can change
the URL of this endpoint with the authorize_endpoint argument. It needs to receive the
client_id of the third party app, and its correct redirect_uri as query parameters. It may
receive a state string as well, which can be used by a client to identify the request. Otherwise
it generates a random state string. On error it fails with a HTTP 400 error. On success it
returns a simple HTML login page.

• POST /authorize/decision is the endpoint where the HTML login page generated at /authorize
connects back to, either with a positive or negative result. The form on the login page will
send the state string and the user’s choice in the action variable. If the user authorized the
third party app, then they are redirected to the redirect_uri of the app, with a temporary
code and the state string supplied as query parameters. Otherwise a simple HTML page is
returned.

• POST /token is the endpoint where the third party app requests a temporary access token. It is
also uses for refreshing an access token with a refresh token. You can change the URL of this
endpoint with the token_endpoint argument. To request a new token or refresh an existing
one, the following data must be included in either a JSON or an URL encoded request body:

– grant_type, this must be authorization_code for new tokens, and refresh_token for
refreshing.

– code, this must be the temporary code obtained from the /authorize/decision redirec-
tion, for new tokens. It is not needed when refreshing.

– client_id must be the client id of the third party app.
– client_secret must be the client secret of the third party app.
– redirect_uri must be the correct redirection URI of the third party app. It is not needed

when refreshing tokens.
– refresh_token must be the refresh token obtained previously, when refreshing a token.

It is not needed for new tokens. On success a JSON dictionary is returned with entries:
access_token, expiry and refresh_token. (The latter is omitted if the refresh argu-
ment is FALSE).

• GET /locals returns a list of current apps, access tokens and refresh tokens.

• GET /data is an endpoint that returns a simple JSON response, and needs authorization.

Notes:
• Using this app in your tests requires the glue package, so you need to put it in Suggests.
• You can add custom endpoints to the app, as needed.
• If you need authorization in your custom endpoint, call app$is_authorized() in your han-

dler:
if (!app$is_authorized(req, res)) return()

app$is_authorized() returns an HTTP 401 response if the client is not authorized, so you
can simply return from your handler.

For more details see vignette("oauth", package = "webfakes").

Value

a webfakes app

webfakes app

42 oauth2_third_party_app

oauth2_resource_app()

App representing the API server (resource/authorization)

See Also

Other OAuth2.0 functions: oauth2_httr_login(), oauth2_login(), oauth2_third_party_app()

oauth2_third_party_app

App representing the third-party app

Description

The webfakes package comes with two fake apps that allow to imitate the OAuth2.0 flow in your test
cases. (See Aaron Parecki’s tutorial for a good introduction to OAuth2.0.) One app (oauth2_resource_app())
is the API server that serves both as the resource and provides authorization. oauth2_third_party_app()
plays the role of the third-party app. They are useful when testing or demonstrating code handling
OAuth2.0 authorization, token caching, etc. in a package. The apps can be used in your tests
directly, or you could adapt one or both of them to better mimic a particular OAuth2.0 flow.

Usage

oauth2_third_party_app(name = "Third-Party app")

Arguments

name Name of the third-party app

Details

Endpoints:

• POST /login/config Use this endpoint to configure the client ID and the client secret of the
app, received from oauth2_resource_app() (or another resource app). You need to send in
a JSON or URL encoded body:

– auth_url, the authorization URL of the resource app.
– token_url, the token URL of the resource app.
– client_id, the client ID, received from the resource app.
– client_secret the client secret, received from the resource app.

• GET /login Use this endpoint to start the login process. It will redirect to the resource app for
authorization and after the OAuth2.0 dance to /login/redirect.

• GET /login/redirect, POST /login/redirect This is the redirect URI of the third party
app. (Some HTTP clients redirect a POST to a GET, others don’t, so it has both.) This endpoint
is used by the resource app, and it received the code that can be exchanged to an access
token and the state which was generated in /login. It contacts the resource app to get an
access token, and then stores the token in its app$locals local variables. It fails with HTTP

https://aaronparecki.com/oauth-2-simplified/

server_opts 43

code 500 if it cannot obtain an access token. On success it returns a JSON dictionary with
access_token, expiry and refresh_token (optionally) by default. This behavior can be
changed by redefining the app$redirect_hook() function.

