
FLANN - Fast Library for Approximate Nearest

Neighbors

User Manual

Marius Muja, mariusm@cs.ubc.ca
David Lowe, lowe@cs.ubc.ca

September 26, 2009

1 Introduction

We can define the nearest neighbor search (NSS) problem in the following way:
given a set of points P = p1, p2, . . . , pn in a metric space X, these points must
be preprocessed in such a way that given a new query point q ∈ X, finding the
point in P that is nearest to q can be done quickly.

The problem of nearest neighbor search is one of major importance in a
variety of applications such as image recognition, data compression, pattern
recognition and classification, machine learning, document retrieval systems,
statistics and data analysis. However, solving this problem in high dimensional
spaces seems to be a very difficult task and there is no algorithm that performs
significantly better than the standard brute-force search. This has lead to an
increasing interest in a class of algorithms that perform approximate nearest
neighbor searches, which have proven to be a good-enough approximation in
most practical applications and in most cases, orders of magnitude faster that
the algorithms performing the exact searches.

FLANN (Fast Library for Approximate Nearest Neighbors) is a library for
performing fast approximate nearest neighbor searches. FLANN is written in
the C++ programming language. FLANN can be easily used in many contexts
through the C, MATLAB and Python bindings provided with the library.

1.1 Quick Start

This section contains small examples of how to use the FLANN library from
different programming languages (C++, C, MATLAB and Python) and from
the command line.

• C++

// file flann_example.cpp

#include <flann/flann.hpp>
#include <flann/io/hdf5.h>

#include <stdio.h>

int main(int argc, char** argv)
{

int nn = 3;

flann::Matrix<float> dataset;
flann::Matrix<float> query;
flann::load_from_file(dataset, "dataset.hdf5","dataset");
flann::load_from_file(query, "dataset.hdf5","query");

flann::Matrix<int> indices(new int[query.rows*nn], query.rows, nn);
flann::Matrix<float> dists(new float[query.rows*nn], query.rows, nn);

// construct an randomized kd-tree index using 4 kd-trees
flann::Index<float> index(dataset, flann::KDTreeIndexParams(4));
index.buildIndex();

// do a knn search, using 128 checks
index.knnSearch(query, indices, dists, nn, flann::SearchParams(128));

1

flann::save_to_file(indices,"result.hdf5","result");

dataset.free();
query.free();
indices.free();
dists.free();

return 0;
}

• C

/* file flann_example.c */

#include "flann.h"
#include <stdio.h>
#include <assert.h>

/* Function that reads a dataset */
float* read_points(char* filename, int *rows, int *cols);

int main(int argc, char** argv)
{

int rows,cols;
int t_rows, t_cols;
float speedup;

/* read dataset points from file dataset.dat */
float* dataset = read_points("dataset.dat", &rows, &cols);
float* testset = read_points("testset.dat", &t_rows, &t_cols);

/* points in dataset and testset should have the same dimensionality */
assert(cols==t_cols);

/* number of nearest neighbors to search */
int nn = 3;
/* allocate memory for the nearest-neighbors indices */
int* result = (int*) malloc(t_rows*nn*sizeof(int));
/* allocate memory for the distances */
float* dists = (float*) malloc(t_rows*nn*sizeof(float));

/* index parameters are stored here */
struct FLANNParameters p = DEFAULT_FLANN_PARAMETERS;
p.algorithm = AUTOTUNED; /* or KDTREE, KMEANS, ... /*
p.target_precision = 0.9; /* want 90% target precision */

/* compute the 3 nearest-neighbors of each point in the testset */
flann_find_nearest_neighbors(dataset, rows, cols, testset, t_rows,

result, dists, nn, &p);

...
free(dataset);
free(testset);
free(result);
free(dists);

return 0;
}

• MATLAB

% create random dataset and test set
dataset = single(rand(128,10000));
testset = single(rand(128,1000));

2

% define index and search parameters
params.algorithm = ’kdtree’;
params.trees = 8;
params.checks = 64;

% perform the nearest-neighbor search
[result, dists] = flann_search(dataset,testset,5,params);

• Python

from pyflann import *
from numpy import *
from numpy.random import *

dataset = rand(10000, 128)
testset = rand(1000, 128)

flann = FLANN()
result,dists = flann.nn(dataset,testset,5,algorithm="kmeans",

branching=32, iterations=7, checks=16);

