Title: High-Dimensional Methods via Generalised Singular Decomposition
Version: 1.0.2
Description: Construct a Canonical Variate Analysis Biplot via the Generalised Singular Value Decomposition, for cases when the number of samples is less than the number of variables. For more information on biplots, see Gower JC, Lubbe SG, Le Roux NJ (2011) <doi:10.1002/9780470973196> and for more information on the generalised singular value decomposition, see Edelman A, Wang Y (2020) <doi:10.1137/18M1234412>.
License: MIT + file LICENSE
Encoding: UTF-8
RoxygenNote: 7.3.2
Depends: R (≥ 4.1.0)
Imports: geigen, Matrix, MASS, ggplot2, dplyr
Suggests: knitr, rmarkdown, testthat
Config/Needs/website: rmarkdown
NeedsCompilation: no
Packaged: 2025-06-06 12:55:11 UTC; raeesaganey
Author: Raeesa Ganey ORCID iD [aut, cre]
Maintainer: Raeesa Ganey <Raeesa.ganey@wits.ac.za>
Repository: CRAN
Date/Publication: 2025-06-11 15:10:02 UTC

Calibrate axis

Description

Calibrate axis

Usage

.calibrate.axis(
  j,
  Xhat,
  means,
  sd,
  axes.rows,
  ax.which,
  ax.tickvec,
  ax.orthogxvec,
  ax.orthogyvec
)

Arguments

j

j

Xhat

Xhat

means

means

sd

sd

axes.rows

axes.rows

ax.which

ax.which

ax.tickvec

ax.tickvec

ax.orthogxvec

ax.orthogxvec

ax.orthogyvec

ax.orothogyvec

Value

Calibrated axes


Plot the CVA biplot

Description

Plot the CVA biplot

Usage

CVAbiplot(
  x,
  which.var = 1:x$p,
  var.label = FALSE,
  group.col = NULL,
  zoom.out = 50
)

Arguments

x

Object from CVA

which.var

which variable to display on the biplot

var.label

whether to display label for variable name

group.col

vector of colours for the groups in the data

zoom.out

percentage to zoom out of the plot

Value

A CVA biplot based on the GSVD

Examples

data(sim_data)
CVAgsvd(X=sim_data[,2:301],group = sim_data[,1])|>
CVAbiplot(group.col=c("tan1","darkcyan","darkslateblue"),which.var = 1:10,zoom.out=80)

CVA Biplot using the GSVD

Description

Create a CVA biplot using the generalised singular value decomposition when number of variables (p) is larger than the number of samples (n).

Usage

CVAgsvd(X, group)

Arguments

X

n x p data matrix

group

vector of size n showing the groups

Details

If p < n, then the solution defaults to the standard CVA biplot.

Value

An object with components of a CVA biplot

Examples

CVAgsvd(X=iris[,1:4],group = iris[,5]) |>
CVAbiplot(group.col = c("orange","red","pink"))

Provide axes coordinates

Description

Provide axes coordinates

Usage

axes_coordinates(bp, which.var = 1:bp$p)

Arguments

bp

Object

which.var

which variable(s) to find coordinates

Value

Axes coordinates


Get GSVD Get the components of the GSVD decomposition

Description

Get GSVD Get the components of the GSVD decomposition

Usage

get.GSVD(A, B)

Arguments

A

Matrix A

B

Matrix B

Value

Returns components from the GSVD decomposition


Simulated Data

Description

Class

Group variable: 0, 1, 2

X1

Variable 1

...

X300

Variable 300

Format

A data set with 100 rows and 301 columns

Source

simulated data