• GET /locals returns the tokens that were obtained from the resource app.

• GET /data is an endpoint that uses the obtained token(s) to connect to the /data endpoint of
the resource app. The /data endpoint of the resource app needs authorization. It responds
with the response of the resource app. It tries to refresh the access token of the app if needed.

For more details see vignette("oauth", package = "webfakes").

Value

webfakes app

See Also

Other OAuth2.0 functions: oauth2_httr_login(), oauth2_login(), oauth2_resource_app()

server_opts Webfakes web server options

Description

Webfakes web server options

Usage

server_opts(
remote = FALSE,
port = NULL,
num_threads = 1,
interfaces = "127.0.0.1",
enable_keep_alive = FALSE,
access_log_file = remote,
error_log_file = TRUE,
tcp_nodelay = FALSE,
throttle = Inf,
decode_url = TRUE,
ssl_certificate = NULL

)

Arguments

remote Meta-option. If set to TRUE, webfakes uses slightly different defaults, that are
more appropriate for a background server process.

port Port to start the web server on. Defaults to a randomly chosen port.

44 server_opts

num_threads Number of request handler threads to use. Typically you don’t need more than
one thread, unless you run test cases in parallel or you make concurrent HTTP
requests.

interfaces The network interfaces to listen on. Being a test web server, it defaults to the
localhost. Only bind to a public interface if you know what you are doing.
webfakes was not designed to serve public web pages.

enable_keep_alive

Whether the server keeps connections alive.

access_log_file

TRUE, FALSE, or a path. See ’Logging’ below.

error_log_file TRUE, FALSE, or a path. See ’Logging’ below.

tcp_nodelay if TRUE then packages will be sent as soon as possible, instead of waiting for a
full buffer or timeout to occur.

throttle Limit download speed for clients. If not Inf, then it is the maximum number of
bytes per second, that is sent to as connection.

decode_url Whether the server should automatically decode URL-encodded URLs. If TRUE
(the default), /foo%2fbar will be converted to /foo/bar automatically. If
FALSE, URLs as not URL-decoded.

ssl_certificate

Path to the SSL certificate of the server, needed if you want to server HTTPS
requests.

Value

List of options that can be passed to webfakes_app$listen() (see new_app()), and new_app_process().

Logging

• For access_log_file, TRUE means <log-dir>/access.log.

• For error_log_file, TRUE means <log-dir>/error.log.
<log-dir> is set to the contents of the WEBFAKES_LOG_DIR environment variable, if it is set. Oth-
erwise it is set to <tmpdir>/webfakes for local apps and <tmpdir>/<pid>/webfakes for remote
apps (started with new_app_procss()).
<tmpdir> is the session temporary directory of the main process.
<pid> is the process id of the subprocess.

Examples

See the defaults
server_opts()

tmpl_glue 45

tmpl_glue glue based template engine

Description

Use this template engine to create pages with glue templates. See glue::glue() for the syntax.

Usage

tmpl_glue(
sep = "",
open = "{",
close = "}",
na = "NA",
transformer = NULL,
trim = TRUE

)

Arguments

sep Separator used to separate elements.

open The opening delimiter. Doubling the full delimiter escapes it.

close The closing delimiter. Doubling the full delimiter escapes it.

na Value to replace NA values with. If NULL missing values are propagated, that is
an NA result will cause NA output. Otherwise the value is replaced by the value
of na.

transformer A function taking three parameters code, envir and data used to transform the
output of each block before during or after evaluation.

trim Whether to trim the input template with glue::trim() or not.

Value

Template function.

Examples

See th 'hello' app at
hello_root <- system.file(package = "webfakes", "examples", "hello")
hello_root

app <- new_app()
app$engine("txt", tmpl_glue())
app$use(mw_log())

app$get("/view", function(req, res) {
txt <- res$render("test")

46 webfakes_request

res$
set_type("text/plain")$
send(txt)

})

Switch to the app's root: setwd(hello_root)
Now start the app with: app$listen(3000L)
Or start it in another process: new_process(app)

webfakes_request A webfakes request object

Description

webfakes creates a webfakes_request object for every incoming HTTP request. This object is
passed to every matched route and middleware, until the response is sent. It has reference semantics,
so handlers can modify it.