• Command line application

$ flann compute_nn --input-file=dataset.dat --test-file=testset.dat
--algorithm=kdtree --trees=8 --checks=64 --nn=5 --output-file=nn.dat
Reading input dataset from dataset.dat
Building index
Building index took: 0.76
Reading test dataset from testset.dat
Searching for nearest neighbors
Searching took 0.06 seconds
Writing matches to nn.dat

2 Downloading and compiling FLANN

FLANN can be downloaded from the following address:

http://www.cs.ubc.ca/∼mariusm/flann

After downloading and unpacking, the following files and directories should
be present:

• bin: directory various for scripts and binary files

• doc: directory containg this documentation

• examples: directory containg examples of using FLANN

• src: directory containg the source files

• test: directory containg unit tests for FLANN

To compile the flann library the CMake1 build system is required. Below is
an example of how the FLANN library can be compiled on Linux (replace x.y
with the corresponding version number).

1http://www.cmake.org/

3

$ cd flann-x.y-src
$ BUILD_TYPE=release INSTALL_PREFIX=<some directory> make install

3 Using FLANN

3.1 Using FLANN from C++

The core of the FLANN library is written in C++. To make use of the full
power and flexibility of the templated code one should use the C++ bindings
if possible. To use the C++ bindings, the library header file flann.hpp must
be included and the library libflann cpp.so (for linking dynamically) or the
libflann cpp s.a (for linking statically) must be linked in. An example of the
compile command that must be used will look something like this:

g++ flann_example.cpp -I $FLANN_ROOT/include -L $FLANN_ROOT/lib -o flann_example_cpp

-lflann_cpp

where $FLANN ROOT is the library main directory.
The following sections describe the public C++ API.

3.1.1 flann::Index

The FLANN nearest neighbor index class. This class is used to abstract different
types of nearest neighbor search indexes.

namespace flann

{

template<typename T>

class Index

{

public:

Index(const Matrix<T>& features, const IndexParams& params);

~Index();

void buildIndex();

void knnSearch(const Matrix<T>& queries,

Matrix<int>& indices,

Matrix<float>& dists,

int knn,

const SearchParams& params);

int radiusSearch(const Matrix<T>& query,

Matrix<int>& indices,

Matrix<float>& dists,

float radius,

const SearchParams& params);

void save(std::string filename);

int veclen() const;

4

int size() const;

const IndexParams* getIndexParameters();

};

}

flann::Index::Index Constructs a nearest neighbor search index for a given
dataset.

Index(const Matrix<T>& features, const IndexParams& params);

features Matrix containing the features(points) to index. The size of the ma-
trix is num features× dimensionality.

params Structure containing the index parameters. The type of index that
will be constructed depends on the type of this parameter. The possible
parameter types are:

LinearIndexParams When passing an object of this type, the index will
perform a linear, brute-force search.

struct LinearIndexParams : public IndexParams

{

};

KDTreeIndexParams When passing an object of this type the index
constructed will consist of a set of randomized kd-trees which will be
searched in parallel.

struct KDTreeIndexParams : public IndexParams

{

KDTreeIndexParams(int trees = 4);

};

trees The number of parallel kd-trees to use. Good values are in the
range [1..16]

KMeansIndexParams When passing an object of this type the index
constructed will be a hierarchical k-means tree.

struct KMeansIndexParams : public IndexParams

{

KMeansIndexParams(int branching = 32,

int iterations = 11,

flann_centers_init_t centers_init = CENTERS_RANDOM,

float cb_index = 0.2);

};

branching The branching factor to use for the hierarchical k-means tree

iterations The maximum number of iterations to use in the k-means
clustering stage when building the k-means tree. If a value of -1 is
used here, it means that the k-means clustering should be iterated
until convergence

5

centers init The algorithm to use for selecting the initial centers when
performing a k-means clustering step. The possible values are CEN-
TERS RANDOM (picks the initial cluster centers randomly), CEN-
TERS GONZALES (picks the initial centers using Gonzales’ algo-
rithm) and CENTERS KMEANSPP (picks the initial centers using
the algorithm suggested in [AV07])

cb index This parameter (cluster boundary index) influences the way
exploration is performed in the hierarchical kmeans tree. When
cb index is zero the next kmeans domain to be explored is choosen
to be the one with the closest center. A value greater then zero also
takes into account the size of the domain.

CompositeIndexParams When using a parameters object of this type
the index created combines the randomized kd-trees and the hierarchical
k-means tree.

struct CompositeIndexParams : public IndexParams

{

CompositeIndexParams(int trees = 4,

int branching = 32,

int iterations = 11,

flann_centers_init_t centers_init = CENTERS_RANDOM,

float cb_index = 0.2);

};

AutotunedIndexParams When passing an object of this type the index
created is automatically tuned to offer the best performance, by choosing
the optimal index type (randomized kd-trees, hierarchical kmeans, linear)
and parameters for the dataset provided.

struct AutotunedIndexParams : public IndexParams

{

autotunedindexparams(float target_precision = 0.9,

float build_weight = 0.01,

float memory_weight = 0,

float sample_fraction = 0.1);

};

target precision Is a number between 0 and 1 specifying the percentage
of the approximate nearest-neighbor searches that return the exact
nearest-neighbor. Using a higher value for this parameter gives more
accurate results, but the search takes longer. The optimum value
usually depends on the application.

build weight Specifies the importance of the index build time raported
to the nearest-neighbor search time. In some applications it’s accept-
able for the index build step to take a long time if the subsequent
searches in the index can be performed very fast. In other applica-
tions it’s required that the index be build as fast as possible even if
that leads to slightly longer search times.

6

memory weight Is used to specify the tradeoff between time (index
build time and search time) and memory used by the index. A value
less than 1 gives more importance to the time spent and a value
greater than 1 gives more importance to the memory usage.

sample fraction Is a number between 0 and 1 indicating what fraction
of the dataset to use in the automatic parameter configuration al-
gorithm. Running the algorithm on the full dataset gives the most
accurate results, but for very large datasets can take longer than de-
sired. In such case using just a fraction of the data helps speeding up
this algorithm while still giving good approximations of the optimum
parameters.

SavedIndexParams This object type is used for loading a previously
saved index from the disk.

struct SavedIndexParams : public IndexParams

{

SavedIndexParams(std::string filename);

};

filename The filename in which the index was saved.

3.1.2 flann::Index::buildIndex

Constructs the nearest neighbor search index using the parameters provided to
the constructor (with the exception of saved index type).

void buildIndex();

3.1.3 flann::Index::knnSearch

Performs a K-nearest neighbor search for a given query point using the index.

void Index::knnSearch(const Matrix<T>& queries,

Matrix<int>& indices,

Matrix<float>& dists,

int knn,

const SearchParams& params);

query Matrix containing the query points. Size of matrix is (num queries ×
dimentionality)

indices Matrix that will contain the indices of the K-nearest neighbors found
(size should be at least num queries× knn)

dists Matrix that will contain the distances to the K-nearest neighbors found.
(size should be at least num queries× knn)

knn Number of nearest neighbors to search for.

7

params Search parameters. Structure currently contains a single field, checks
specifying the number of times the tree(s) in the index should be recur-
sively traversed. A higher value for this parameter would give better
search precision, but also take more time. If automatic configuration was
used when the index was created, the number of checks required to achieve
the specified precision was also computed, in which case this parameter is
ignored.

3.1.4 flann::Index::radiusSearch

Performs a radius nearest neighbor search for a given query point.

int Index::radiusSearch(const Matrix<T>& query,

Matrix<int>& indices,

Matrix<float>& dists,

float radius,

const SearchParams& params);

query The query point

indices Vector that will contain the indices of the points found within the
search radius in decreasing order of the distance to the query point. If the
number of neighbors in the search radius is bigger than the size of this
vector, the ones that don’t fit in the vector are ignored.

dists Vector that will contain the distances to the points found within the
search radius

radius The search radius

params Search parameters

The method returns the number of nearest neighbors found.

3.1.5 flann::Index::save

Saves the index to a file.

void Index::save(std::string filename);

filename The file to save the index to

3.1.6 flann::set distance type

This function chooses the distance function to use when computing distances
between data points.

void set_distance_type(flann_distance_t distance_type, int order);

distance type The distance type to use. Possible values are

8

enum flann_distance_t {

EUCLIDEAN = 1,

MANHATTAN = 2,

MINKOWSKI = 3,

MAX_DIST = 4, // L_infinity - not valid for kd-tree index type

HIK = 5,

HELLINGER = 6,

CS = 7, // chi-square

KL = 8, // kullback-leibler divergence

};

order Used in for the MINKOWSKI distance type, to choose the order of the
Minkowski distance.