Details

Fields and methods:

• app: The webfakes_app object itself.

• headers: Named list of HTTP request headers.

• hostname: The Host header, the server hostname and maybe port.

• method: HTTP method.

• path: Server path.

• protocol: "http" or "https".

• query_string: The raw query string, without the starting ?.

• query: Parsed query parameters in a named list.

• remote_addr: String, the domain name or IP address of the client. webfakes runs on the
localhost, so this is 127.0.0.1.

• url: The full URL of the request.

• get_header(field): Function to query a request header. Returns NULL if the header is not
present.

Body parsing middleware adds additional fields to the request object. See mw_raw(), mw_text(),
mw_json(), mw_multipart() and mw_urlencoded().

See Also

webfakes_response for the webfakes response object.

webfakes_response 47

Examples

This is how you can see the request and response objects:
app <- new_app()
app$get("/", function(req, res) {

browser()
res$send("done")

})
app

Now start this app on a port:
app$listen(3000)
and connect to it from a web browser: http://127.0.0.1:3000
You can also use another R session to connect:
httr::GET("http://127.0.0.1:3000")
or the command line curl tool:
curl -v http://127.0.0.1:3000
The app will stop while processing the request.

webfakes_response A webfakes response object

Description

webfakes creates a webfakes_response object for every incoming HTTP request. This object is
passed to every matched route and middleware, until the HTTP response is sent. It has reference
semantics, so handlers can modify it.

Details

Fields and methods:

• app: The webfakes_app object itself.

• req: The request object.

• headers_sent: Whether the response headers were already sent out.

• locals: Local variables, the are shared between the handler functions. This is for the end
user, and not for the middlewares.

• delay(secs): delay the response for a number of seconds. If a handler calls delay(),
the same handler will be called again, after the specified number of seconds have passed.
Use the locals environment to distinguish between the calls. If you are using delay(),
and want to serve requests in parallel, then you probably need a multi-threaded server, see
server_opts().

• add_header(field, value): Add a response header. Note that add_header() may create
duplicate headers. You usually want set_header().

• get_header(field): Query the currently set response headers. If field is not present it
return NULL.

48 webfakes_response

• on_response(fun): Run the fun handler function just before the response is sent out. At this
point the headers and the body are already properly set.

• redirect(path, status = 302): Send a redirect response. It sets the Location header, and
also sends a text/plain body.

• render(view, locals = list()): Render a template page. Searches for the view template
page, using all registered engine extensions, and calls the first matching template engine.
Returns the filled template.

• send(body). Send the specified body. body can be a raw vector, or HTML or other text. For
raw vectors it sets the content type to application/octet-stream.

• send_json(object = NULL, text = NULL, ...): Send a JSON response. Either object or
text must be given. object will be converted to JSON using jsonlite::toJSON(). ... are
passed to jsonlite::toJSON(). It sets the content type appropriately.

• send_file(path, root = "."): Send a file. Set root = "/" for absolute file names. It sets
the content type automatically, based on the extension of the file, if it is not set already.

• send_status(status): Send the specified HTTP status code, without a response body.
• send_chunk(data): Send a chunk of a response in chunked encoding. The first chunk will

automatically send the HTTP response headers. Webfakes will automatically send a final
zero-lengh chunk, unless $delay() is called.

• set_header(field, value): Set a response header. If the headers have been sent out already,
then it throws a warning, and does nothing.

• set_status(status): Set the response status code. If the headers have been sent out already,
then it throws a warning, and does nothing.

• set_type(type): Set the response content type. If it contains a / character then it is set as is,
otherwise it is assumed to be a file extension, and the corresponding MIME type is set. If the
headers have been sent out already, then it throws a warning, and does nothing.

• add_cookie(name, value, options): Adds a cookie to the response. options is a named
list, and may contain:

– domain: Domain name for the cookie, not set by default.
– expires: Expiry date in GMT. It must be a POSIXct object, and will be formatted cor-

rectly.
– ’http_only’: if TRUE, then it sets the ’HttpOnly’ attribute, so Javasctipt cannot access the

cookie.
– max_age: Maximum age, in number of seconds.
– path: Path for the cookie, defaults to "/".
– same_site: The ’SameSite’ cookie attribute. Possible values are "strict", "lax" and

"none".
– secure: if TRUE, then it sets the ’Secure’ attribute.