3.1.7 flann::hierarchicalClustering

Clusters the given points by constructing a hierarchical k-means tree and choos-
ing a cut in the tree that minimizes the clusters’ variance.

template <typename ELEM_TYPE, typename DIST_TYPE>

int hierarchicalClustering(const Matrix<ELEM_TYPE>& features,

Matrix<DIST_TYPE>& centers, const KMeansIndexParams& params)

features The points to be clustered

centers The centers of the clusters obtained. The number of rows in this
matrix represents the number of clusters desired. However, because of
the way the cut in the hierarchical tree is choosen, the number of clusters
computed will be the highest number of the form (branching − 1) ∗ k + 1
that’s lower than the number of clusters desired, where branching is the
tree’s branching factor (see description of the KMeansIndexParams).

params Parameters used in the construction of the hierarchical k-means tree

The function returns the number of clusters computed.

3.2 Using FLANN from C

FLANN can be used in C programs through the C bindings provided with the
library. Because there is not template support in C, there are bindings provided
for the following data types: unsigned char, int, float and double. For each
of the functions below there is a corresponding version for each of the for data
types, for example for the function:

flan_index_t flann_build_index(float* dataset, int rows, int cols, float* speedup,

struct FLANNParameters* flann_params);

there are also the following versions:

9

flan_index_t flann_build_index_byte(unsigned char* dataset,

int rows, int cols, float* speedup,

struct FLANNParameters* flann_params);

flan_index_t flann_build_index_int(int* dataset,

int rows, int cols, float* speedup,

struct FLANNParameters* flann_params);

flan_index_t flann_build_index_float(float* dataset,

int rows, int cols, float* speedup,

struct FLANNParameters* flann_params);

flan_index_t flann_build_index_double(double* dataset,

int rows, int cols, float* speedup,

struct FLANNParameters* flann_params);

3.2.1 flann build index()

flan_index_t flann_build_index(float* dataset,

int rows,

int cols,

float* speedup,

struct FLANNParameters* flann_params);

This function builds an index and return a reference to it. The arguments
expected by this function are as follows:

dataset, rows and cols - are used to specify the input dataset of points:
dataset is a pointer to a rows× cols matrix stored in row-major order.

speedup - is used to return the approximate speedup over linear search achieved
when using the automatic index and parameter configuration (see section
3.3.1)

flann params - is a structure containing the parameters passed to the function.
This structure is defined as follows:

struct FLANNParameters {

enum flann_algorithm_t algorithm; /* the algorithm to use */

/* search parameters */

int checks; /* how many leafs (features) to check in one search */

float cb_index; /* cluster boundary index. Used when searching the

kmeans tree */

/* kdtree index parameters */

int trees; /* number of randomized trees to use (for kdtree) */

/* kmeans index parameters */

int branching; /* branching factor (for kmeans tree) */

int iterations; /* max iterations to perform in one kmeans cluetering

(kmeans tree) */

enum flann_centers_init_t centers_init; /* algorithm used for picking the initial

cluster centers for kmeans tree */

/* autotuned index parameters */

10

float target_precision; /* precision desired (used for autotuning, -1 otherwise) */

float build_weight; /* build tree time weighting factor */

float memory_weight; /* index memory weigthing factor */

float sample_fraction; /* what fraction of the dataset to use for autotuning */

/* other parameters */

enum flann_log_level_t log_level; /* determines the verbosity of each flann function */

long random_seed; /* random seed to use */

};

The algorithm and centers init fields can take the following values:

enum flann_algorithm_t {

LINEAR = 0,

KDTREE = 1,

KMEANS = 2,

COMPOSITE = 3,

SAVED = 254,

AUTOTUNED = 255

};

enum flann_centers_init_t {

CENTERS_RANDOM = 0,

CENTERS_GONZALES = 1,

CENTERS_KMEANSPP = 2

};

The algorithm field is used to manually select the type of index used.
The centers init field specifies how to choose the inital cluster centers
when performing the hierarchical k-means clustering (in case the algorithm
used is k-means): CENTERS RANDOM chooses the initial centers randomly,
CENTERS GONZALES chooses the initial centers to be spaced apart from
each other by using Gonzales’ algorithm and CENTERS KMEANSPP chooses
the initial centers using the algorithm proposed in [AV07].

The fields: checks, cb index, trees, branching, iterations, target precision,
build weight, memory weight and sample fraction have the same mean-
ing as described in 3.1.1.

The random seed field contains the random seed useed to initialize the
random number generator.

The field log level controls the verbosity of the messages generated by
the FLANN library functions. It can take the following values:

enum flann_log_level_t {

LOG_NONE = 0,

LOG_FATAL = 1,

LOG_ERROR = 2,

LOG_WARN = 3,

LOG_INFO = 4

};

11

3.2.2 flann find nearest neighbors index()

int flann_find_nearest_neighbors_index(FLANN_INDEX index_id,

float* testset,

int trows,

int* indices,

float* dists,

int nn,

int checks,

struct FLANNParameters* flann_params);

This function searches for the nearest neighbors of the testset points using
an index already build and referenced by index id. The testset is a ma-
trix stored in row-major format with trows rows and the same number of
columns as the dimensionality of the points used to build the index. The func-
tion computes nn nearest neighbors for each point in the testset and stores
them in the indices matrix (which is a trows× nn matrix stored in row-major
format). The memory for the result matrix must be allocated before the
flann find nearest neighbors index() function is called. The distances to
the nearest neighbors found are stored in the dists matrix. The checks param-
eter specifies how many tree traversals should be performed during the search.

3.2.3 flann find nearest neighbors()

int flann_find_nearest_neighbors(float* dataset,

int rows,

int cols,

float* testset,

int trows,

int* indices,

float* dists,

int nn,

struct FLANNParameters* flann_params);

This function is similar to the flann find nearest neighbors index() func-
tion, but instread of using a previously constructed index, it constructs the
index, does the nearest neighbor search and deletes the index in one step.

3.2.4 flann radius search()

int flann_radius_search(FLANN_INDEX index_ptr,

float* query, /* query point */

int* indices, /* array for storing the indices */

float* dists, /* similar, but for storing distances */

int max_nn, /* size of arrays indices and dists */

float radius, /* search radius (squared radius for euclidian metric) */

int checks, /* number of features to check, sets the level

of approximation */

FLANNParameters* flann_params);

12

This function performs a radius search to single query point. The indices of
the neighbors found and the distances to them are stored in the indices and
dists arrays. The max nn parameter sets the limit of the neighbors that will be
returned (the size of the indices and dists arrays must be at least max nn).

3.2.5 flann save index()

int flann_save_index(flann_index_t index_id,

char* filename);

This function saves an index to a file. The dataset for which the index was
built is not saved with the index.

3.2.6 flann load index()

flann_index_t flann_load_index(char* filename,

float* dataset,

int rows,

int cols);

This function loads a previously saved index from a file. Since the dataset
is not saved with the index, it must be provided to this function.

3.2.7 flann free index()

int flann_free_index(FLANN_INDEX index_id,

struct FLANNParameters* flann_params);

This function deletes a previously constructed index and frees all the memory
used by it.

3.2.8 flann set distance type

This function chooses the distance function to use when computing distances
between data points (see 3.1.6).

void flann_set_distance_type(enum flann_distance_t distance_type, int order);

3.2.9 flann compute cluster centers()

Performs hierarchical clustering of a set of points (see 3.1.7).

int flann_compute_cluster_centers(float* dataset,

int rows,

int cols,

int clusters,

float* result,

struct FLANNParameters* flann_params);

See section 1.1 for an example of how to use the C/C++ bindings.

13

3.3 Using FLANN from MATLAB

The FLANN library can be used from MATLAB through the following wrapper
functions: flann build index, flann search, flann save index, flann load index,
flann set distance type and flann free index. The flann build index

function creates a search index from the dataset points, flann search uses this
index to perform nearest-neighbor searches, flann save index and flann load index

can be used to save and load an index to/from disk, flann set distance type is
used to set the distance type to be used when building an index and flann free index

deletes the index and releases the memory it uses.
The following sections describe in more detail the FLANN matlab wrapper

functions and show examples of how they may be used.

3.3.1 flann build index

This function creates a search index from the initial dataset of points, index
used later for fast nearest-neighbor searches in the dataset.

[index, parameters, speedup] = flann_build_index(dataset, build_params);

The arguments passed to the flann build index function have the following
meaning:

dataset is a d× n matrix containing n d-dimensional points

build params - is a MATLAB structure containing the parameters passed to
the function.