• clear_cookie(name, options = list()): clears a cookie. Typically, web browsers will
only clear a cookie if the options also match.

• write(data): writes (part of) the body of the response. It also sends out the response headers,
if they haven’t been sent out before.

Usually you need one of the send() methods, to send out the HTTP response in one go, first the
headers, then the body.

Alternatively, you can use $write() to send the response in parts.

webfakes_response 49

See Also

webfakes_request for the webfakes request object.

Examples

This is how you can see the request and response objects:
app <- new_app()
app$get("/", function(req, res) {

browser()
res$send("done")

})
app

Now start this app on a port:
app$listen(3000)
and connect to it from a web browser: http://127.0.0.1:3000
You can also use another R session to connect:
httr::GET("http://127.0.0.1:3000")
or the command line curl tool:
curl -v http://127.0.0.1:3000
The app will stop while processing the request.

Index

∗ OAuth2.0 functions
oauth2_httr_login, 38
oauth2_login, 39
oauth2_resource_app, 40
oauth2_third_party_app, 42

∗ middleware
mw_cgi, 21
mw_cookie_parser, 22
mw_etag, 23
mw_json, 24
mw_log, 25
mw_multipart, 26
mw_range_parser, 26
mw_raw, 27
mw_static, 28
mw_text, 28
mw_urlencoded, 29

callr::r_session, 36
callr::r_session_options(), 36

git_app, 2
glossary, 3
glue::glue(), 45
glue::trim(), 45

how-to, 5, 34, 36
http_time_stamp, 17
httpbin_app, 16
httr::oauth2.0_token(), 39

introduction, 18

jsonlite::fromJSON(), 24
jsonlite::toJSON(), 48

local_app_process, 20
local_app_process(), 37

mw_cgi, 21, 23–29
mw_cookie_parser, 22, 22, 23–29

mw_cookie_parser(), 31
mw_etag, 22, 23, 23, 24–29
mw_etag(), 31
mw_json, 22, 23, 24, 25–29
mw_json(), 31, 46
mw_log, 22–24, 25, 26–29
mw_log(), 31
mw_multipart, 22–25, 26, 27–29
mw_multipart(), 31, 46
mw_range_parser, 22–26, 26, 27–29
mw_range_parser(), 31
mw_raw, 22–27, 27, 28, 29
mw_raw(), 31, 46
mw_static, 22–27, 28, 29
mw_static(), 31
mw_text, 22–28, 28, 29
mw_text(), 31, 46
mw_urlencoded, 22–29, 29
mw_urlencoded(), 31, 46

new_app, 30
new_app(), 38, 44
new_app_process, 36
new_app_process(), 21, 30, 34, 44
new_regexp, 38
new_regexp(), 33

oauth2_httr_login, 38, 39, 42, 43
oauth2_login, 39, 39, 42, 43
oauth2_login(), 39
oauth2_resource_app, 39, 40, 43
oauth2_resource_app(), 39, 42
oauth2_third_party_app, 39, 42, 42
oauth2_third_party_app(), 39

server_opts, 43
server_opts(), 34, 36, 47

tmpl_glue, 45
tmpl_glue(), 33

50

INDEX 51

webfakes_app (new_app), 30
webfakes_app_process (new_app_process),

36
webfakes_regexp (new_regexp), 38
webfakes_request, 32, 35, 46, 49
webfakes_response, 32, 33, 35, 46, 47

	git_app
	glossary
	how-to
	httpbin_app
	http_time_stamp
	introduction
	local_app_process
	mw_cgi
	mw_cookie_parser
	mw_etag
	mw_json
	mw_log
	mw_multipart
	mw_range_parser
	mw_raw
	mw_static
	mw_text
	mw_urlencoded
	new_app
	new_app_process
	new_regexp
	oauth2_httr_login
	oauth2_login
	oauth2_resource_app
	oauth2_third_party_app
	server_opts
	tmpl_glue
	webfakes_request
	webfakes_response
	Index