The build params is used to specify the type of index to be built and the
index parameters. These have a big impact on the performance of the new search
index (nearest-neighbor search time) and on the time and memory required
to build the index. The optimum parameter values depend on the dataset
characteristics (number of dimensions, distribution of points in the dataset)
and on the application domain (desired precision for the approximate nearest
neighbor searches). The build params argument is a structure that contains
one or more of the following fields:

algorithm - the algorithm to use for building the index. The possible val-
ues are: ’linear’, ’kdtree’, ’kmeans’, ’composite’ or ’autotuned’.
The ’linear’ option does not create any index, it uses brute-force search
in the original dataset points, ’kdtree’ creates one or more random-
ized kd-trees, ’kmeans’ creates a hierarchical kmeans clustering tree,
’composite’ is a mix of both kdtree and kmeans trees and the ’autotuned’
automatically determines the best index and optimum parameters using
a cross-validation technique.

Autotuned index: in case the algorithm field is ’autotuned’, the following
fields should also be present:

14

target precision - is a number between 0 and 1 specifying the percentage of
the approximate nearest-neighbor searches that return the exact nearest-
neighbor. Using a higher value for this parameter gives more accurate
results, but the search takes longer. The optimum value usually depends
on the application.

build weight - specifies the importance of the index build time raported to
the nearest-neighbor search time. In some applications it’s acceptable for
the index build step to take a long time if the subsequent searches in the
index can be performed very fast. In other applications it’s required that
the index be build as fast as possible even if that leads to slightly longer
search times. (Default value: 0.01)

memory weight - is used to specify the tradeoff between time (index build time
and search time) and memory used by the index. A value less than 1 gives
more importance to the time spent and a value greater than 1 gives more
importance to the memory usage.

sample fraction - is a number between 0 and 1 indicating what fraction of
the dataset to use in the automatic parameter configuration algorithm.
Running the algorithm on the full dataset gives the most accurate results,
but for very large datasets can take longer than desired. In such case,
using just a fraction of the data helps speeding up this algorithm, while
still giving good approximations of the optimum parameters.

Randomized kd-trees index: in case the algorithm field is ’kdtree’, the
following fields should also be present:

trees - the number of randomized kd-trees to create.

Hierarchical k-means index: in case the algorithm type is ’means’, the
following fields should also be present:

branching - the branching factor to use for the hierarchical kmeans tree cre-
ation. While kdtree is always a binary tree, each node in the kmeans tree
may have several branches depending on the value of this parameter.

iterations - the maximum number of iterations to use in the kmeans clustering
stage when building the kmeans tree. A value of -1 used here means that
the kmeans clustering should be performed until convergence.

centers init - the algorithm to use for selecting the initial centers when per-
forming a kmeans clustering step. The possible values are ’random’ (picks
the initial cluster centers randomly), ’gonzales’ (picks the initial centers
using the Gonzales algorithm) and ’kmeanspp’ (picks the initial centers
using the algorithm suggested in [AV07]). If this parameters is omitted,
the default value is ’random’.

15

cb index - this parameter (cluster boundary index) influences the way explo-
ration is performed in the hierarchical kmeans tree. When cb index is
zero the next kmeans domain to be explored is choosen to be the one with
the closest center. A value greater then zero also takes into account the
size of the domain.

Composite index: in case the algorithm type is ’composite’, the fields from
both randomized kd-tree index and hierarchical k-means index should be
present.

The flann build index function returns the newly created index, the parameters
used for creating the index and, if automatic configuration was used, an esti-
mation of the speedup over linear search that is achieved when searching the
index. Since the parameter estimation step is costly, it is possible to save the
computed parameters and reuse them the next time an index is created from
similar data points (coming from the same distribution).

3.3.2 flann search

This function performs nearest-neighbor searches using the index already cre-
ated:

[result, dists] = flann_search(index, testset, k, parameters);

The arguments required by this function are:

index - the index returned by the flann build index function

testset - a d×m matrix containing m test points whose k-nearest-neighbors
need to be found

k - the number of nearest neighbors to be returned for each point from testset

parameters - structure containing the search parameters. Currently it has
only one member, parameters.checks, denoting the number of times the
tree(s) in the index should be recursively traversed. A higher value for this
parameter would give better search precision, but also take more time. If
automatic configuration was used when the index was created, the number
of checks required to achieve the specified precision is also computed. In
such case, the parameters structure returned by the flann build index

function can be passed directly to the flann search function.

The function returns two matrices, each of size k×m. The first one contains,
in which each column, the indexes (in the dataset matrix) of the k nearest
neighbors of the corresponding point from testset, while the second one contains
the corresponding distances. The second matrix can be omitted when making
the call if the distances to the nearest neighbors are not needed.

16

For the case where a single search will be performed with each index, the
flann search function accepts the dataset instead of the index as first argu-
ment, in which case the index is created searched and then deleted in one step.
In this case the parameters structure passed to the flann search function must
also contain the fields of the build params structure that would normally be
passed to the flann build index function if the index was build separately.

[result, dists] = flann_search(dataset, testset, k, parameters);

3.3.3 flann save index

This function saves an index to a file so that it can be reused at a later time
without the need to recompute it. Only the index will be saved to the file, not
also the data points for which the index was created, so for the index to be
reused the data points must be saved separately.

flann_save_index(index, filename)

The argumenst required by this function are:

index - the index to be saved, created by flann build index

filename - the name of the file in which to save the index

3.3.4 flann load index

This function loads a previously saved index from a file. It needs to be passed
as a second parameter the dataset for which the index was created, as this is
not saved together with the index.

index = flann_load_index(filename, dataset)

The argumenst required by this function are:

filename - the file from which to load the index

dataset - the dataset for which the index was created

This function returns the index object.

3.3.5 flann set distance type

This function chooses the distance function to use when computing distances
between data points.

flann_set_distance_type(type, order)

The argumenst required by this function are:

17

type - the distance type to use. Possible values are: ’euclidean’, ’manhattan’,
’minkowski’, ’max dist’ (L infinity - distance type is not valid for kd-
tree index type since it’s not dimensionwise additive), ’hik’ (histogram
intersection kernel), ’hellinger’,’cs’ (chi-square) and ’kl’ (Kullback-
Leibler).

order - only used if distance type is ’minkowski’ and represents the order of
the minkowski distance.

3.3.6 flann free index

This function must be called to delete an index and release all the memory used
by it:

flann_free_index(index);

3.3.7 Examples

Let’s look at a few examples showing how the functions described above are
used:

3.3.8 Example 1:

In this example the index is constructed using automatic parameter estimation,
requesting 90% as desired precision and using the default values for the build
time and memory usage factors. The index is then used to search for the nearest-
neighbors of the points in the testset matrix and finally the index is deleted.

dataset = single(rand(128,10000));

testset = single(rand(128,1000));

build_params.target_precision = 0.9;

build_params.build_weight = 0.01;

build_params.memory_weight = 0;

[index, parameters] = flann_build_index(dataset, build_params);

result = flann_search(index,testset,5,parameters);

flann_free_index(index);

3.3.9 Example 2:

In this example the index constructed with the parameters specified manually.

dataset = single(rand(128,10000));

testset = single(rand(128,1000));

18

index = flann_build_index(dataset,struct(’algorithm’,’kdtree’,’trees’,8));

result = flann_search(index,testset,5,struct(’checks’,128));

flann_free_index(index);

3.3.10 Example 3:

In this example the index creation, searching and deletion are all performed in
one step:

dataset = single(rand(128,10000));

testset = single(rand(128,1000));

[result,dists] = flann_search(dataset,testset,5,struct(’checks’,128,’algorithm’,...

’kmeans’,’branching’,64,’iterations’,5));

3.4 Using FLANN from python

FLANN can be used from python programs using the python bindings dis-
tributed with the library. The python bindings can be installed on a system
using the distutils script provided (setup.py), by running the following com-
mand in the build/python directory:

$ python setup.py install

The python bindings also require the numpy package to be installed.
To use the python FLANN bindings the package pyflann must be imported

(see the python example in section 1.1). This package contains a class called
FLANN that handles the nearest-neighbor search operations. This class con-
taing the following methods:

def build index(self, dataset, **kwargs) :
This method builds and internally stores an index to be used for future
nearest neighbor matchings. It erases any previously stored index, so in
order to work with multiple indexes, multiple instances of the FLANN
class must be used. The dataset argument must be a 2D numpy array or
a matrix. The rest of the arguments that can be passed to the method are
the same as those used in the build params structure from section 3.3.1.
Similar to the MATLAB version, the index can be created using manually
specified parameters or the parameters can be automatically computed
(by specifying the target precision, build weight and memory weight ar-
guments).

19

The method returns a dictionary containing the parameters used to con-
struct the index. In case automatic parameter selection is used, the dictio-
nary will also contain the number of checks required to achieve the desired
target precision and an estimation of the speedup over linear search that
the library will provide.

def nn index(self, testset, num neighbors = 1, **kwargs) :
This method searches for the num neighbors nearest neighbors of each
point in testset using the index computed by build index. Additionally,
a parameter called checks, denoting the number of times the index tree(s)
should be recursivelly searched, must be given.

Example:

from pyflann import *
from numpy import *
from numpy.random import *

dataset = rand(10000, 128)
testset = rand(1000, 128)

flann = FLANN()
params = flann.build_index(dataset, target_precision=0.9, log_level = "info");
print params

result, dists = flann.nn_index(testset,5, checks=params["checks"]);

def nn(self, dataset, testset, num neighbors = 1, **kwargs) :
This method builds the index, performs the nearest neighbor search and
deleted the index, all in one step.

def save index(self, filename) :
This method saves the index to a file. The dataset form which the index
was build is not saved.

def load index(self, filename, pts) :
Load the index from a file. The dataset for which the index was build
must also be provided since is not saved with the index.

def set distance type(distance type, order = 0) :
This function (part of the pyflann module) sets the distance type to be
used. See 3.3.5 for possible values of the distance type.

See section 1.1 for an example of how to use the Python bindings.

3.5 Using the flann command line application

The FLANN distribution also contains a command line application that can be
used to perform nearest-neighbor searches using datasets stored in files. The
application can read datasets stored in CSV format, space-separated values or
raw binary format.

The command line application takes a command name as the first argument
and then the arguments for that command:

20

$ flann

Usage: flann.py [command commans_args]

Comamnds:

generate_random

compute_gt

compute_nn

autotune

sample_dataset

cluster

run_test

For command specific help type: flann.py <command> -h

To see the possible arguments for each command, use flann help <command>.
For example:

$ flann run_test -h

Usage: flann.py [command command_args]

Options:

-h, --help show this help message and exit

-i FILE, --input-file=FILE

Name of file with input dataset

-a ALGORITHM, --algorithm=ALGORITHM

The algorithm to use when constructing the index

(kdtree, kmeans...)

-r TREES, --trees=TREES

Number of parallel trees to use (where available, for

example kdtree)

-b BRANCHING, --branching=BRANCHING

Branching factor (where applicable, for example

kmeans) (default: 2)

-C CENTERS_INIT, --centers-init=CENTERS_INIT

How to choose the initial cluster centers for kmeans

(random, gonzales) (default: random)

-M MAX_ITERATIONS, --max-iterations=MAX_ITERATIONS

Max iterations to perform for kmeans (default: until

convergence)

-l LOG_LEVEL, --log-level=LOG_LEVEL

Log level (none < fatal < error < warning < info)

(Default: info)

-t FILE, --test-file=FILE

Name of file with test dataset

-m FILE, --match-file=FILE

File with ground truth matches

-n NN, --nn=NN Number of nearest neighbors to search for

-c CHECKS, --checks=CHECKS

Number of times to restart search (in best-bin-first

manner)

-P PRECISION, --precision=PRECISION

Run the test until reaching this precision

-K NUM, --skip-matches=NUM

Skip the first NUM matches at test phase

21

References

[AV07] D. Arthur and S. Vassilvitskii. k-means++: the advantages of careful
seeding. In Proceedings of the eighteenth annual ACM-SIAM sympo-
sium on Discrete algorithms, pages 1027–1035. Society for Industrial
and Applied Mathematics Philadelphia, PA, USA, 2007.

22

	Introduction
	Quick Start

	Downloading and compiling FLANN
	Using FLANN
	Using FLANN from C++
	flann::Index
	flann::Index::buildIndex
	flann::Index::knnSearch
	flann::Index::radiusSearch
	flann::Index::save
	flann::set_distance_type
	flann::hierarchicalClustering

	Using FLANN from C
	flann_build_index()
	flann_find_nearest_neighbors_index()
	flann_find_nearest_neighbors()
	flann_radius_search()
	flann_save_index()
	flann_load_index()
	flann_free_index()
	flann_set_distance_type
	flann_compute_cluster_centers()

	Using FLANN from MATLAB
	flann_build_index
	flann_search
	flann_save_index
	flann_load_index
	flann_set_distance_type
	flann_free_index
	Examples
	Example 1:
	Example 2:
	Example 3:

	Using FLANN from python
	Using the flann command line application

